Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(2): 428-445.e27, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36626902

RESUMEN

O-GlcNAc is a dynamic post-translational modification (PTM) that regulates protein functions. In studying the regulatory roles of O-GlcNAc, a major roadblock is the inability to change O-GlcNAcylation on a single protein at a time. Herein, we developed a dual RNA-aptamer-based approach that simultaneously targeted O-GlcNAc transferase (OGT) and ß-catenin, the key transcription factor of the Wnt signaling pathway, to selectively increase O-GlcNAcylation of the latter without affecting other OGT substrates. Using the OGT/ß-catenin dual-specificity aptamers, we found that O-GlcNAcylation of ß-catenin stabilizes the protein by inhibiting its interaction with ß-TrCP. O-GlcNAc also increases ß-catenin's interaction with EZH2, recruits EZH2 to promoters, and dramatically alters the transcriptome. Further, by coupling riboswitches or an inducible expression system to aptamers, we enabled inducible regulation of protein-specific O-GlcNAcylation. Together, our findings demonstrate the efficacy and versatility of dual-specificity aptamers for regulating O-GlcNAcylation on individual proteins.


Asunto(s)
Aptámeros de Nucleótidos , beta Catenina/metabolismo , Procesamiento Proteico-Postraduccional , Vía de Señalización Wnt , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Acetilglucosamina/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(22): e2401729121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38768345

RESUMEN

O-GlcNAc transferase (OGT) is an essential mammalian enzyme that glycosylates myriad intracellular proteins and cleaves the transcriptional coregulator Host Cell Factor 1 to regulate cell cycle processes. Via these catalytic activities as well as noncatalytic protein-protein interactions, OGT maintains cell homeostasis. OGT's tetratricopeptide repeat (TPR) domain is important in substrate recognition, but there is little information on how changing the TPR domain impacts its cellular functions. Here, we investigate how altering OGT's TPR domain impacts cell growth after the endogenous enzyme is deleted. We find that disrupting the TPR residues required for OGT dimerization leads to faster cell growth, whereas truncating the TPR domain slows cell growth. We also find that OGT requires eight of its 13 TPRs to sustain cell viability. OGT-8, like the nonviable shorter OGT variants, is mislocalized and has reduced Ser/Thr glycosylation activity; moreover, its interactions with most of wild-type OGT's binding partners are broadly attenuated. Therefore, although OGT's five N-terminal TPRs are not essential for cell viability, they are required for proper subcellular localization and for mediating many of OGT's protein-protein interactions. Because the viable OGT truncation variant we have identified preserves OGT's essential functions, it may facilitate their identification.


Asunto(s)
N-Acetilglucosaminiltransferasas , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/genética , Humanos , Repeticiones de Tetratricopéptidos , Glicosilación , Factor C1 de la Célula Huésped/metabolismo , Factor C1 de la Célula Huésped/genética , Células HEK293 , Dominios Proteicos , Proliferación Celular , Supervivencia Celular , Animales , Unión Proteica
3.
J Biol Chem ; 300(9): 107599, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39059494

RESUMEN

O-GlcNAc transferase (OGT) is the sole enzyme responsible for the post-translational modification of O-GlcNAc on thousands of target nucleocytoplasmic proteins. To date, nine variants of OGT that segregate with OGT Congenital Disorder of Glycosylation (OGT-CDG) have been reported and characterized. Numerous additional variants have been associated with OGT-CDG, some of which are currently undergoing investigation. This disorder primarily presents with global developmental delay and intellectual disability (ID), alongside other variable neurological features and subtle facial dysmorphisms in patients. Several hypotheses aim to explain the etiology of OGT-CDG, with a prominent hypothesis attributing the pathophysiology of OGT-CDG to mutations segregating with this disorder disrupting the OGT interactome. The OGT interactome consists of thousands of proteins, including substrates as well as interactors that require noncatalytic functions of OGT. A key aim in the field is to identify which interactors and substrates contribute to the primarily neural-specific phenotype of OGT-CDG. In this review, we will discuss the heterogenous phenotypic features of OGT-CDG seen clinically, the variable biochemical effects of mutations associated with OGT-CDG, and the use of animal models to understand this disorder. Furthermore, we will discuss how previously identified OGT interactors causal for ID provide mechanistic targets for investigation that could explain the dysregulated gene expression seen in OGT-CDG models. Identifying shared or unique altered pathways impacted in OGT-CDG patients will provide a better understanding of the disorder as well as potential therapeutic targets.

4.
Am J Physiol Cell Physiol ; 326(3): C978-C989, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38314722

RESUMEN

Sleep deprivation (SD) is widely acknowledged as a significant risk factor for cognitive impairment. In this study, intraperitoneal caffeine administration significantly ameliorated the learning and memory (L/M) deficits induced by SD and reduced aggressive behaviors in adult zebrafish. SD led to a reduction in protein kinase A (PKA) phosphorylation, phosphorylated-cAMP response element-binding protein (p-CREB), and c-Fos expression in zebrafish brain. Notably, these alterations were effectively reversed by caffeine. In addition, caffeine mitigated neuroinflammation induced by SD, as evident from suppression of the SD-mediated increase in glial fibrillary acidic protein (GFAP) and nuclear factor-κB (NF-κB) activation. Caffeine restored normal O-GlcNAcylation and O-GlcNAc transferase (OGT) levels while reversing the increased expression of O-GlcNAcase (OGA) in zebrafish brain after SD. Intriguingly, rolipram, a selective phosphodiesterase 4 (PDE4) inhibitor, effectively mitigated cognitive deficits, restored p-CREB and c-Fos levels, and attenuated the increase in GFAP in brain induced by SD. In addition, rolipram reversed the decrease in O-GlcNAcylation and OGT expression as well as elevation of OGA expression following SD. Treatment with H89, a PKA inhibitor, significantly impaired the L/M functions of zebrafish compared with the control group, inducing a decrease in O-GlcNAcylation and OGT expression and, conversely, an increase in OGA expression. The H89-induced changes in O-GlcNAc cycling and L/M dysfunction were effectively reversed by glucosamine treatment. H89 suppressed, whereas caffeine and rolipram promoted O-GlcNAc cycling in Neuro2a cells. Our collective findings underscore the interplay between PKA signaling and O-GlcNAc cycling in the regulation of cognitive function in the brain, offering potential therapeutic targets for cognitive deficits associated with SD.NEW & NOTEWORTHY Our observation highlights the intricate interplay between cAMP/PKA signaling and O-GlcNAc cycling, unveiling a novel mechanism that potentially governs the regulation of learning and memory functions. The dynamic interplay between these two pathways provides a novel and nuanced perspective on the molecular foundation of learning and memory regulation. These insights open avenues for the development of targeted interventions to treat conditions that impact cognitive function, including SD.


Asunto(s)
Disfunción Cognitiva , Isoquinolinas , Privación de Sueño , Sulfonamidas , Animales , Privación de Sueño/tratamiento farmacológico , Pez Cebra/metabolismo , Cafeína/farmacología , Rolipram , Acetilglucosamina/metabolismo , Procesamiento Proteico-Postraduccional , Cognición , Disfunción Cognitiva/tratamiento farmacológico , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo
5.
J Biol Chem ; 299(12): 105447, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37949223

RESUMEN

The post-translational modification of intracellular proteins by O-linked ß-GlcNAc (O-GlcNAc) has emerged as a critical regulator of cardiac function. Enhanced O-GlcNAcylation activates cytoprotective pathways in cardiac models of ischemia-reperfusion (I/R) injury; however, the mechanisms underpinning O-GlcNAc cycling in response to I/R injury have not been comprehensively assessed. The cycling of O-GlcNAc is regulated by the collective efforts of two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which catalyze the addition and hydrolysis of O-GlcNAc, respectively. It has previously been shown that baseline heart physiology and pathophysiology are impacted by sex. Here, we hypothesized that sex differences in molecular signaling may target protein O-GlcNAcylation both basally and in ischemic hearts. To address this question, we subjected male and female WT murine hearts to ex vivo ischemia or I/R injury. We assessed hearts for protein O-GlcNAcylation, abundance of OGT, OGA, and glutamine:fructose-6-phosphate aminotransferase (GFAT2), activity of OGT and OGA, and UDP-GlcNAc levels. Our data demonstrate elevated O-GlcNAcylation in female hearts both basally and during ischemia. We show that OGT activity was enhanced in female hearts in all treatments, suggesting a mechanism for these observations. Furthermore, we found that ischemia led to reduced O-GlcNAcylation and OGT-specific activity. Our findings provide a foundation for understanding molecular mechanisms that regulate O-GlcNAcylation in the heart and highlight the importance of sex as a significant factor when assessing key regulatory events that control O-GlcNAc cycling. These data suggest the intriguing possibility that elevated O-GlcNAcylation in females contributes to reduced ischemic susceptibility.


Asunto(s)
Acetilglucosamina , Corazón , Miocardio , N-Acetilglucosaminiltransferasas , Caracteres Sexuales , Transducción de Señal , Animales , Femenino , Masculino , Ratones , Acetilglucosamina/metabolismo , Corazón/fisiología , Isquemia/enzimología , Isquemia/metabolismo , Miocardio/enzimología , Miocardio/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional
6.
J Biol Chem ; 299(5): 104629, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36963488

RESUMEN

O-GlcNAc transferase (OGT) is an essential glycosylating enzyme that catalyzes the addition of N-acetylglucosamine to serine or threonine residues of nuclear and cytoplasmic proteins. The enzyme glycosylates a broad range of peptide sequences and the prediction of glycosylation sites has proven challenging. The lack of an experimentally verified set of polypeptide sequences that are not glycosylated by OGT has made prediction of legitimate glycosylation sites more difficult. Here, we tested a number of intrinsically disordered protein regions as substrates of OGT to establish a set of sequences that are not glycosylated by OGT. The negative data set suggests an amino acid compositional bias for OGT targets. This compositional bias was validated by modifying the amino acid composition of the protein fused in sarcoma (FUS) to enhance glycosylation. NMR experiments demonstrate that the tetratricopeptide repeat region of OGT can bind FUS and that glycosylation-promoting mutations enhance binding. These results provide evidence that the tetratricopeptide repeat region recognizes disordered segments of substrates with particular compositions to promote glycosylation, providing insight into the broad specificity of OGT.


Asunto(s)
N-Acetilglucosaminiltransferasas , Aminoácidos/metabolismo , Glicosilación , Mutación , N-Acetilglucosaminiltransferasas/metabolismo , Humanos , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Biología Computacional , Imagen por Resonancia Magnética
7.
J Biol Chem ; 299(3): 102963, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36731797

RESUMEN

Clathrin-mediated endocytosis (CME) controls the internalization and function of a wide range of cell surface proteins. CME occurs by the assembly of clathrin and many other proteins on the inner leaflet of the plasma membrane into clathrin-coated pits (CCPs). These structures recruit specific cargo destined for internalization, generate membrane curvature, and in many cases undergo scission from the plasma membrane to yield intracellular vesicles. The diversity of functions of cell surface proteins controlled via internalization by CME may suggest that regulation of CCP formation could be effective to allow cellular adaptation under different contexts. Of interest is how cues derived from cellular metabolism may regulate CME, given the reciprocal role of CME in controlling cellular metabolism. The modification of proteins with O-linked ß-GlcNAc (O-GlcNAc) is sensitive to nutrient availability and may allow cellular adaptation to different metabolic conditions. Here, we examined how the modification of proteins with O-GlcNAc may control CCP formation and thus CME. We used perturbation of key enzymes responsible for protein O-GlcNAc modification, as well as specific mutants of the endocytic regulator AAK1 predicted to be impaired for O-GlcNAc modification. We identify that CCP initiation and the assembly of clathrin and other proteins within CCPs are controlled by O-GlcNAc protein modification. This reveals a new dimension of regulation of CME and highlights the important reciprocal regulation of cellular metabolism and endocytosis.


Asunto(s)
Invaginaciones Cubiertas de la Membrana Celular , Endocitosis , N-Acetilglucosaminiltransferasas , Clatrina/metabolismo , Vesículas Cubiertas por Clatrina/metabolismo , Invaginaciones Cubiertas de la Membrana Celular/metabolismo , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo
8.
J Biol Chem ; 299(2): 102878, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36623733

RESUMEN

Deletion of O-GlcNAc transferase (Ogt) in pancreatic epithelial progenitor cells results in pancreatic hypoplasia at birth, partly due to increased apoptosis during embryonic development. Constitutive loss of Ogt in ß-cells results in increased ER stress and apoptosis, and in the Ogt-deficient pancreas, transcriptomic data previously revealed both tumor suppressor protein p53 and pancreatic duodenal homeobox 1 (Pdx1), key cell survival proteins in the developing pancreas, as upstream regulators of differentially expressed genes. However, the specific roles of these genes in pancreatic hypoplasia are unclear. In this study, we explored the independent roles of p53, ER stress protein CHOP, and Pdx1 in pancreas development and their use in the functional rescue of pancreatic hypoplasia in the context of Ogt loss. Using in vivo genetic manipulation and morphometric analysis, we show that Ogt plays a key regulatory role in pancreas development. Heterozygous, but not homozygous, loss of pancreatic p53 afforded a partial rescue of ß-cell, α-cell, and exocrine cell masses, while whole body loss of CHOP afforded a partial rescue in pancreas weight and a full rescue in exocrine cell mass. However, neither was sufficient to fully mitigate pancreatic hypoplasia at birth in the Ogt-deficient pancreas. Furthermore, overexpression of Pdx1 in the pancreatic epithelium resulted in partial rescues in pancreas weight and ß-cell mass in the Ogt loss background. These findings highlight the requirement of Ogt in pancreas development by targeting multiple proteins such as transcription factor Pdx1 and p53 in the developing pancreas.


Asunto(s)
Expresión Génica , Células Secretoras de Glucagón , Enfermedades Pancreáticas , Proteína p53 Supresora de Tumor , Animales , Ratones , Células Secretoras de Glucagón/metabolismo , Páncreas Exocrino/metabolismo , Proteína p53 Supresora de Tumor/genética , Expresión Génica/genética , Enfermedades Pancreáticas/genética , Enfermedades Pancreáticas/fisiopatología
9.
J Biol Chem ; 299(11): 105330, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37820866

RESUMEN

Cell cycle errors can lead to mutations, chromosomal instability, or death; thus, the precise control of cell cycle progression is essential for viability. The nutrient-sensing posttranslational modification, O-GlcNAc, regulates the cell cycle allowing one central control point directing progression of the cell cycle. O-GlcNAc is a single N-acetylglucosamine sugar modification to intracellular proteins that is dynamically added and removed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. These enzymes act as a rheostat to fine-tune protein function in response to a plethora of stimuli from nutrients to hormones. O-GlcNAc modulates mitogenic growth signaling, senses nutrient flux through the hexosamine biosynthetic pathway, and coordinates with other nutrient-sensing enzymes to progress cells through Gap phase 1 (G1). At the G1/S transition, O-GlcNAc modulates checkpoint control, while in S Phase, O-GlcNAcylation coordinates the replication fork. DNA replication errors activate O-GlcNAcylation to control the function of the tumor-suppressor p53 at Gap Phase 2 (G2). Finally, in mitosis (M phase), O-GlcNAc controls M phase progression and the organization of the mitotic spindle and midbody. Critical for M phase control is the interplay between OGT and OGA with mitotic kinases. Importantly, disruptions in OGT and OGA activity induce M phase defects and aneuploidy. These data point to an essential role for the O-GlcNAc rheostat in regulating cell division. In this review, we highlight O-GlcNAc nutrient sensing regulating G1, O-GlcNAc control of DNA replication and repair, and finally, O-GlcNAc organization of mitotic progression and spindle dynamics.


Asunto(s)
Mitosis , Procesamiento Proteico-Postraduccional , Acetilglucosamina/metabolismo , Acetilglucosaminidasa/metabolismo , Mutación , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Transducción de Señal , Humanos , Animales
10.
Biochem Biophys Res Commun ; 724: 150198, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38852504

RESUMEN

Autophagy is a critical catabolic pathway that enables cells to survive and adapt to stressful conditions, especially nutrient deprivation. The fusion of autophagic vacuoles with lysosomes is the final step of autophagy, which degrades the engulfed contents into metabolic precursors for re-use by the cell. O-GlcNAc transferase (OGT) plays a crucial role in regulating autophagy flux in response to nutrient stress, particularly by targeting key proteins involved in autophagosome-lysosome fusion. However, the role of OGT in basal autophagy, which occurs at a low and constitutive levels under growth conditions, remains poorly understood. Silencing or inhibition of OGT was used to compare the effect of OGT downregulation on autophagy flux in the non-cancerous CCD841CoN and cancerous HCT116 human colon cell lines under nutrient-rich conditions. We provide evidence that the reduction of OGT activity impairs the maturation of autophagosomes, thereby blocking the completion of basal autophagy in both cell lines. Additionally, OGT inhibition results in the accumulation of lysosomes and enlarged late endosomes in the perinuclear region, as demonstrated by confocal imaging. This is associated with a defect in the localization of the small GTPase Rab7 to these organelles. The regulation of transport and fusion events between the endosomal and lysosomal compartments is crucial for maintaining the autophagic flux. These findings suggest an interplay between OGT and the homeostasis of the endolysosomal network in human cells.


Asunto(s)
Autofagia , Regulación hacia Abajo , Endosomas , Lisosomas , N-Acetilglucosaminiltransferasas , Nutrientes , Proteínas de Unión a GTP rab7 , Humanos , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/genética , Endosomas/metabolismo , Lisosomas/metabolismo , Nutrientes/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Colon/metabolismo , Colon/patología , Células HCT116 , Autofagosomas/metabolismo
11.
J Neuroinflammation ; 21(1): 180, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044290

RESUMEN

This study investigated the role of O-GlcNAc cycling in Alzheimer's disease-related changes in brain pathophysiology induced by chronic REM sleep deprivation (CSD) in mice. CSD increased amyloid beta (Aß) and p-Tau accumulation and impaired learning and memory (L/M) function. CSD decreased dendritic length and spine density. CSD also increased the intensity of postsynaptic density protein-95 (PSD-95) staining. All of these Alzheimer's disease (AD) pathogenic changes were effectively reversed through glucosamine (GlcN) treatment by enhancing O-GlcNAcylation. Interestingly, the lelvel of O-GlcNAcylated-Tau (O-Tau) exhibited an opposite trend compared to p-Tau, as it was elevated by CSD and suppressed by GlcN treatment. CSD increased neuroinflammation, as indicated by elevated levels of glial fibrillary acidic protein and IBA-1-positive glial cells in the brain, which were suppressed by GlcN treatment. CSD promoted the phosphorylation of GSK3ß and led to an upregulation in the expression of endoplasmic reticulum (ER) stress regulatory proteins and genes. These alterations were effectively suppressed by GlcN treatment. Minocycline not only suppressed neuroinflammation induced by CSD, but it also rescued the decrease in O-GlcNAc levels caused by CSD. Minocycline also reduced AD neuropathy without affecting CSD-induced ER stress. Notably, overexpressing O-GlcNAc transferase in the dentate gyrus region of the mouse brain rescued CSD-induced cognitive dysfunction, neuropathy, neuroinflammation, and ER stress responses. Collectively, our findings reveal that dysregulation of O-GlcNAc cycling underlies CSD-induced AD pathology and demonstrate that restoration of OGlcNAcylation protects against CSD-induced neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Privación de Sueño , Animales , Ratones , Privación de Sueño/metabolismo , Privación de Sueño/complicaciones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Encéfalo/patología , Masculino , Ratones Endogámicos C57BL , Proteínas tau/metabolismo , Acetilglucosamina/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Sueño REM/fisiología , Péptidos beta-Amiloides/metabolismo
12.
Mol Pharm ; 21(1): 102-112, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37994899

RESUMEN

O-linked-N-acetylglucosaminylation (O-GlcNAcylation) plays a key role in hepatocellular carcinoma (HCC) development, and the inhibition of O-GlcNAcylation has therapeutic potential. To decrease the systemic adverse events and increase targeting, we used sialic acid (SA)-decorated liposomes loaded with OSMI-1, an inhibitor of the O-GlcNAcylation, to further improve the anti-HCC effect. Fifty pairs of HCC tissue samples and the cancer genome atlas database were used to analyze the expression of O-GlcNAc transferase (OGT) and its effects on prognosis and immune cell infiltration. OSMI-1 cells were treated with SA and liposomes. Western blotting, immunofluorescence, cell proliferation assay, flow cytometry, enzyme-linked immunosorbent assay, immunohistochemistry, and tumorigenicity assays were used to investigate the antitumor effect of SA-modified OSMI-1 liposomes in vitro and in vivo. OGT was highly expressed in HCC tissues, negatively correlated with the degree of tumor infiltration of CD8+ and CD4+T cells and prognosis, and positively correlated with the degree of Treg cell infiltration. SA-modified OSMI-1 liposome (OSMI-1-SAL) was synthesized with stable hydrodynamic size distribution. Both in vitro and in vivo, OSMI-1-SAL exhibited satisfactory biosafety and rapid uptake by HCC cells. Compared to free OSMI-1, OSMI-1-SAL had a stronger capacity for suppressing the proliferation and promoting the apoptosis of HCC cells. Moreover, OSMI-1-SAL effectively inhibited tumor initiation and development in mice. OSMI-1-SAL also promoted the release of damage-associated molecular patterns, including anticalreticulin, high-mobility-group protein B1, and adenosine triphosphate, from HCC cells and further promoted the activation and proliferation of the CD8+ and CD4+T cells. In conclusion, the OSMI-1-SAL synthesized in this study can target HCC cells, inhibit tumor proliferation, induce tumor immunogenic cell death, enhance tumor immunogenicity, and promote antitumor immune responses, which has the potential for clinical application in the future.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Carcinoma Hepatocelular/genética , Liposomas/farmacología , Neoplasias Hepáticas/metabolismo , Ácido N-Acetilneuramínico , Proliferación Celular
13.
Pharmacol Res ; 202: 107120, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417774

RESUMEN

Autophagy is a core molecular pathway that preserves cellular and organismal homeostasis. Being susceptible to nutrient availability and stress, eukaryotic cells recycle or degrade internal components via membrane transport pathways to provide sustainable biological molecules and energy sources. The dysregulation of this highly conserved physiological process has been strongly linked to human disease. Post-translational modification, a mechanism that regulates protein function, plays a crucial role in autophagy regulation. O-linked N-acetylglucosamine protein modification (O-GlcNAcylation), a monosaccharide post-translational modification of intracellular proteins, is essential in nutritional and stress regulatory mechanisms. O-GlcNAcylation has emerged as an essential regulatory mechanism of autophagy. It regulates autophagy throughout its lifetime by targeting the core components of the autophagy regulatory network. This review provides an overview of the O-GlcNAcylation of autophagy-associated proteins and their regulation and function in the autophagy pathway. Therefore, this article may contribute to further understanding of the role of O-GlcNAc-regulated autophagy and provide new perspectives for the treatment of human diseases.


Asunto(s)
Acetilglucosamina , Procesamiento Proteico-Postraduccional , Humanos , Acetilglucosamina/metabolismo , Nutrientes , Autofagia/fisiología
14.
Bioorg Chem ; 147: 107321, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38604018

RESUMEN

Finding potent inhibitors of O-GlcNAc transferase (OGT) has proven to be a challenge, especially because the diversity of published inhibitors is low. The large majority of available OGT inhibitors are uridine-based or uridine-like compounds that mimic the main interactions of glycosyl donor UDP-GlcNAc with the enzyme. Until recently, screening of DNA-encoded libraries for discovering hits against protein targets was dedicated to a few laboratories around the world, but has become accessible to wider public with the recent launch of the DELopen platform. Here we report the results and follow-up of a DNA-encoded library screening by using the DELopen platform. This led to the discovery of two new hits with structural features not resembling UDP. Small focused libraries bearing those two scaffolds were made, leading to low micromolar inhibition of OGT and elucidation of their structure-activity relationship.


Asunto(s)
ADN , Descubrimiento de Drogas , Inhibidores Enzimáticos , N-Acetilglucosaminiltransferasas , Bibliotecas de Moléculas Pequeñas , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , N-Acetilglucosaminiltransferasas/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Relación Estructura-Actividad , ADN/química , ADN/metabolismo , Humanos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/síntesis química , Estructura Molecular , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Uridina Difosfato/metabolismo , Uridina Difosfato/química
15.
Pituitary ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066842

RESUMEN

PURPOSE: Molecular mechanisms involved in the pathogenesis and tumor progression of pituitary adenomas (PA) remain incompletely understood. Corticotroph and somatotroph PA are associated with a high clinical burden, and despite improved surgical outcomes and medical treatment options, they sometimes require multiple surgeries and radiation. Preliminary data suggested a role for O-GlcNAc Transferase (OGT), the enzyme responsible for the O-GlcNAcylation of proteins. O-GlcNAcylation and OGT have been found elevated in other types of tumors. METHODS: We evaluated 60 functioning and nonfunctioning PA (NFPA) from operated patients and postmortem normal and tumoral pituitary tissue by immunohistochemistry. We performed transcriptomic analyses to explore the relevance of the O-GlcNAc Transferase (OGT) in PAs. We detected OGT in immunobiological analysis and define its level in PA tissue in patients. RESULTS: OGT was strongly associated with PA hormone secretory capacity in functioning PA and with tumor growth in NFPAs. In NFPAs, OGT was positively associated with tumor size but not with cavernous sinus invasion (Knosp grading). In GH-secreting PA, OGT expression was negatively correlated with circulating Insulin-like Growth Factor 1 level. In adrenocorticotropic hormone (ACTH)-secreting PA, OGT expression was positively associated with circulating ACTH levels. OGT did not correlate with tumor size in secreting PAs. OGT levels were higher in gonadotroph PA compared to normal glands. CONCLUSION: O-GlcNAcylation can be downregulated in non-cancerous tumors such as GH-secreting adenomas. Future studies are warranted to elucidate the role of OGT in the pathogenesis of PAs.

16.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33419956

RESUMEN

O-GlcNAc transferase (OGT), found in the nucleus and cytoplasm of all mammalian cell types, is essential for cell proliferation. Why OGT is required for cell growth is not known. OGT performs two enzymatic reactions in the same active site. In one, it glycosylates thousands of different proteins, and in the other, it proteolytically cleaves another essential protein involved in gene expression. Deconvoluting OGT's myriad cellular roles has been challenging because genetic deletion is lethal; complementation methods have not been established. Here, we developed approaches to replace endogenous OGT with separation-of-function variants to investigate the importance of OGT's enzymatic activities for cell viability. Using genetic complementation, we found that OGT's glycosyltransferase function is required for cell growth but its protease function is dispensable. We next used complementation to construct a cell line with degron-tagged wild-type OGT. When OGT was degraded to very low levels, cells stopped proliferating but remained viable. Adding back catalytically inactive OGT rescued growth. Therefore, OGT has an essential noncatalytic role that is necessary for cell proliferation. By developing a method to quantify how OGT's catalytic and noncatalytic activities affect protein abundance, we found that OGT's noncatalytic functions often affect different proteins from its catalytic functions. Proteins involved in oxidative phosphorylation and the actin cytoskeleton were especially impacted by the noncatalytic functions. We conclude that OGT integrates both catalytic and noncatalytic functions to control cell physiology.


Asunto(s)
Proliferación Celular/genética , Fibroblastos/metabolismo , Factor C1 de la Célula Huésped/genética , N-Acetilglucosaminiltransferasas/genética , Animales , Fibroblastos/citología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Ontología de Genes , Prueba de Complementación Genética , Glicosilación , Células HEK293 , Factor C1 de la Célula Huésped/metabolismo , Humanos , Redes y Vías Metabólicas/genética , Ratones , Anotación de Secuencia Molecular , N-Acetilglucosaminiltransferasas/deficiencia , Proteolisis
17.
Ecotoxicol Environ Saf ; 284: 116931, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39181074

RESUMEN

Cigarette smoke (CS) is a prevalent chemical indoor air contaminant known to be the primary cause of EMT during airway remodeling in COPD. While some evidence indicates the involvement of SMAD4 in EMT across certain diseases, its specific role in CS-induced EMT in airway remodeling associated with COPD is not established. In our research, we observed a substantial upregulation in SMAD4 expression, O-GlcNAcylation and EMT in patients with COPD, as well as in vitro and in vivo COPD models induced by CS, than those of the controls. Downregulation of SMAD4 resulted in a reduction in CS-induced EMT in vitro and in vivo. As a post-translational modification of proteins, O-GlcNAcylation is dynamically controlled by the duo of enzymes: O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) and O-GlcNAcase (OGA). We further discovered the enhancement of O-GlcNAcylation levels induced by CS was due to an elevated OGT expression, as the expression of OGA remained unchanged. Using an OGT inhibitor (OSMI-1) counteracted the effects of SMAD4 on EMT. Whereas, overexpressing OGT increased SMAD4 expression and promoted EMT. OGT-mediated SMAD4 O-GlcNAcylation shielded SMAD4 from proteasomal degradation by reducing its ubiquitination, thereby aiding in SMAD4 stabilization in response to EMT induced by CS. Overall, this research uncovers a fresh pathway for CS-induced EMT in the airway remodeling of COPD and offers valuable insights.

18.
Genes Dev ; 30(2): 164-76, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26773002

RESUMEN

The DELLA family of transcription regulators functions as master growth repressors in plants by inhibiting phytohormone gibberellin (GA) signaling in response to developmental and environmental cues. DELLAs also play a central role in mediating cross-talk between GA and other signaling pathways via antagonistic direct interactions with key transcription factors. However, how these crucial protein-protein interactions can be dynamically regulated during plant development remains unclear. Here, we show that DELLAs are modified by the O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) SECRET AGENT (SEC) in Arabidopsis. O-GlcNAcylation of the DELLA protein REPRESSOR OF ga1-3 (RGA) inhibits RGA binding to four of its interactors-PHYTOCHROME-INTERACTING FACTOR3 (PIF3), PIF4, JASMONATE-ZIM DOMAIN1, and BRASSINAZOLE-RESISTANT1 (BZR1)-that are key regulators in light, jasmonate, and brassinosteroid signaling pathways, respectively. Consistent with this, the sec-null mutant displayed reduced responses to GA and brassinosteroid and showed decreased expression of several common target genes of DELLAs, BZR1, and PIFs. Our results reveal a direct role of OGT in repressing DELLA activity and indicate that O-GlcNAcylation of DELLAs provides a fine-tuning mechanism in coordinating multiple signaling activities during plant development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Transducción de Señal/fisiología , Acilación , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Giberelinas/metabolismo , Mutación , N-Acetilglucosaminiltransferasas/genética , Unión Proteica
19.
J Biol Chem ; 298(9): 102340, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35931120

RESUMEN

Epidermal growth factor (EGF) is one of the most well-characterized growth factors and plays a crucial role in cell proliferation and differentiation. Its receptor EGFR has been extensively explored as a therapeutic target against multiple types of cancers, such as lung cancer and glioblastoma. Recent studies have established a connection between deregulated EGF signaling and metabolic reprogramming, especially rewiring in aerobic glycolysis, which is also known as the Warburg effect and recognized as a hallmark in cancer. Pyruvate kinase M2 (PKM2) is a rate-limiting enzyme controlling the final step of glycolysis and serves as a major regulator of the Warburg effect. We previously showed that PKM2 T405/S406 O-GlcNAcylation, a critical mark important for PKM2 detetramerization and activity, was markedly upregulated by EGF. However, the mechanism by which EGF regulates PKM2 O-GlcNAcylation still remains uncharacterized. Here, we demonstrated that EGF promoted O-GlcNAc transferase (OGT) binding to PKM2 by stimulating OGT Y976 phosphorylation. As a consequence, we found PKM2 O-GlcNAcylation and detetramerization were upregulated, leading to a significant decrease in PKM2 activity. Moreover, distinct from PKM2, we observed that the association of additional phosphotyrosine-binding proteins with OGT was also enhanced when Y976 was phosphorylated. These proteins included STAT1, STAT3, STAT5, PKCδ, and p85, which are reported to be O-GlcNAcylated. Together, we show EGF-dependent Y976 phosphorylation is critical for OGT-PKM2 interaction and propose that this posttranslational modification might be important for substrate selection by OGT.


Asunto(s)
Factor de Crecimiento Epidérmico , N-Acetilglucosaminiltransferasas , Piruvato Quinasa , Tirosina , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Neoplasias/metabolismo , Fosforilación , Fosfotirosina/metabolismo , Piruvato Quinasa/metabolismo , Factor de Transcripción STAT5/metabolismo , Tirosina/metabolismo
20.
Glycobiology ; 33(12): 1172-1181, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37856504

RESUMEN

Protein O-GlcNAcylation is an evolutionary conserved post-translational modification catalysed by the nucleocytoplasmic O-GlcNAc transferase (OGT) and reversed by O-GlcNAcase (OGA). How site-specific O-GlcNAcylation modulates a diverse range of cellular processes is largely unknown. A limiting factor in studying this is the lack of accessible techniques capable of producing homogeneously O-GlcNAcylated proteins, in high yield, for in vitro studies. Here, we exploit the tolerance of OGT for cysteine instead of serine, combined with a co-expressed OGA to achieve site-specific, highly homogeneous mono-glycosylation. Applying this to DDX3X, TAB1, and CK2α, we demonstrate that near-homogeneous mono-S-GlcNAcylation of these proteins promotes DDX3X and CK2α solubility and enables production of mono-S-GlcNAcylated TAB1 crystals, albeit with limited diffraction. Taken together, this work provides a new approach for functional dissection of protein O-GlcNAcylation.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas , Proteínas/metabolismo , Glicosilación , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Acetilglucosaminidasa/metabolismo , Acetilglucosamina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA