Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Metab Eng ; 60: 25-36, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32224264

RESUMEN

Psilocybin is a tryptamine-derived psychoactive alkaloid found mainly in the fungal genus Psilocybe, among others, and is the active ingredient in so-called "magic mushrooms". Although its notoriety originates from its psychotropic properties and popular use as a recreational drug, clinical trials have recently recognized psilocybin as a promising candidate for the treatment of various psychological and neurological afflictions. In this work, we demonstrate the de novo biosynthetic production of psilocybin and related tryptamine derivatives in Saccharomyces cerevisiae by expression of a heterologous biosynthesis pathway sourced from Psilocybe cubensis. Additionally, we achieve improved product titers by supplementing the pathway with a novel cytochrome P450 reductase from P. cubensis. Further rational engineering resulted in a final production strain producing 627 ± 140 mg/L of psilocybin and 580 ± 276 mg/L of the dephosphorylated degradation product psilocin in triplicate controlled fed-batch fermentations in minimal synthetic media. Pathway intermediates baeocystin, nor norbaeocystin as well the dephosphorylated baeocystin degradation product norpsilocin were also detected in strains engineered for psilocybin production. We also demonstrate the biosynthetic production of natural tryptamine derivative aeruginascin as well as the production of a new-to-nature tryptamine derivative N-acetyl-4-hydroxytryptamine. These results lay the foundation for the biotechnological production of psilocybin in a controlled environment for pharmaceutical applications, and provide a starting point for the biosynthetic production of other tryptamine derivatives of therapeutic relevance.


Asunto(s)
Ingeniería Metabólica/métodos , Psilocibina/análogos & derivados , Psilocibina/biosíntesis , Saccharomyces cerevisiae/metabolismo , Triptaminas/biosíntesis , Escherichia coli/metabolismo , Fermentación , NADPH-Ferrihemoproteína Reductasa/biosíntesis , NADPH-Ferrihemoproteína Reductasa/genética , Psilocybe/genética , Psilocybe/metabolismo , Psilocibina/metabolismo , Triptófano/metabolismo
2.
Metab Eng ; 56: 111-119, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31550507

RESUMEN

Psilocybin, the prodrug of the psychoactive molecule psilocin, has demonstrated promising results in clinical trials for the treatment of addiction, depression, and post-traumatic stress disorder. The development of a psilocybin production platform in a highly engineerable microbe could lead to rapid advances towards the bioproduction of psilocybin for use in ongoing clinical trials. Here, we present the development of a modular biosynthetic production platform in the model microbe, Escherichia coli. Efforts to optimize and improve pathway performance using multiple genetic optimization techniques were evaluated, resulting in a 32-fold improvement in psilocybin titer. Further enhancements to this genetically superior strain were achieved through fermentation optimization, ultimately resulting in a fed-batch fermentation study, with a production titer of 1.16 g/L of psilocybin. This is the highest psilocybin titer achieved to date from a recombinant organism and a significant step towards demonstrating the feasibility of industrial production of biologically-derived psilocybin.


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Escherichia coli , Ingeniería Metabólica , Psilocibina , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Psilocibina/biosíntesis , Psilocibina/genética
3.
PeerJ ; 12: e17517, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846751

RESUMEN

Background: Psilocybin and related tryptamines have come into the spotlight in recent years as potential therapeutics for depression. Research on the mechanisms of these effects has historically focused on the direct effects of these drugs on neural processes. However, in addition to such neural effects, alterations in peripheral physiology may also contribute to their therapeutic effects. In particular, substantial support exists for a gut microbiome-mediated pathway for the antidepressant efficacy of other drug classes, but no prior studies have determined the effects of tryptamines on microbiota. Methods: To address this gap, in this preliminary study, male Long Evans rats were treated with varying dosages of oral psilocybin (0.2 or 2 mg/kg), norbaeocystin (0.25 or 2.52 mg/kg), or vehicle and their fecal samples were collected 1 week and 3 weeks after exposure for microbiome analysis using integrated 16S ribosomal DNA sequencing to determine gut microbiome composition. Results: We found that although treatment with neither psilocybin nor norbaeocystin significantly affected overall microbiome diversity, it did cause significant dose- and time-dependent changes in bacterial abundance at the phylum level, including increases in Verrucomicrobia and Actinobacteria, and decreases in Proteobacteria. Conclusion and Implications: These preliminary findings support the idea that psilocybin and other tryptamines may act on the gut microbiome in a dose- and time-dependent manner, potentially identifying a novel peripheral mechanism for their antidepressant activity. The results from this preliminary study also suggest that norbaeocystin may warrant further investigation as a potential antidepressant, given the similarity of its effects to psilocybin.


Asunto(s)
Heces , Microbioma Gastrointestinal , Ratas Long-Evans , Triptaminas , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Triptaminas/farmacología , Triptaminas/administración & dosificación , Ratas , Heces/microbiología , Psilocibina/farmacología , Psilocibina/administración & dosificación , Administración Oral , Antidepresivos/farmacología , Antidepresivos/administración & dosificación
4.
Br J Pharmacol ; 181(19): 3627-3641, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38825326

RESUMEN

BACKGROUND AND PURPOSE: Demand for new antidepressants has resulted in a re-evaluation of the therapeutic potential of psychedelic drugs. Several tryptamines found in psilocybin-containing "magic" mushrooms share chemical similarities with psilocybin. Early work suggests they may share biological targets. However, few studies have explored their pharmacological and behavioural effects. EXPERIMENTAL APPROACH: We compared baeocystin, norbaeocystin and aeruginascin with psilocybin to determine if they are metabolized by the same enzymes, similarly penetrate the blood-brain barrier, serve as ligands for similar receptors and modulate behaviour in rodents similarly. We also assessed the stability and optimal storage and handling conditions for each compound. KEY RESULTS: In vitro enzyme kinetics assays found that all compounds had nearly identical rates of dephosphorylation via alkaline phosphatase and metabolism by monoamine oxidase. Further, we found that only the dephosphorylated products of baeocystin and norbaeocystin crossed a blood-brain barrier mimetic to a similar degree as the dephosphorylated form of psilocybin, psilocin. The dephosphorylated form of norbaeocystin was found to activate the 5-HT2A receptor with similar efficacy to psilocin and norpsilocin in in vitro cell imaging assays. Behaviourally, only psilocybin induced head twitch responses in rats, a marker of 5-HT2A-mediated psychedelic effects and hallucinogenic potential. However, like psilocybin, norbaeocystin improved outcomes in the forced swim test. All compounds caused minimal changes to metrics of renal and hepatic health, suggesting innocuous safety profiles. CONCLUSIONS AND IMPLICATIONS: Collectively, this work suggests that other naturally occurring tryptamines, especially norbaeocystin, may share overlapping therapeutic potential with psilocybin, but without causing hallucinations.


Asunto(s)
Agaricales , Alucinógenos , Psilocibina , Triptaminas , Animales , Psilocibina/farmacología , Psilocibina/análogos & derivados , Triptaminas/farmacología , Masculino , Alucinógenos/farmacología , Ratas , Ratas Sprague-Dawley , Conducta Animal/efectos de los fármacos , Humanos , Ratones , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Receptor de Serotonina 5-HT2A/metabolismo , Receptor de Serotonina 5-HT2A/efectos de los fármacos
5.
Metab Eng Commun ; 14: e00196, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35310468

RESUMEN

Interest in the potential therapeutic efficacy of psilocybin and other psychedelic compounds has escalated significantly in recent years. To date, little is known regarding the biological activity of the psilocybin pathway intermediate, norbaeocystin, due to limitations around sourcing the phosphorylated tryptamine metabolite for in vivo testing. To address this limitation, we first developed a novel E. coli platform for the rapid and scalable production of gram-scale amounts of norbaeocystin. Through this process we compare the genetic and fermentation optimization strategies to that of a similarly constructed and previously reported psilocybin producing strain, uncovering the need for reoptimization and balancing upon even minor genetic modifications to the production host. We then perform in vivo measurements of head twitch response to both biosynthesized psilocybin and norbaeocystin using both a cell broth and water vehicle in Long-Evans rats. The data show a dose response to psilocybin while norbaeocystin does not elicit any pharmacological response, suggesting that norbaeocystin and its metabolites may not have a strong affinity for the serotonin 2A receptor. The findings presented here provide a mechanism to source norbaeocystin for future studies to evaluate its disease efficacy in animal models, both individually and in combination with psilocybin, and support the safety of cell broth as a drug delivery vehicle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA