Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Ann Clin Microbiol Antimicrob ; 23(1): 11, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38303011

RESUMEN

Global impact of COVID-19 pandemic has heightened the urgency for efficient virus detection and identification of variants such as the Q57H mutation. Early and efficient detection of SARS-CoV-2 among densely populated developing countries is paramount objective. Although RT-PCR assays offer accuracy, however, dependence on expansive kits and availability of allied health resources pose an immense challenge for developing countries. In the current study, RT-LAMP based detection of SARS-Cov-2 with subsequent confirmation of Q57H variant through ARMS-PCR was performed. Among the 212 collected samples, 134 yielded positive results, while 78 tested negative using RT-LAMP. Oropharyngeal swabs of suspected individuals were collected and processed for viral RNA isolation. Isolated viral RNA was processed further by using either commercially available WarmStart Master Mix or our in house developed LAMP master mix separately. Subsequently, the end results of each specimen were evaluated by colorimetry. For LAMP assays, primers targeting three genes (ORF1ab, N and S) were designed using PrimerExplorer software. Interestingly, pooling of these three genes in single reaction tube increased sensitivity (95.5%) and specificity (93.5%) of LAMP assay. SARS-CoV-2 positive specimens were screened further for Q57H mutation using ARMS-PCR. Based on amplicon size variation, later confirmed by sequencing, our data showed 18.5% samples positive for Q57H mutation. Hence, these findings strongly advocate use of RT-LAMP-based assay for SARS-CoV-2 screening within suspected general population. Furthermore, ARMS-PCR also provides an efficient mean to detect prevalent mutations against SARS-Cov-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Pandemias , Sensibilidad y Especificidad , Técnicas de Diagnóstico Molecular/métodos , ARN Viral/genética , Reacción en Cadena de la Polimerasa , Prueba de COVID-19
2.
J Med Virol ; 95(1): e28413, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36541745

RESUMEN

Accumulation of diverse mutations across the structural and nonstructural genes is leading to rapid evolution of SARS-CoV-2, altering its pathogenicity. We performed whole genome sequencing of 239 SARS-CoV-2 RNA samples collected from both adult and pediatric patients across eastern India (West Bengal), during the second pandemic wave in India (April-May 2021). In addition to several common spike mutations within the Delta variant, a unique constellation of eight co-appearing non-Spike mutations was identified, which revealed a high degree of positive mutual correlation. Our results also demonstrated the dynamics of SARS-CoV-2 variants among unvaccinated pediatric patients. 41.4% of our studied Delta strains harbored this signature set of eight co-appearing non-Spike mutations and phylogenetically out-clustered other Delta sub-lineages like 21J, 21A, or 21I. This is the first report from eastern India that portrayed a landscape of co-appearing mutations in the non-Spike proteins, which might have led to the evolution of a distinct Delta subcluster. Accumulation of such mutations in SARS-CoV-2 may lead to the emergence of "vaccine-evading variants." Hence, monitoring of such non-Spike mutations will be significant in the formulation of any future vaccines against those SARS-CoV-2 variants that might evade the current vaccine-induced immunity, among both the pediatric and adult populations.


Asunto(s)
COVID-19 , Adulto , Humanos , Niño , ARN Viral/genética , SARS-CoV-2/genética , Mutación , Glicoproteína de la Espiga del Coronavirus/genética
3.
IEEE Trans Electron Devices ; 70(3): 1236-1242, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36972181

RESUMEN

In this work, a novel sensing structure based on Au nanoparticles/HfO2/fully depleted silicon-on-insulator (AuNPs/HfO2/FDSOI) MOSFET is fabricated. Using such a planar double gate MOSFET, the electrostatic enrichment (ESE) process is proposed for the ultrasensitive and rapid detection of the coronavirus disease 2019 (COVID-19) ORF1ab gene. The back-gate (BG) bias can induce the required electric field that enables the ESE process in the testing liquid analyte with indirect contact with the top-Si layer. It is revealed that the ESE process can rapidly and effectively accumulate ORF1ab genes close to the HfO2 surface, which can significantly change the MOSFET threshold voltage ([Formula: see text]). The proposed MOSFET successfully demonstrates the detection of zeptomole (zM) COVID-19 ORF1ab gene with an ultralow detection limit down to 67 zM (~0.04 copy/[Formula: see text]) for a test time of less than 15 min even in a high ionic-strength solution. Besides, the quantitative dependence of [Formula: see text] variation on COVID-19 ORF1ab gene concentration from 200 zM to 100 femtomole is also revealed, which is further confirmed by TCAD simulation.

4.
IEEE Sens J ; 23(8): 8094-8100, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37216192

RESUMEN

A new and reliable method has been constructed for detecting severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) open reading frames 1ab (ORF1ab) gene via highly sensitive electrochemiluminescence (ECL) biosensor technology based on highly efficient asymmetric polymerase chain reaction (asymmetric PCR) amplification strategy. This method uses magnetic particles coupled with biotin-labeled one complementary nucleic acid sequence of the SARS-CoV-2 ORF1ab gene as the magnetic capture probes, and [Formula: see text]-labeled amino-modified another complementary nucleic acid sequence as the luminescent probes, and then a detection model of magnetic capture probes-asymmetric PCR amplification nucleic acid products-[Formula: see text]-labeled luminescent probes is formed, which combines the advantages of highly efficient asymmetric PCR amplification strategy and highly sensitive ECL biosensor technology, enhancing the method sensitivity of detecting the SARS-CoV-2 ORF1ab gene. The method enables the rapid and sensitive detection of the ORF1ab gene and has a linear range of 1-[Formula: see text] copies/[Formula: see text], a regression equation of [Formula: see text] = [Formula: see text] + 2919.301 ([Formula: see text] = 0.9983, [Formula: see text] = 7), and a limit of detection (LOD) of 1 copy/[Formula: see text]. In summary, it can meet the analytical requirements for simulated saliva and urine samples and has the benefits of easy operation, reasonable reproducibility, high sensitivity, and anti-interference abilities, which can provide a reference for developing efficient field detection methods for SARS-CoV-2.

5.
J Clin Microbiol ; 60(6): e0060022, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35582905

RESUMEN

Mutations in the genome of SARS-CoV-2 can affect the performance of molecular diagnostic assays. In some cases, such as S-gene target failure, the impact can serve as a unique indicator of a particular SARS-CoV-2 variant and provide a method for rapid detection. Here, we describe partial ORF1ab gene target failure (pOGTF) on the cobas SARS-CoV-2 assays, defined by a ≥2-thermocycle delay in detection of the ORF1ab gene compared to that of the E-gene. We demonstrate that pOGTF is 98.6% sensitive and 99.9% specific for SARS-CoV-2 lineage BA.2.12.1, an emerging variant in the United States with spike L452Q and S704L mutations that may affect transmission, infectivity, and/or immune evasion. Increasing rates of pOGTF closely mirrored rates of BA.2.12.1 sequences uploaded to public databases, and, importantly, increasing local rates of pOGTF also mirrored increasing overall test positivity. Use of pOGTF as a proxy for BA.2.12.1 provides faster tracking of the variant than whole-genome sequencing and can benefit laboratories without sequencing capabilities.


Asunto(s)
COVID-19 , SARS-CoV-2 , Secuencia de Bases , Humanos , Mutación , SARS-CoV-2/genética
6.
J Med Virol ; 94(3): 1167-1174, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34755352

RESUMEN

Due to the COVID-19 pandemic, many transport kits have been manufactured to preserve and transport nasopharyngeal swab samples (NPSs) from patients. However, there is no information on the performance of the different virus transport media (VTM) used in COVID-19 diagnosis in the population of Santiago de Chile. We compared the RT-qPCR amplification profile of five different viral transport kit mediums, including DNA/RNA Shield™, NAT, VTM-N, Ezmedlab™, and phosphate-buffered saline (PBS), for NPSs from Central Metropolitan Health Service, Santiago, Chile. The DNA/RNA Shield™ medium showed a better performance in terms of Cq and RFU values for the internal reference RNase P and viral ORF1ab probes. By contrast, the PBS transport medium registered higher Cq values for the viral and reference gene, compared to the other VTM. DNA/RNA Shield™ shows higher relative fluorescence units (RFUs) and lower Cq values for the reference gene. Collectively, our results suggest that the PBS medium could compromise the sample diagnosis because of its lower RT-qPCR performance. The NAT, Ezmedlab and VTM-N, and DNA/RNA Shield™ media show acceptable RT-qPCR parameters and, consequently, seem suitable for use in COVID-19 diagnosis.


Asunto(s)
COVID-19 , COVID-19/diagnóstico , Prueba de COVID-19 , Chile , Medios de Cultivo , Humanos , Nasofaringe , Pandemias , ARN , ARN Viral/análisis , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/genética , Manejo de Especímenes/métodos
7.
Virol J ; 19(1): 140, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050725

RESUMEN

BACKGROUND: Rapid and accurate detection of SARS-CoV-2 infection is the cornerstone of prompt patient care. However, the reliability of the antigen rapid diagnostic test (Ag-RDT) in the diagnosis of SARS-CoV-2 infection remains inconclusive. METHODS: We conducted a field evaluation of Ag-RDT performance during the Shanghai Coronavirus disease 2019 (COVID-19) quarantine and screened 7225 individuals visiting our Emergency Department. 83 asymptomatic SARS-CoV-2 (+) individuals were enrolled in the current study. Simultaneously, Ag-RDT was performed to evaluate its testing performance. RESULTS: For the Ag-RDT(-) cases, the average cycle threshold (Ct) values of the N gene were 27.26 ± 4.59, which were significantly higher than the Ct value (21.9 ± 4.73) of the Ag-RDT(+) individuals (p < 0.0001). The overall sensitivity of Ag-RDT versus that of RT-PCR was 43.37%. The Ag-RDT(+) individuals regarding the N gene's Ct value were 16 cases in the < 20 range, 12 in 20-25, 5 in 25-30, and 3 in 30-35. The corresponding sensitivity was 84.21%, 52.17%, 21.74% and 16.67%, respectively. Meanwhile, sampling had a straight specificity of 100% regardless of the Ct value. CONCLUSIONS: The Ag-RDT were extremely sensitive in asymptomatic COVID-19 individuals with a Ct value < 20.


Asunto(s)
COVID-19 , Antígenos Virales/análisis , COVID-19/diagnóstico , Prueba de COVID-19 , China/epidemiología , Pruebas Diagnósticas de Rutina , Humanos , Atención Primaria de Salud , Cuarentena , Reproducibilidad de los Resultados , SARS-CoV-2/genética , Sensibilidad y Especificidad
8.
Sensors (Basel) ; 22(6)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35336572

RESUMEN

To satisfy the need to develop highly sensitive methods for detecting the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and further enhance detection efficiency and capability, a new method was created for detecting SARS-CoV-2 of the open reading frames 1ab (ORF1ab) target gene by a electrochemiluminescence (ECL) biosensor based on dual-probe hybridization through the use of a detection model of "magnetic capture probes-targeted nucleic acids-Ru(bpy)32+ labeled signal probes". The detection model used magnetic particles coupled with a biotin-labeled complementary nucleic acid sequence of the SARS-CoV-2 ORF1ab target gene as the magnetic capture probes and Ru(bpy)32+ labeled amino modified another complementary nucleic acid sequence as the signal probes, which combined the advantages of the highly specific dual-probe hybridization and highly sensitive ECL biosensor technology. In the range of 0.1 fM~10 µM, the method made possible rapid and sensitive detection of the ORF1ab gene of the SARS-CoV-2 within 30 min, and the limit of detection (LOD) was 0.1 fM. The method can also meet the analytical requirements for simulated samples such as saliva and urine with the definite advantages of a simple operation without nucleic acid amplification, high sensitivity, reasonable reproducibility, and anti-interference solid abilities, expounding a new way for efficient and sensitive detection of SARS-CoV-2.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Técnicas Biosensibles/métodos , COVID-19/diagnóstico , Humanos , Sistemas de Lectura Abierta/genética , Reproducibilidad de los Resultados , SARS-CoV-2/genética
9.
BMC Immunol ; 22(1): 22, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33765919

RESUMEN

BACKGROUND: The spread of a novel coronavirus termed severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in China and other countries is of great concern worldwide with no effective vaccine. This study aimed to design a novel vaccine construct against SARS-CoV-2 from the spike S protein and orf1ab polyprotein using immunoinformatics tools. The vaccine was designed from conserved epitopes interacted against B and T lymphocytes by the combination of highly immunogenic epitopes with suitable adjuvant and linkers. RESULTS: The proposed vaccine composed of 526 amino acids and was shown to be antigenic in Vaxigen server (0.6194) and nonallergenic in Allertop server. The physiochemical properties of the vaccine showed isoelectric point of 10.19. The instability index (II) was 31.25 classifying the vaccine as stable. Aliphatic index was 84.39 and the grand average of hydropathicity (GRAVY) was - 0.049 classifying the vaccine as hydrophilic. Vaccine tertiary structure was predicted, refined and validated to assess the stability of the vaccine via Ramachandran plot and ProSA-web servers. Moreover, solubility of the vaccine construct was greater than the average solubility provided by protein sol and SOLpro servers indicating the solubility of the vaccine construct. Disulfide engineering was performed to reduce the high mobile regions in the vaccine to enhance stability. Docking of the vaccine construct with TLR4 demonstrated efficient binding energy with attractive binding energy of - 338.68 kcal/mol and - 346.89 kcal/mol for TLR4 chain A and chain B respectively. Immune simulation significantly provided high levels of immunoglobulins, T-helper cells, T-cytotoxic cells and INF-γ. Upon cloning, the vaccine protein was reverse transcribed into DNA sequence and cloned into pET28a(+) vector to ensure translational potency and microbial expression. CONCLUSION: A unique vaccine construct from spike S protein and orf1ab polyprotein against B and T lymphocytes was generated with potential protection against the pandemic. The present study might assist in developing a suitable therapeutics protocol to combat SARSCoV-2 infection.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19/inmunología , Epítopos de Linfocito B , Epítopos de Linfocito T , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Proteínas Virales , Linfocitos B/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/química , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/inmunología , Epítopos de Linfocito B/química , Epítopos de Linfocito B/genética , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/química , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Humanos , Poliproteínas/química , Poliproteínas/genética , Poliproteínas/inmunología , SARS-CoV-2/química , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T/inmunología , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/inmunología
10.
J Med Virol ; 93(3): 1428-1435, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32779784

RESUMEN

The pandemic COVID-19 outbreak has been caused due to SARS-CoV-2 pathogen, resulting in millions of infections and deaths worldwide, the United States being on top at the present moment. The long, complex orf1ab polyproteins of SARS-CoV-2 play an important role in viral RNA synthesis. To assess the impact of mutations in this important domain, we analyzed 1134 complete protein sequences of the orf1ab polyprotein from the NCBI virus database from affected patients across various states of the United States from December 2019 to 25 April 2020. Multiple sequence alignment using Clustal Omega followed by statistical significance was calculated. Four significant mutations T265I (nsp 2), P4715L (nsp 12), and P5828L and Y5865C (both at nsp 13) were identified in important nonstructural proteins, which function either as replicase or helicase. A comparative analysis shows 265 T→I, 5828 P→L, and 5865Y→C are unique to the United States and not reported from Europe or Asia; while one, 4715 P→L is predominant in both Europe and the United States. Mutational changes in amino acids are predicted to alter the structure and function of the corresponding proteins, thereby, it is imperative to consider the mutational spectra while designing new antiviral therapeutics targeting viral orf1ab.


Asunto(s)
COVID-19/virología , Mutación , SARS-CoV-2/genética , Proteínas Virales/genética , Sustitución de Aminoácidos , ARN Polimerasa Dependiente de ARN de Coronavirus/química , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , Humanos , Poliproteínas/química , Poliproteínas/genética , Conformación Proteica , Estados Unidos , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas Virales/química
11.
Biol Proced Online ; 22: 8, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32336957

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) is an emerging zoonotic viral infection, which was started in Wuhan, China, in December 2019 and transmitted to other countries worldwide as a pandemic outbreak. Iran is one of the top ranked countries in the tables of COVID-19-infected and -mortality cases that make the Iranian patients as the potential targets for diversity of studies including epidemiology, biomedical, biodata, and viral proteins computational modelling studies. RESULTS: In this study, we applied bioinformatic biodata mining methods to detect CDS and protein sequences of ORF1ab polyprotein of SARS-CoV-2 isolated from oronasopharynx of an Iranian patient. Then through the computational modelling and antigenicity prediction approaches, the identified polyprotein sequence was analyzed. The results revealed that the identified ORF1ab polyprotein belongs to a part of nonstructural protein 1 (nsp1) with the high antigenicity residues in a glycine-proline or hydrophobic amino acid rich domain. CONCLUSIONS: The results revealed that nsp1 as a virulence factor and crucial agent in spreading of the COVID-19 among the society can be a potential target for the future epidemiology, drug, and vaccine studies.

12.
Int J Environ Sci Technol (Tehran) ; 17(10): 4381-4388, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32837521

RESUMEN

A novel coronavirus strain 2019-nCoV has caused a rapid global pandemic-COVID-19. Scientists have taken onto the task of characterizing this new virus and understanding how this virus has transmitted to humans. All preliminary studies have found some striking similarities between this new virus and the SARS-CoV that caused a similar kind of epidemic in 2002-2003. Through bioinformatics tools, a great deal of information has been gathered about the origin, evolution and zoonosis of this virus. We, in this review, report the symptoms, mode of transmission and available and putative treatments to tackle 2019-nCoV infections. We also comprehensively summarize all the information so far made available regarding the genome, evolution and zoonosis of this virus.

13.
Immun Inflamm Dis ; 12(2): e1171, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38415978

RESUMEN

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has had a severe impact on population health. The genetic determinants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in southern Bangladesh are not well understood. METHODS: This study aimed to determine the genomic variation in SARS-CoV-2 genomes that have evolved over 2 years of the pandemic in southern Bangladesh and their association with disease outcomes and virulence of this virus. We investigated demographic variables, disease outcomes of COVID-19 patients and genomic features of SARS-CoV-2. RESULTS: We observed that the disease severity was significantly higher in adults (85.3%) than in children (14.7%), because the expression of angiotensin-converting enzyme-2 (ACE-2) diminishes with ageing that causes differences in innate and adaptive immunity. The clade GK (n = 66) was remarkable between June 2021 and January 2022. Because of the mutation burden, another clade, GRA started a newly separated clustering in December 2021. The burden was significantly higher in GRA (1.5-fold) highlighted in mild symptoms of COVID-19 patients than in other clades (GH, GK, and GR). Mutations were accumulated mainly in S (22.15 mutations per segment) and ORF1ab segments. Missense (67.5%) and synonymous (18.31%) mutations were highly noticed in adult patients with mild cases rather than severe cases, especially in ORF1ab segments. Moreover, we observed many unique mutations in S protein in mild cases compared to severe, and homology modeling revealed that those might cause more folding in the protein's alpha helix and beta sheets. CONCLUSION: Our study identifies some risk factors such as age comorbidities (diabetes, hypertension, and renal disease) that are associated with severe COVID-19, providing valuable insight regarding prioritizing vaccination for high-risk individuals and allocating health care and resources. The findings of this work outlined the knowledge and mutational basis of SARS-CoV-2 for the next treatment steps. Further studies are needed to confirm the effects of structural and functional proteins of SARS-CoV-2 in detail for monitoring the emergence of new variants in future.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Niño , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/genética , Bangladesh/epidemiología , Inmunidad Adaptativa , Envejecimiento
14.
Talanta ; 280: 126708, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39151318

RESUMEN

The development of rapid, accurate, sensitive, and low-cost diagnostic methods for COVID-19 detection in real-time is the unique way to control infection sources and monitor illness progression. In this work, we propose an electrochemical biosensor for the rapid and accuracy diagnosis of COVID-19, through the determination of ORF1ab specific sequence. The biosensor is based on the immobilization of a thiolated sequence partially complementary (domain 1) to ORF1ab on gold screen-printed electrodes and the use of bifunctional Au@Pt/Au core@shell nanoparticles modified with a second thiolated sequence partially complementary to ORF1ab (domain 2) as electrochemical indicator of the hybridization of DNA sequences. The synthesized Au@Pt/Au nanoparticles consist of an Au core, a shell of Pt (Au@Pt NPs), that provides an excellent electrocatalytic activity toward the oxygen reduction reaction (ORR) even after formation of hybrid biomaterials by modification, through the Au protuberances growth on the NPs surface, with an oligonucleotide with recognition ability. The ORR electrochemical activity, enhanced by the label element (Au@Pt/Au NPs), has been employed, for the first time, as indicator of the hybridization event. Based on this strategy, target sequences of the SARS-CoV-2 virus have been detected with a detection limit of 32 pM. The selectivity of the biosensor was confirmed by analysing ORF1ab sequence in the presence of DNA sequences from other viruses. The biosensor has been successfully applied to the direct detection of the virus in non-amplified samples of nasopharyngeal swabs from infected and non-infected patients. Results compare well with those obtained through RT-qPCR but our method is more rapid since does not need any amplification process.

15.
J Virol Methods ; 315: 114714, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36934897

RESUMEN

We present the point-of-care (POC) molecular diagnostic solution, evaluated during COVID-19 pandemic caused by SARS-CoV-2 (Dec 2021). The POC comprised of a complete platform from self-sampling to RT-PCR testing of SARS-CoV-2 and its variants on portable Compact Q Real time polymerase chain reaction system. The multiplex assay was designed to target S, ORF1, and N genes of SARS-CoV-2 genome in a single tube with RNaseP as endogenous internal control. The present POC enables high accuracy (>95%) and high-throughput testing with a turnaround time of 45 min. It provides a unique platform from self-sample collection to report generation with rapid protocol, pipette and expert-free operation, long shelf-life stability and room temperature storage which enable to increase the efficiency of molecular testing. This novel test named "CoviSwift™ COVID-19 S PLUS RAPID PCR KIT" has been approved by CDSCO, Indian National Regulatory Authority, India, and is in use for clinical settings in India.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Sistemas de Atención de Punto , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Pandemias , Sensibilidad y Especificidad , Reacción en Cadena en Tiempo Real de la Polimerasa , Prueba de COVID-19
16.
Bioelectrochemistry ; 150: 108364, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36621051

RESUMEN

This study proposed a CRISPR/Cas13a-powered electrochemical multiplexed biosensor for detecting SARS-CoV-2 RNA strands. Current SARS-CoV-2 diagnostic methods, such as reverse transcription PCR (RT-PCR), are primarily based on nucleic acid amplification (NAA) and reverse transcription (RT) processes, which have been linked to significant issues such as cross-contamination and long turnaround times. Using a CRISPR/Cas13a system integrated onto an electrochemical biosensor, we present a multiplexed and NAA-free strategy for detecting SARS-CoV-2 RNA fragments. SARS-CoV-2 S and Orf1ab genes were detected in both synthetic and clinical samples. The CRISPR/Cas13a-powered biosensor achieved low detection limits of 2.5 and 4.5 ag/µL for the S and Orf1ab genes, respectively, successfully meeting the sensitivity requirement. Furthermore, the biosensor's specificity, simplicity, and universality may position it as a potential rival to RT-PCR.


Asunto(s)
COVID-19 , ARN Viral , Humanos , ARN Viral/genética , SARS-CoV-2/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , COVID-19/diagnóstico , Reacción en Cadena de la Polimerasa , Sensibilidad y Especificidad
17.
Future Virol ; 18(8): 501-516, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38051989

RESUMEN

Aim: To generate mRNAs encoding conserved regions within SARS-CoV-2 ORF1ab which can induce strong T-cell responses to overcome the immune invasion of newly emergent variants. Methods: We selected two conserved regions with a high density of T-cell epitopes using immunoinformatics for mRNA synthesis. The ability of testing mRNAs to activate T cells for IFN-γ production was examined by an ELISpot assay and flow cytometry. Results: Two synthesized mRNAs were successfully translated in MDA-MB-231 cells and had comparable potency to the spike mRNA to induce CD4+ and CD8+ T-cell responses in peripheral blood mononuclear cells in 29 out of 34 participants. Conclusion: This study provides a proof-of-concept for the use of SARS-CoV-2 conserved regions to develop booster vaccines capable of eliciting T-cell-mediated immunity.

18.
J Virol Methods ; 320: 114774, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37460042

RESUMEN

SARS-CoV-2 is still threat and mostly used detection method is real time reverse transcriptase polymerase chain reaction (rRT-PCR) for the open reading frame (Orf1ab), RNA-dependent RNA polymerase (RdRp), nucleocapsid (N) and envelope (E) genes of virus. However, rRT-PCR may have false negative rate for the nucleic acid detection. Since the RdRp/Orf1ab has high sensitivity for the molecular detection, two sandwich models, Model 1A-Model 1B, based on hybridization on lateral flow assay (LFA) were designed here and applied with the synthetic and clinical samples of RdRp/Orf1ab. In this purpose colloidal gold nanoparticles (AuNPs) were used as label. Membranes having different flow rate, three oligonucleotide probe concentrations and running buffers were used. Although synthetic target sequence was recognized by all the LFAs, PCR products obtained from either the synthetic plasmid DNA or oro/nasopharyngeal swabs were detected by Model 1 A using W12 membrane. Designed strip assays detected the RdRp/Orf1ab of the clinical samples as 100% sensitivity and specifity. It means that they might be used for the detection of virus and can be modified for the recognition of mutant genes of virus. These findings also demonstrated the importance of membranes, sandwich models, probe concentrations and sample contents for developing LFAs for viral detection.


Asunto(s)
COVID-19 , Nanopartículas del Metal , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Oro , ARN Polimerasa Dependiente del ARN/genética , Sensibilidad y Especificidad , ARN Viral/genética
19.
Micromachines (Basel) ; 13(5)2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35630239

RESUMEN

Programmed mini-pumps play a significant role in various fields, such as chemistry, biology, and medicine, to transport a measured volume of liquid, especially in the current detection of COVID-19 with PCR. In view of the cost of the current automatic pipetting pump being higher, which is difficult to use in a regular lab, this paper designed and assembled a three-dimensional programmed mini-pump with the common parts and components, such as PLC controller, motor, microinjector, etc. With the weighting calibration before and after pipetting operation, the error of the pipette in 10 µL (0.2%), 2 µL (1.8%), and 1 µL (5.6%) can be obtained. Besides, the contrast test between three-dimensional programmed mini-pump and manual pipette was conducted with the ORF1ab and pGEM-3Zf (+) genes in qPCR. The results proved that the custom-made three-dimensional programmed mini-pump has a stronger reproducibility compared with manual pipette (ORF1ab: 24.06 ± 0.33 vs. 23.50 ± 0.58, p = 0.1014; pGEM-3Zf (+): 11.83.06 ± 0.24 vs. 11.50 ± 0.34, p = 0.8779). These results can lay the foundation for the functional, fast, and low-cost programmed mini-pump in PCR or other applications for trace measurements.

20.
Biosens Bioelectron ; 195: 113649, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34555637

RESUMEN

Considering the worldwide health crisis associated with highly contagious severe respiratory disease of COVID-19 outbreak, the development of multiplexed, simple and rapid diagnostic platforms to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is in high demand. Here, a nucleic acid amplification-free electrochemical biosensor based on four-way junction (4-WJ) hybridization is presented for the detection of SARS-CoV-2. To form a 4-WJ structure, a Universal DNA-Hairpin (UDH) probe is hybridized with two adaptor strands and a SARS-CoV-2 RNA target. One of the adaptor strands is functionalized with a redox mediator that can be detected using an electrochemical biosensor. The biosensor could simultaneously detect 5.0 and 6.8 ag/µL of S and Orf1ab genes, respectively, within 1 h. The biosensor was evaluated with 21 clinical samples (16 positive and 5 negative). The results revealed a satisfactory agreement with qRT-PCR. In conclusion, this biosensor has the potential to be used as an on-site, real-time diagnostic test for COVID-19.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Pruebas Diagnósticas de Rutina , Humanos , Técnicas de Amplificación de Ácido Nucleico , ARN Viral/genética , SARS-CoV-2 , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA