Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 118(4): 1136-1154, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38341846

RESUMEN

Rhizobial phosphatidylcholine (PC) is thought to be a critical phospholipid for the symbiotic relationship between rhizobia and legume host plants. A PC-deficient mutant of Sinorhizobium meliloti overproduces succinoglycan, is unable to swim, and lacks the ability to form nodules on alfalfa (Medicago sativa) host roots. Suppressor mutants had been obtained which did not overproduce succinoglycan and regained the ability to swim. Previously, we showed that point mutations leading to altered ExoS proteins can reverse the succinoglycan and swimming phenotypes of a PC-deficient mutant. Here, we report that other point mutations leading to altered ExoS, ChvI, FabA, or RpoH1 proteins also revert the succinoglycan and swimming phenotypes of PC-deficient mutants. Notably, the suppressor mutants also restore the ability to form nodule organs on alfalfa roots. However, nodules generated by these suppressor mutants express only low levels of an early nodulin, do not induce leghemoglobin transcript accumulation, thus remain white, and are unable to fix nitrogen. Among these suppressor mutants, we detected a reduced function mutant of the 3-hydoxydecanoyl-acyl carrier protein dehydratase FabA that produces reduced amounts of unsaturated and increased amounts of shorter chain fatty acids. This alteration of fatty acid composition probably affects lipid packing thereby partially compensating for the previous loss of PC and contributing to the restoration of membrane homeostasis.


Asunto(s)
Ácidos Grasos , Medicago sativa , Fosfatidilcolinas , Nodulación de la Raíz de la Planta , Sinorhizobium meliloti , Simbiosis , Sinorhizobium meliloti/fisiología , Sinorhizobium meliloti/genética , Medicago sativa/microbiología , Medicago sativa/genética , Nodulación de la Raíz de la Planta/genética , Ácidos Grasos/metabolismo , Ácidos Grasos/biosíntesis , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/metabolismo , Mutación , Polisacáridos Bacterianos/metabolismo , Polisacáridos Bacterianos/biosíntesis , Fijación del Nitrógeno
2.
New Phytol ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39300950

RESUMEN

Some Bradyrhizobium strains nodulate certain Aeschynomene species independently of Nod factors, but thanks to their type III secretion system (T3SS). While different T3 effectors triggering nodulation (ErnA and Sup3) have been identified, the plant signalling pathways they activate remain unknown. Here, we explored the intraspecies variability in T3SS-triggered nodulation within Aeschynomene evenia and investigated transcriptomic responses that occur during this symbiosis. Furthermore, Bradyrhizobium strains having different effector sets were tested on A. evenia mutants altered in various symbiotic signalling genes. We identified the A. evenia accession N21/PI 225551 as appropriate for deciphering the T3SS-dependent process. Comparative transcriptomic analysis of A. evenia N21 roots inoculated with ORS3257 strain and its ∆ernA mutant revealed genes differentially expressed, including some involved in plant defences and auxin signalling. In the other A. evenia accession N76, all tested strains nodulated the AeCRK mutant but not the AeNIN and AeNSP2 mutants, indicating a differential requirement of these genes for T3SS-dependent nodulation. Furthermore, the effects of AePOLLUX, AeCCaMK and AeCYCLOPS mutations differed between the strains. Notably, ORS86 nodulated these three mutant lines and required for this both ErnA and Sup3. Taken together, these results shed light on how the T3SS-dependent nodulation process is achieved in legumes.

3.
New Phytol ; 242(6): 2746-2762, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38666352

RESUMEN

Legume plants develop two types of root postembryonic organs, lateral roots and symbiotic nodules, using shared regulatory components. The module composed by the microRNA390, the Trans-Acting SIRNA3 (TAS3) RNA and the Auxin Response Factors (ARF)2, ARF3, and ARF4 (miR390/TAS3/ARFs) mediates the control of both lateral roots and symbiotic nodules in legumes. Here, a transcriptomic approach identified a member of the Lateral Organ Boundaries Domain (LBD) family of transcription factors in Medicago truncatula, designated MtLBD17/29a, which is regulated by the miR390/TAS3/ARFs module. ChIP-PCR experiments evidenced that MtARF2 binds to an Auxin Response Element present in the MtLBD17/29a promoter. MtLBD17/29a is expressed in root meristems, lateral root primordia, and noninfected cells of symbiotic nodules. Knockdown of MtLBD17/29a reduced the length of primary and lateral roots and enhanced lateral root formation, whereas overexpression of MtLBD17/29a produced the opposite phenotype. Interestingly, both knockdown and overexpression of MtLBD17/29a reduced nodule number and infection events and impaired the induction of the symbiotic genes Nodulation Signaling Pathway (NSP) 1 and 2. Our results demonstrate that MtLBD17/29a is regulated by the miR390/TAS3/ARFs module and a direct target of MtARF2, revealing a new lateral root regulatory hub recruited by legumes to act in the root nodule symbiotic program.


Asunto(s)
Medicago truncatula , Proteínas de Plantas , Nodulación de la Raíz de la Planta , Raíces de Plantas , Factores de Transcripción , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Ácidos Indolacéticos/metabolismo , Medicago truncatula/genética , Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/microbiología , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Nodulación de la Raíz de la Planta/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Regiones Promotoras Genéticas/genética , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Simbiosis/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
4.
Plant Cell Environ ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225339

RESUMEN

Medicago truncatula Nod Factor Perception (MtNFP) plays a role in both the Rhizobium-Legume (RL) symbiosis and plant immunity, and evidence suggests that the immune-related function of MtNFP is relevant for symbiosis. To better understand these roles of MtNFP, we sought to identify new interacting partners. We screened a yeast-2-hybrid cDNA library from Aphanomyces euteiches infected and noninfected M. truncatula roots. The M. truncatula leucine-rich repeat (LRR) receptor-like kinase SUPPRESSOR OF BIR1 (MtSOBIR1) was identified as an interactor of MtNFP and was characterised for kinase activity, and potential roles in symbiosis and plant immunity. We showed that the kinase domain of MtSOBIR1 is active and can transphosphorylate the pseudo-kinase domain of MtNFP. MtSOBIR1 could functionally complement Atsobir1 and Nbsobir1/sobir1-like mutants for defence activation, and Mtsobir1 mutants were defective in immune responses to A. euteiches. For symbiosis, we showed that Mtsobir1 mutant plants had both a strong, early infection defect and defects in the defence suppression in nodules, and both effects were plant genotype- and rhizobial strain-specific. This work highlights a conserved function for MtSOBIR1 in activating defence responses to pathogen attack, and potentially novel symbiotic functions of downregulating defence in association with the control of symbiotic specificity.

5.
J Exp Bot ; 75(11): 3214-3219, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38476021

RESUMEN

Certain legumes provide a special pathway for rhizobia to invade the root and develop nitrogen-fixing nodules, a process known as lateral root base (LRB) nodulation. This pathway involves intercellular infection at the junction of the lateral roots with the taproot, leading to nodule formation in the lateral root cortex. Remarkably, this LRB pathway serves as a backbone for various adaptative symbiotic processes. Here, we describe different aspects of LRB nodulation and highlight directions for future research to elucidate the mechanisms of this as yet little known but original pathway that will help in broadening our knowledge on the rhizobium-legume symbiosis.


Asunto(s)
Fabaceae , Nodulación de la Raíz de la Planta , Rhizobium , Simbiosis , Nodulación de la Raíz de la Planta/fisiología , Fabaceae/microbiología , Fabaceae/fisiología , Simbiosis/fisiología , Rhizobium/fisiología , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/fisiología , Fijación del Nitrógeno/fisiología
6.
Planta ; 257(3): 54, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36780015

RESUMEN

MAIN CONCLUSION: Lysin motif (LysM)-receptor-like kinase (RLK) and leucine-rich repeat (LRR)-RLK mediated signaling play important roles in the development and regulation of root nodule symbiosis in legumes. The availability of water and nutrients in the soil is a major limiting factor affecting crop productivity. Plants of the Leguminosae family form a symbiotic association with nitrogen-fixing Gram-negative soil bacteria, rhizobia for nitrogen fixation. This symbiotic relationship between legumes and rhizobia depends on the signal exchange between them. Plant receptor-like kinases (RLKs) containing lysin motif (LysM) and/or leucine-rich repeat (LRR) play an important role in the perception of chemical signals from rhizobia for initiation and establishment of root nodule symbiosis (RNS) that results in nitrogen fixation. This review highlights the diverse aspects of LysM-RLK and LRR receptors including their specificity, functions, interacting partners, regulation, and associated signaling in RNS. The activation of LysM-RLKs and LRR-RLKs is important for ensuring the successful interaction between legume roots and rhizobia. The intracellular regions of the receptors enable additional layers of signaling that help in the transduction of signals intracellularly. Additionally, symbiosis receptor-like kinase (SYMRK) containing the LRR motif acts as a co-receptor with Nod factors receptors (LysM-RLK). Cleavage of the malectin-like domain from the SYMRK ectodomain is a mechanism for controlling SYMRK stability. Overall, this review has discussed different aspects of legume receptors that are critical to the perception of signals from rhizobia and their subsequent role in creating the mutualistic relationship necessary for nitrogen fixation. Additionally, it has been discussed how crucial it is to extrapolate the knowledge gained from model legumes to crop legumes such as chickpea and common bean to better understand the mechanism underlying nodule formation in crop legumes. Future directions have also been proposed in this regard.


Asunto(s)
Fabaceae , Rhizobium , Fijación del Nitrógeno , Proteínas de Plantas/metabolismo , Leucina , Simbiosis/fisiología , Fabaceae/metabolismo , Plantas/metabolismo , Rhizobium/fisiología , Nódulos de las Raíces de las Plantas/metabolismo
7.
New Phytol ; 235(5): 1995-2007, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35611584

RESUMEN

Rhizobial lipochitooligosaccharidic Nod factors (NFs), specified by nod genes, are the primary determinants of host specificity in the legume-Rhizobia symbiosis. We examined the nodulation ability of Medicago truncatula cv Jemalong A17 and M. truncatula ssp. tricycla R108 with the Sinorhizobium meliloti nodF/nodL mutant, which produces modified NFs. We then applied genetic and functional approaches to study the genetic basis and mechanism of nodulation of R108 by this mutant. We show that the nodF/nodL mutant can nodulate R108 but not A17. Using genomics and reverse genetics, we identified a newly evolved, chimeric LysM receptor-like kinase gene in R108, LYK2bis, which is responsible for the phenotype and can allow A17 to gain nodulation with the nodF/nodL mutant. We found that LYK2bis is involved in nodulation by mutants producing nonO-acetylated NFs and interacts with the key receptor protein NFP. Many, but not all, natural S. meliloti and S. medicae strains tested require LYK2bis for efficient nodulation of R108. Our findings reveal that a newly evolved gene in R108, LYK2bis, extends nodulation specificity to mutants producing nonO-acetylated NFs and is important for nodulation by many natural Sinorhizobia. Evolution of this gene may present an adaptive advantage to allow nodulation by a greater variety of strains.


Asunto(s)
Medicago truncatula , Rhizobium , Sinorhizobium meliloti , Medicago truncatula/genética , Medicago truncatula/metabolismo , Fenotipo , Sinorhizobium meliloti/genética , Simbiosis/genética
8.
Plant J ; 102(6): 1249-1265, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31958173

RESUMEN

The model legume Medicago truncatula possesses a single outward Shaker K+ channel, whereas Arabidopsis thaliana possesses two channels of this type, named AtSKOR and AtGORK, with AtSKOR having been shown to play a major role in K+ secretion into the xylem sap in the root vasculature and with AtGORK being shown to mediate the efflux of K+ across the guard cell membrane, leading to stomatal closure. Here we show that the expression pattern of the single M. truncatula outward Shaker channel, which has been named MtGORK, includes the root vasculature, guard cells and root hairs. As shown by patch-clamp experiments on root hair protoplasts, besides the Shaker-type slowly activating outwardly rectifying K+ conductance encoded by MtGORK, a second K+ -permeable conductance, displaying fast activation and weak rectification, can be expressed by M. truncatula. A knock-out (KO) mutation resulting in an absence of MtGORK activity is shown to weakly reduce K+ translocation to shoots, and only in plants engaged in rhizobial symbiosis, but to strongly affect the control of stomatal aperture and transpirational water loss. In legumes, the early electrical signaling pathway triggered by Nod-factor perception is known to comprise a short transient depolarization of the root hair plasma membrane. In the absence of the functional expression of MtGORK, the rate of the membrane repolarization is found to be decreased by a factor of approximately two. This defect was without any consequence on infection thread development and nodule production in plants grown in vitro, but a decrease in nodule production was observed in plants grown in soil.


Asunto(s)
Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Canales de Potasio de la Superfamilia Shaker/metabolismo , Animales , Técnicas de Inactivación de Genes , Medicago truncatula/genética , Medicago truncatula/fisiología , Oocitos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Transpiración de Plantas , Potasio/metabolismo , Canales de Potasio de la Superfamilia Shaker/genética , Canales de Potasio de la Superfamilia Shaker/fisiología , Xenopus
9.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34884793

RESUMEN

Multimodal spectroscopic imaging methods such as Matrix Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI MSI), Fourier Transform Infrared spectroscopy (FT-IR) and Raman spectroscopy were used to monitor the changes in distribution and to determine semi quantitatively selected metabolites involved in nitrogen fixation in pea root nodules. These approaches were used to evaluate the effectiveness of nitrogen fixation by pea plants treated with biofertilizer preparations containing Nod factors. To assess the effectiveness of biofertilizer, the fresh and dry masses of plants were determined. The biofertilizer was shown to be effective in enhancing the growth of the pea plants. In case of metabolic changes, the biofertilizer caused a change in the apparent distribution of the leghaemoglobin from the edges of the nodule to its centre (the active zone of nodule). Moreover, the enhanced nitrogen fixation and presumably the accelerated maturation form of the nodules were observed with the use of a biofertilizer.


Asunto(s)
Fijación del Nitrógeno/fisiología , Pisum sativum/metabolismo , Rhizobium leguminosarum/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Fertilizantes/microbiología , Leghemoglobina/metabolismo , Pisum sativum/crecimiento & desarrollo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman
10.
BMC Plant Biol ; 20(1): 417, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32894045

RESUMEN

BACKGROUND: Peanut is an important legume crop growing worldwide. With the published allotetraploid genomes, further functional studies of the genes in peanut are very critical for crop improvement. CRISPR/Cas9 system is emerging as a robust tool for gene functional study and crop improvement, which haven't been extensively utilized in peanut yet. Peanut plant forms root nodules to fix nitrogen through a symbiotic relationship with rhizobia. In model legumes, the response of plants to rhizobia is initiated by Nod factor receptors (NFRs). However, information about the function of NFRs in peanut is still limited. In this study, we applied the CRISPR/Cas9 tool in peanut hairy root transformation system to explore the function of NFR genes. RESULTS: We firstly identified four AhNFR1 genes and two AhNFR5 genes in cultivated peanut (Tifrunner). The gene expression analysis showed that the two AhNFR1 and two AhNFR5 genes had high expression levels in nodulating (Nod+) line E5 compared with non-nodulating (Nod-) line E4 during the process of nodule formation, suggesting their roles in peanut nodulation. To further explore their functions in peanut nodulation, we applied CRISPR technology to create knock-out mutants of AhNFR1 and AhNFR5 genes using hairy root transformation system. The sequencing of these genes in transgenic hairy roots showed that the selected AhNFR1 and AhNFR5 genes were successfully edited by the CRISPR system, demonstrating its efficacy for targeted mutation in allotetraploid peanut. The mutants with editing in the two AhNFR5 genes showed Nod- phenotype, whereas mutants with editing in the two selected AhNFR1 genes could still form nodules after rhizobia inoculation. CONCLUSIONS: This study showed that CRISPR-Cas9 could be used in peanut hairy root transformation system for peanut functional genomic studies, specifically on the gene function in roots. By using CRISPR-Cas9 targeting peanut AhNFR genes in hairy root transformation system, we validated the function of AhNFR5 genes in nodule formation in peanut.


Asunto(s)
Arachis/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Productos Agrícolas/genética , Regulación de la Expresión Génica de las Plantas , Fijación del Nitrógeno/genética , Nodulación de la Raíz de la Planta/genética , Genoma , Fitomejoramiento , Análisis de Secuencia
11.
Appl Environ Microbiol ; 86(18)2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32651206

RESUMEN

Establishment of the symbiotic relationship that develops between rhizobia and their legume hosts is contingent upon an interkingdom signal exchange. In response to host legume flavonoids, NodD proteins from compatible rhizobia activate expression of nodulation genes that produce lipochitin oligosaccharide signaling molecules known as Nod factors. Root nodule formation commences upon legume recognition of compatible Nod factor. Rhizobium leguminosarum was previously considered to contain one copy of nodD; here, we show that some strains of the Trifolium (clover) microsymbiont R. leguminosarum bv. trifolii contain a second copy designated nodD2. nodD2 genes were present in 8 out of 13 strains of R. leguminosarum bv. trifolii, but were absent from the genomes of 16 R. leguminosarum bv. viciae strains. Analysis of single and double nodD1 and nodD2 mutants in R. leguminosarum bv. trifolii strain TA1 revealed that NodD2 was functional and enhanced nodule colonization competitiveness. However, NodD1 showed significantly greater capacity to induce nod gene expression and infection thread formation. Clover species are either annual or perennial and this phenological distinction is rarely crossed by individual R. leguminosarum bv. trifolii microsymbionts for effective symbiosis. Of 13 strains with genome sequences available, 7 of the 8 effective microsymbionts of perennial hosts contained nodD2, whereas the 3 microsymbionts of annual hosts did not. We hypothesize that NodD2 inducer recognition differs from NodD1, and NodD2 functions to enhance competition and effective symbiosis, which may discriminate in favor of perennial hosts.IMPORTANCE Establishment of the rhizobium-legume symbiosis requires a highly specific and complex signal exchange between both participants. Rhizobia perceive legume flavonoid compounds through LysR-type NodD regulators. Often, rhizobia encode multiple copies of nodD, which is one determinant of host specificity. In some species of rhizobia, the presence of multiple copies of NodD extends their symbiotic host-range. Here, we identified and characterized a second copy of nodD present in some strains of the clover microsymbiont Rhizobium leguminosarum bv. trifolii. The second nodD gene contributed to the competitive ability of the strain on white clover, an important forage legume. A screen for strains containing nodD2 could be utilized as one criterion to select strains with enhanced competitive ability for use as inoculants for pasture production.


Asunto(s)
Proteínas Bacterianas/genética , Interacciones Microbianas , Nodulación de la Raíz de la Planta , Rhizobium leguminosarum/fisiología , Trifolium/microbiología , Proteínas Bacterianas/metabolismo , Raíces de Plantas/microbiología
12.
J Exp Bot ; 70(6): 1903-1913, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30775775

RESUMEN

Lotus species develop infection threads to guide rhizobia into nodule cells. However, there is evidence that some species have a genetic repertoire to allow other modes of infection. By conducting confocal and electron microscopy, quantification of marker gene expression, and phenotypic analysis of transgenic roots infected with mutant rhizobia, we elucidated the infection mechanism used by Rhizobium leguminosarum Norway to colonize Lotus burttii. Rhizobium leguminosarum Norway induces a distinct host transcriptional response compared with Mesorhizobium loti. It infects L. burttii utilizing an epidermal and transcellular infection thread-independent mechanism at high frequency. The entry into plant cells occurs directly from the apoplast and is primarily mediated by 'peg'-like structures, the formation of which is dependent on the production of Nod factor by the rhizobia. These results demonstrate that Lotus species can exhibit duality in their infection mechanisms depending on the rhizobial strain that they encounter. This is especially relevant in the context of interactions in the rhizosphere where legumes do not encounter single strains, but complex rhizobial communities. Additionally, our findings support a perception mechanism at the nodule cell entry interface, reinforcing the idea that there are successive checkpoints during rhizobial infection.


Asunto(s)
Lotus/microbiología , Lotus/fisiología , Nodulación de la Raíz de la Planta , Rhizobium leguminosarum/fisiología , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/fisiología , Simbiosis
13.
J Exp Bot ; 70(4): 1407-1417, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30753553

RESUMEN

The number of legume root nodules resulting from a symbiosis with rhizobia is tightly controlled by the plant. Certain members of the CLAVATA3/Embryo Surrounding Region (CLE) peptide family, specifically MtCLE12 and MtCLE13 in Medicago truncatula, act in the systemic autoregulation of nodulation (AON) pathway that negatively regulates the number of nodules. Little is known about the molecular pathways that operate downstream of the AON-related CLE peptides. Here, by means of a transcriptome analysis, we show that roots ectopically expressing MtCLE13 deregulate only a limited number of genes, including three down-regulated genes encoding lysin motif receptor-like kinases (LysM-RLKs), among which are the nodulation factor (NF) receptor NF Perception gene (NFP) and two up-regulated genes, MtTML1 and MtTML2, encoding Too Much Love (TML)-related Kelch-repeat containing F-box proteins. The observed deregulation was specific for the ectopic expression of nodulation-related MtCLE genes and depended on the Super Numeric Nodules (SUNN) AON RLK. Moreover, overexpression and silencing of these two MtTML genes demonstrated that they play a role in the negative regulation of nodule numbers. Hence, the identified MtTML genes are the functional counterpart of the Lotus japonicus TML gene shown to be central in the AON pathway. Additionally, we propose that the down-regulation of a subset of LysM-RLK-encoding genes, among which is NFP, might contribute to the restriction of further nodulation once the first nodules have been formed.


Asunto(s)
Regulación hacia Abajo , Medicago truncatula/fisiología , Proteínas de Plantas/genética , Nodulación de la Raíz de la Planta/genética , Regulación de la Expresión Génica de las Plantas , Homeostasis/genética , Medicago truncatula/genética , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo
14.
Int J Mol Sci ; 20(7)2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30939810

RESUMEN

Lysin-motif receptor-like kinase PsK1 is involved in symbiosis initiation and the maintenance of infection thread (IT) growth and bacterial release in pea. We verified PsK1 specificity in relation to the Nod factor structure using k1 and rhizobial mutants. Inoculation with nodO and nodE nodO mutants significantly reduced root hair deformations, curling, and the number of ITs in k1-1 and k1-2 mutants. These results indicated that PsK1 function may depend on Nod factor structures. PsK1 with replacement in kinase domain and PsSYM10 co-production in Nicotiana benthamiana leaves did not induce a hypersensitive response (HR) because of the impossibility of signal transduction into the cell. Replacement of P169S in LysM3 domain of PsK1 disturbed the extracellular domain (ECD) interaction with PsSYM10's ECD in Y2H system and reduced HR during the co-production of full-length PsK1 and PsSYM0 in N. benthamiana. Lastly, we explored the role of PsK1 in symbiosis with arbuscular mycorrhizal (AM) fungi; no significant differences between wild-type plants and k1 mutants were found, suggesting a specific role of PsK1 in legume⁻rhizobial symbiosis. However, increased sensitivity to a highly aggressive Fusarium culmorum strain was found in k1 mutants compared with the wild type, which requires the further study of the role of PsK1 in immune response regulation.


Asunto(s)
Variación Estructural del Genoma , Pisum sativum/genética , Proteínas de Plantas/genética , Proteínas Quinasas/genética , Simbiosis , Fusarium/patogenicidad , Micorrizas/genética , Pisum sativum/microbiología , Proteínas de Plantas/química , Dominios Proteicos , Proteínas Quinasas/química , Rhizobium/patogenicidad , Nicotiana/genética , Nicotiana/microbiología
15.
Planta ; 248(5): 1101-1120, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30043288

RESUMEN

MAIN CONCLUSION: The LysM receptor-like kinase K1 is involved in regulation of pea-rhizobial symbiosis development. The ability of the crop legume Pisum sativum L. to perceive the Nod factor rhizobial signals may depend on several receptors that differ in ligand structure specificity. Identification of pea mutants defective in two types of LysM receptor-like kinases (LysM-RLKs), SYM10 and SYM37, featuring different phenotypic manifestations and impaired at various stages of symbiosis development, corresponds well to this assumption. There is evidence that one of the receptor proteins involved in symbiosis initiation, SYM10, has an inactive kinase domain. This implies the presence of an additional component in the receptor complex, together with SYM10, that remains unknown. Here, we describe a new LysM-RLK, K1, which may serve as an additional component of the receptor complex in pea. To verify the function of K1 in symbiosis, several P. sativum non-nodulating mutants in the k1 gene were identified using the TILLING approach. Phenotyping revealed the blocking of symbiosis development at an appropriately early stage, strongly suggesting the importance of LysM-RLK K1 for symbiosis initiation. Moreover, the analysis of pea mutants with weaker phenotypes provides evidence for the additional role of K1 in infection thread distribution in the cortex and rhizobia penetration. The interaction between K1 and SYM10 was detected using transient leaf expression in Nicotiana benthamiana and in the yeast two-hybrid system. Since the possibility of SYM10/SYM37 complex formation was also shown, we tested whether the SYM37 and K1 receptors are functionally interchangeable using a complementation test. The interaction between K1 and other receptors is discussed.


Asunto(s)
Pisum sativum/enzimología , Proteínas de Plantas/fisiología , Proteínas Quinasas/fisiología , Rhizobium leguminosarum/fisiología , Simbiosis , Western Blotting , Ingeniería Genética/métodos , Pisum sativum/microbiología , Pisum sativum/fisiología , Hojas de la Planta/enzimología , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nicotiana/genética , Técnicas del Sistema de Dos Híbridos
16.
Microb Pathog ; 117: 88-92, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29408693

RESUMEN

In legumes, LysM domains of receptors-like kinases (RLKs) mediate rhizobial NFs perception; which are required for infection and establishment of symbiosis without triggering the host immune response. In this study, we identify the LysM extracellular domain sequences of putative Sulla species Nod factor receptors (S. pallida, S. capitata and S. coronaria). The Blast search displayed high identity percentages with genes encoding LjNFR5-like of several legumes. Phylogenetic trees were built using the partial nod factor receptor and predicted amino acid sequences, which grouped Sulla in a separate clade. The multiple alignments of the LysM2 domains revealed that amino acids found to be important in other legume species are not conserved in Sulla species. Further examination of the predicted proteins sequences (LysM2 domain) showed that the three species were different in the two crucial sites for Nod factor perception.


Asunto(s)
Fabaceae/genética , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/aislamiento & purificación , Nódulos de las Raíces de las Plantas/genética , Análisis de Secuencia , Secuencia de Aminoácidos , ADN de Plantas , Fabaceae/microbiología , Lipopolisacáridos , Modelos Moleculares , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/clasificación , Conformación Proteica , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/clasificación , Rhizobium , Alineación de Secuencia , Simbiosis/fisiología
17.
Plant J ; 79(5): 757-68, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24930743

RESUMEN

During endosymbiotic interactions between legume plants and nitrogen-fixing rhizobia, successful root infection by bacteria and nodule organogenesis requires the perception and transduction of bacterial lipo-chitooligosaccharidic signal called Nod factor (NF). NF perception in legume roots leads to the activation of an early signaling pathway and of a set of symbiotic genes which is controlled by specific early transcription factors (TFs) including CYCLOPS/IPD3, NSP1, NSP2, ERN1 and NIN. In this study, we bring convincing evidence that the Medicago truncatula CCAAT-box-binding NF-YA1 TF, previously associated with later stages of rhizobial infection and nodule meristem formation is, together with its closest homolog NF-YA2, also an essential positive regulator of the NF-signaling pathway. Here we show that NF-YA1 and NF-YA2 are both expressed in epidermal cells responding to NFs and their knock-down by reverse genetic approaches severely affects the NF-induced expression of symbiotic genes and rhizobial infection. Further over-expression, transactivation and ChIP-PCR approaches indicate that NF-YA1 and NF-YA2 function, at least in part, via the direct activation of ERN1. We thus propose a model in which NF-YA1 and NF-YA2 appear as early symbiotic regulators acting downstream of DMI3 and NIN and possibly within the same regulatory complexes as NSP1/2 to directly activate the expression of ERN1.


Asunto(s)
Factor de Unión a CCAAT/genética , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Transducción de Señal , Sinorhizobium meliloti/fisiología , Simbiosis , Factor de Unión a CCAAT/metabolismo , Expresión Génica , Genes Reporteros , Medicago truncatula/citología , Medicago truncatula/microbiología , Medicago truncatula/fisiología , Microdisección , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , ARN de Planta/química , ARN de Planta/genética , Nódulos de las Raíces de las Plantas/citología , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/fisiología , Análisis de Secuencia de ARN , Nicotiana/genética , Nicotiana/microbiología , Nicotiana/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
J Integr Plant Biol ; 56(3): 250-61, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24386977

RESUMEN

Under nutrient-limiting conditions, plants will enter into symbiosis with arbuscular mycorrhizal (AM) fungi for the enhancement of mineral nutrient acquisition from the surrounding soil. AM fungi live in close, intracellular association with plant roots where they transfer phosphate and nitrogen to the plant in exchange for carbon. They are obligate fungi, relying on their host as their only carbon source. Much has been discovered in the last decade concerning the signaling events during initiation of the AM symbiosis, including the identification of signaling molecules generated by both partners. This signaling occurs through symbiosis-specific gene products in the host plant, which are indispensable for normal AM development. At the same time, plants have adapted complex mechanisms for avoiding infection by pathogenic fungi, including an innate immune response to general microbial molecules, such as chitin present in fungal cell walls. How it is that AM fungal colonization is maintained without eliciting a defensive response from the host is still uncertain. In this review, we present a summary of the molecular signals and their elicited responses during initiation of the AM symbiosis, including plant immune responses and their suppression.


Asunto(s)
Micorrizas/fisiología , Transducción de Señal , Simbiosis/fisiología , Quitina/metabolismo , Lipopolisacáridos/metabolismo , Raíces de Plantas/metabolismo
19.
Appl Spectrosc ; 78(6): 591-604, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38529584

RESUMEN

Maize (Zea mays) is one of the most cultivated plants in the world. Due to the large area, the scale of its production, and the demand to increase the yield, there is a need for new environmentally friendly fertilizers. One group of such candidates is bacteria-produced nodulation (or nod) factors. Limited research has explored the impact of nodulation, factors on maize within field conditions, with most studies restricted to greenhouse settings and early developmental stages. Additionally, there is a scarcity of investigations that elucidate the metabolic alterations in the maize stem due to nod-factor exposure. It was therefore the aim of this study. Maize stem's metabolites and fibers were analyzed with various imaging analytical techniques: matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI), Raman spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR), and diffuse reflectance infrared Fourier transform spectroscopy. Moreover, the biochemical analyses were used to evaluate the proteins and soluble carbohydrates concentration and total phenolic content. These techniques were used to evaluate the influence of nod factor-based biofertilizer on the growth of a non-symbiotic plant, maize. The biofertilizer increased the grain yield and the stem mass. Moreover, the spectroscopic and biochemical investigation proved the appreciable biochemical changes in the stems of the maize in biofertilizer-treated plants. Noticeable changes were found in the spatial distribution and the increase in the concentration of flavonoids such as maysin, quercetin, and rutin. Moreover, the concentration of cell wall components (fibers) increased. Furthermore, it was shown that the use of untargeted analyses (such as Raman and ATR FT-IR, spectroscopic imaging, and MALDI-MSI) is useful for the investigation of the biochemical changes in plants.


Asunto(s)
Fertilizantes , Tallos de la Planta , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría Raman , Zea mays , Zea mays/química , Zea mays/crecimiento & desarrollo , Zea mays/efectos de los fármacos , Tallos de la Planta/química , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/efectos de los fármacos , Fertilizantes/análisis , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Espectrometría Raman/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Fenoles/análisis
20.
New Phytol ; 200(3): 656-662, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24015832

RESUMEN

Rhizobial nodulation (Nod) factors activate both nodule morphogenesis and infection thread development during legume nodulation. Nod factors induce two different calcium responses: intra-nuclear calcium oscillations and a calcium influx at the root hair tip. Calcium oscillations activate nodule development; we wanted to test if the calcium influx is associated with infection. Sinorhizobium meliloti nodL and nodF mutations additively reduce infection of Medicago truncatula. Nod-factors made by the nodL mutant lack an acetyl group; mutation of nodF causes the nitrogen (N)-linked C16:2 acyl chain to be replaced by C18:1. We tested whether these Nod-factors differentially induced calcium influx and calcium spiking. The absence of the NodL-determined acetyl group greatly reduced the induction of calcium influx without affecting calcium spiking. The calcium influx was even further reduced if the N-linked C16:2 acyl group was replaced by C18:1. These additive effects on calcium influx correlate with the additive effects of mutations in nodF and nodL on legume infection. Infection thread development is inhibited by ethylene, which also inhibited Nod-factor-induced calcium influx. We conclude that Nod-factor perception differentially activates the two developmental pathways required for nodulation and that activation of the pathway involving the calcium influx is important for efficient infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Señalización del Calcio , Calcio/metabolismo , Medicago truncatula/metabolismo , Nodulación de la Raíz de la Planta , Nódulos de las Raíces de las Plantas/metabolismo , Sinorhizobium meliloti/metabolismo , Proteínas Bacterianas/genética , Señalización del Calcio/genética , Etilenos/metabolismo , Genes de Plantas , Medicago truncatula/genética , Medicago truncatula/microbiología , Mutación , Micorrizas/metabolismo , Nodulación de la Raíz de la Planta/genética , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA