Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Exp Bot ; 74(14): 4189-4207, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37086216

RESUMEN

Apple necrotic mosaic virus (ApNMV) is associated with apple mosaic disease in China. However, the mechanisms of ApNMV infection, as well as host defence against the virus, are still poorly understood. Mitochondrial ATP synthase plays a fundamental role in the regulation of plant growth and development. However, mitochondrial ATP synthase function in response to virus infection remains to be defined. In the present study, a yeast two-hybrid (Y2H) screening revealed that the apple mitochondrial ATP synthase oligomycin sensitivity-conferring protein (OSCP) subunit (MdATPO) interacts with ApNMV coat protein (CP). It was further verified that overexpression of MdATPO in Nicotiana benthamiana inhibited viral accumulation. In contrast, silencing of NbATPO facilitated viral accumulation, indicating that ATPO plays a defensive role during ApNMV infection. Further investigation demonstrated that ApNMV infection accelerated abscisic acid (ABA) accumulation, and ABA negatively regulated ATPO transcription, which was related to the ability of ABA insensitive 5 (ABI5) to bind to the ABA-responsive elements (ABREs) of the ATPO promoter. Taken together, our results indicated that transcription factor ABI5 negatively regulated ATPO transcription by directly binding to its promoter, leading to the susceptibility of apple and N. benthamiana to ApNMV infection. The current study facilitates a comprehensive understanding of the intricate responses of the host to ApNMV infection.


Asunto(s)
Proteínas de Arabidopsis , ATPasas de Translocación de Protón Mitocondriales , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Regulación hacia Abajo , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Arabidopsis/metabolismo
2.
J Inherit Metab Dis ; 45(5): 996-1012, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35621276

RESUMEN

Mitochondrial complex V plays an important role in oxidative phosphorylation by catalyzing the generation of ATP. Most complex V subunits are nuclear encoded and not yet associated with recognized Mendelian disorders. Using exome sequencing, we identified a rare homozygous splice variant (c.87+3A>G) in ATP5PO, the complex V subunit which encodes the oligomycin sensitivity conferring protein, in three individuals from two unrelated families, with clinical suspicion of a mitochondrial disorder. These individuals had a similar, severe infantile and often lethal multi-systemic disorder that included hypotonia, developmental delay, hypertrophic cardiomyopathy, progressive epileptic encephalopathy, progressive cerebral atrophy, and white matter abnormalities on brain MRI consistent with Leigh syndrome. cDNA studies showed a predominant shortened transcript with skipping of exon 2 and low levels of the normal full-length transcript. Fibroblasts from the affected individuals demonstrated decreased ATP5PO protein, defective assembly of complex V with markedly reduced amounts of peripheral stalk proteins, and complex V hydrolytic activity. Further, expression of human ATP5PO cDNA without exon 2 (hATP5PO-∆ex2) in yeast cells deleted for yATP5 (ATP5PO homolog) was unable to rescue growth on media which requires oxidative phosphorylation when compared to the wild type construct (hATP5PO-WT), indicating that exon 2 deletion leads to a non-functional protein. Collectively, our findings support the pathogenicity of the ATP5PO c.87+3A>G variant, which significantly reduces but does not eliminate complex V activity. These data along with the recent report of an affected individual with ATP5PO variants, add to the evidence that rare biallelic variants in ATP5PO result in defective complex V assembly, function and are associated with Leigh syndrome.


Asunto(s)
Encefalopatías , Enfermedad de Leigh , ATPasas de Translocación de Protón Mitocondriales , Encefalopatías/metabolismo , ADN Complementario/metabolismo , Humanos , Enfermedad de Leigh/genética , Enfermedad de Leigh/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , Mutación , Proteínas/metabolismo
3.
J Cell Biochem ; 117(2): 470-82, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26223201

RESUMEN

Taking advantage from the peculiar features of the embryonic rat heart-derived myoblast cell line H9c2, the present study is the first to provide evidence for the expression of F1FO ATP synthase and of ATPase Inhibitory Factor 1 (IF1) on the surface of cells of cardiac origin, together documenting that they were affected through cardiac-like differentiation. Subunits of both the catalytic F1 sector of the complex (ATP synthase-ß) and of the peripheral stalk, responsible for the correct F1-FO assembly/coupling, (OSCP, b, F6) were detected by immunofluorescence, together with IF1. The expression of ATP synthase-ß, ATP synthase-b and F6 were similar for parental and differentiated H9c2, while the levels of OSCP increased noticeably in differentiated cells, where the results of in situ Proximity Ligation Assay were consistent with OSCP interaction within ecto-F1FO complexes. An opposite trend was shown by IF1 whose ectopic expression appeared greater in the parental H9c2. Here, evidence for the IF1 interaction with ecto-F1FO complexes was provided. Functional analyses corroborate both sets of data. i) An F1FO ATP synthase contribution to the exATP production by differentiated cells suggests an augmented expression of holo-F1FO ATP synthase on plasma membrane, in line with the increase of OSCP expression and interaction considered as a requirement for favoring the F1-FO coupling. ii) The absence of exATP generation by the enzyme, and the finding that exATP hydrolysis was largely oligomycin-insensitive, are in line in parental cells with the deficit of OSCP and suggest the occurrence of sub-assemblies together evoking more regulation by IF1.


Asunto(s)
Mioblastos/fisiología , ATPasas de Translocación de Protón/metabolismo , Adenosina Trifosfato/biosíntesis , Animales , Diferenciación Celular , Expresión Génica , Células Hep G2 , Humanos , Hidrólisis , Miocardio/citología , Proteínas/metabolismo , Ratas , Proteína Inhibidora ATPasa
4.
Life Sci ; 336: 122293, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38030056

RESUMEN

Mitochondria are important organelles in cells responsible for energy production and regulation. Mitochondrial dysfunction has been implicated in the pathogenesis of many diseases. Oligomycin sensitivity-conferring protein (OSCP), a component of the inner mitochondrial membrane, has been studied for a long time. OSCP is a component of the F1Fo-ATP synthase in mitochondria and is closely related to the regulation of the mitochondrial permeability transition pore (mPTP). Studies have shown that OSCP plays an important role in cardiovascular disease, neurological disorders, and tumor development. This review summarizes the localization, structure, function, and regulatory mechanisms of OSCP and outlines its role in cardiovascular disease, neurological disease, and tumor development. In addition, this article reviews the research on the interaction between OSCP and mPTP. Finally, the article suggests future research directions, including further exploration of the mechanism of action of OSCP, the interaction between OSCP and other proteins and signaling pathways, and the development of new treatment strategies for mitochondrial dysfunction. In conclusion, in-depth research on OSCP will help to elucidate its importance in cell function and disease and provide new ideas for the treatment and prevention of related diseases.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedades Mitocondriales , Neoplasias , Humanos , Adenosina Trifosfatasas/metabolismo , Proteínas Portadoras/metabolismo , ATPasas de Translocación de Protón Mitocondriales , Enfermedades Mitocondriales/tratamiento farmacológico , Neoplasias/tratamiento farmacológico
5.
Elife ; 102021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34467850

RESUMEN

Mitochondrial activity determines aging rate and the onset of chronic diseases. The mitochondrial permeability transition pore (mPTP) is a pathological pore in the inner mitochondrial membrane thought to be composed of the F-ATP synthase (complex V). OSCP, a subunit of F-ATP synthase, helps protect against mPTP formation. How the destabilization of OSCP may contribute to aging, however, is unclear. We have found that loss OSCP in the nematode Caenorhabditis elegans initiates the mPTP and shortens lifespan specifically during adulthood, in part via initiation of the mitochondrial unfolded protein response (UPRmt). Pharmacological or genetic inhibition of the mPTP inhibits the UPRmt and restores normal lifespan. Loss of the putative pore-forming component of F-ATP synthase extends adult lifespan, suggesting that the mPTP normally promotes aging. Our findings reveal how an mPTP/UPRmt nexus may contribute to aging and age-related diseases and how inhibition of the UPRmt may be protective under certain conditions.


Asunto(s)
Envejecimiento , Caenorhabditis elegans/fisiología , Membranas Mitocondriales/fisiología , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Respuesta de Proteína Desplegada , Animales , Mitocondrias/fisiología
6.
Hum Gene Ther ; 31(21-22): 1178-1189, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32787458

RESUMEN

Cardiac hypertrophy is a major risk factor for congestive heart failure, a leading cause of morbidity and mortality. Abrogating hypertrophic progression is a well-recognized therapeutic goal. Mitochondrial dysfunction is a hallmark of numerous human diseases, including cardiac hypertrophy and heart failure. F1Fo-ATP synthase catalyzes the final step of oxidative energy production in mitochondria. Oligomycin sensitivity conferring protein (OSCP), a key component of the F1Fo-ATP synthase, plays an essential role in mitochondrial energy metabolism. However, the effects of OSCP-targeted therapy on cardiac hypertrophy remain unknown. In the present study, we found that impaired cardiac expression of OSCP is concomitant with mitochondrial dysfunction in the hypertrophied heart. We used cardiac-specific, adeno-associated virus-mediated gene therapy of OSCP to treat mice subjected to pressure overload induced by transverse aortic constriction (TAC). OSCP gene therapy protected the TAC-mice from cardiac dysfunction, cardiomyocyte hypertrophy, and fibrosis. OSCP gene therapy also enhanced mitochondrial respiration capacities in TAC-mice. Consistently, OSCP gene therapy attenuated reactive oxygen species and opening of mitochondrial permeability transition pore in the hypertrophied heart. Together, adeno-associated virus type 9-mediated, cardiac-specific OSCP overexpression can protect the heart via improving mitochondrial function. This result may provide insights into a novel therapy for cardiac hypertrophy and heart failure.


Asunto(s)
Cardiomegalia/prevención & control , Dependovirus/genética , Vectores Genéticos/administración & dosificación , Mitocondrias/fisiología , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Presión , Animales , Cardiomegalia/etiología , Cardiomegalia/metabolismo , Cardiomegalia/patología , Terapia Genética , Vectores Genéticos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , ATPasas de Translocación de Protón Mitocondriales/genética
7.
Cell Rep ; 32(9): 108095, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877677

RESUMEN

The mitochondrial permeability transition pore (PTP) is a Ca2+-activated channel that plays a key role in cell death. Thiol oxidation facilitates PTP opening, yet the targets and molecular mechanisms still await a definition. Here, we investigate the role of C141 of F-ATP synthase oligomycin sensitivity conferral protein (OSCP) subunit in PTP modulation by oxidation. We find that the OSCP C141S mutation confers resistance to PTP opening and cell death by diamide and MitoParaquat only when cyclophilin D (CyPD) has been ablated, a protective role that can be explained by CyPD shielding C141 from oxidants. The mutation decreases apoptosis in zebrafish embryos, indicating that this OSCP residue is involved in development. Site-directed mutagenesis in yeast suggests that other conserved cysteines in the α, γ, and c subunits of F-ATP synthase are not involved in PTP modulation. Thus, OSCP provides a strategic site that regulates PTP opening by the interplay between CyPD (un)binding and thiol oxidation-reduction.


Asunto(s)
Cisteína/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Permeabilidad , Humanos
8.
Med Biol Eng Comput ; 56(5): 795-807, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-28948480

RESUMEN

Precise segmentation of stroke lesions from brain magnetic resonance (MR) images poses a challenging task in automated diagnosis. In this paper, we proposed a new method called watershed-based lesion segmentation algorithm (WLSA), which is a novel intensity-based segmentation technique used to delineate infarct lesion in diffusion-weighted imaging (DWI) MR images of the brain. The algorithm was tested on a series of 142 real-time images collected from different stroke patients reported at IMS and SUM Hospital. One MRI slice having largest area of infract lesion is selected from each patient from multiple slices. The main objective is to combine the strength of guided filter and watershed transform through relative fuzzy connectedness (RFC) to detect lesion boundaries appropriately. The extracted informative statistical and geometrical features are used to classify the types of stroke lesions according to the Oxfordshire Community Stroke Project (OCSP) classification. The experimental results demonstrated the effectiveness of the proposed process with high accuracy in delineating lesions. A classification with a dice similarity index (DSI) of 96% with computational time of 0.06 s in random forest (RF) and an accuracy of 85% with computational time of 0.84 s has been obtained by multilayer perceptron (MLP) neural network classifier in tenfold cross-validation process. Better detection accuracy is achieved in RF classifier in classifying stroke lesions.


Asunto(s)
Algoritmos , Isquemia Encefálica/diagnóstico , Encéfalo/patología , Lógica Difusa , Imagen por Resonancia Magnética , Accidente Cerebrovascular/diagnóstico , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Persona de Mediana Edad , Curva ROC , Reproducibilidad de los Resultados , Factores de Tiempo
9.
J Cancer ; 8(4): 626-635, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28367242

RESUMEN

NOR1 (Oxidored-nitro domain-containing protein 1), also known as OSCP1, was first identified in nasopharyngeal carcinoma (NPC) cells in 2003. NOR1 is evolutionarily conserved among species with its expression is restricted to brain, testis and respiratory epithelial cells. NOR1 was downregulated in NPC and the downregulation associates with poor prognosis. Previous study demonstrated that hypermethylation of NOR1 promoter was observed in NPC and hematological malignancies, which has been believed to be the main epigenetic cause for NOR1 silencing in these cancers. Recently, the NOR1 tumor suppressor status has been fully established. NOR1 inhibited cancer cell growth by disturbing tumor cell energe metabolism. NOR1 also promote tumor cells apoptosis in oxidative stress and hypoxia by inhibition of stress induced autophagy. Moreover, NOR1 suppressed cancer cell epithelial-mesenchymal transition, invasion and metastasis via activation of FOXA1/HDAC2-slug regulatory network. Deciphering the molecular mechanisms underlying NOR1 mediated tumor suppressive role would be helpful to a deeper understanding of carcinogenesis and, furthermore, to the development of new therapeutic approaches. Here we summarize the current knowledge on NOR1 focusing on its expression pattern, epigenetic and genetic association with human cancers and its biological functions. This review will also elucidate the potential application of NOR1/OSCP1 for some human malignancies.

10.
Am J Cancer Res ; 5(5): 1718-29, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26175940

RESUMEN

OSCP1/NOR1 (organic solute carrier partner 1/oxidored-nitro domain-containing protein 1) is known as a transporter of various organic solutes into cells and also is reported to act as a tumor suppressor protein. Although overexpression of OSCP1 has been shown to play multiple roles in mammalian cell lines, its biological significance in living organisms is not fully understood. To explore the effects of OSCP1/NOR1 on development, we performed genetic studies in flies featuring overexpression of its Drosophila orthologue, dOSCP1. Overexpression of dOSCP1 in eye imaginal discs induced a rough eye phenotype in adult flies, likely resulting from a delay in S phase progression and induction of caspase-dependent apoptosis followed by compensatory proliferation. However, it did not appear to be involved in differentiation of R7 photoreceptor cells. We also found that overexpression of dOSCP1 caused endoplasmic reticulum stress in salivary gland cells. These results indicate that overexpression of dOSCP1 exerts effects on various biological processes during Drosophila development.

11.
Front Physiol ; 6: 85, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25852572

RESUMEN

The mitochondrial protein deacetylase sirtuin (SIRT) 3 may mediate exercise training-induced increases in mitochondrial biogenesis and improvements in reactive oxygen species (ROS) handling. We determined the requirement of AMP-activated protein kinase (AMPK) for exercise training-induced increases in skeletal muscle abundance of SIRT3 and other mitochondrial proteins. Exercise training for 6.5 weeks increased SIRT3 (p < 0.01) and superoxide dismutase 2 (MnSOD; p < 0.05) protein abundance in quadriceps muscle of wild-type (WT; n = 13-15), but not AMPK α2 kinase dead (KD; n = 12-13) mice. We also observed a strong trend for increased MnSOD abundance in exercise-trained skeletal muscle of healthy humans (p = 0.051; n = 6). To further elucidate a role for AMPK in mediating these effects, we treated WT (n = 7-8) and AMPK α2 KD (n = 7-9) mice with 5-amino-1-ß-D-ribofuranosyl-imidazole-4-carboxamide (AICAR). Four weeks of daily AICAR injections (500 mg/kg) resulted in AMPK-dependent increases in SIRT3 (p < 0.05) and MnSOD (p < 0.01) in WT, but not AMPK α2 KD mice. We also tested the effect of repeated AICAR treatment on mitochondrial protein levels in mice lacking the transcriptional coactivator peroxisome proliferator-activated receptor γ-coactivator 1α (PGC-1α KO; n = 9-10). Skeletal muscle SIRT3 and MnSOD protein abundance was reduced in sedentary PGC-1α KO mice (p < 0.01) and AICAR-induced increases in SIRT3 and MnSOD protein abundance was only observed in WT mice (p < 0.05). Finally, the acetylation status of SIRT3 target lysine residues on MnSOD (K122) or oligomycin-sensitivity conferring protein (OSCP; K139) was not altered in either mouse or human skeletal muscle in response to acute exercise. We propose an important role for AMPK in regulating mitochondrial function and ROS handling in skeletal muscle in response to exercise training.

12.
FEBS J ; 282(24): 4727-46, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26411401

RESUMEN

OSCP1/NOR1 (organic solute carrier partner 1/oxidored nitrodomain-containing protein 1) is a known tumor suppressor protein. OSCP1 has been reported to mediate transport of various organic solutes into cells; however, its role during development has not yet been addressed. Here we report the results of studies on dOSCP1 (the Drosophila ortholog of hOSCP1) to elucidate the role of OSCP1/NOR1 during development. Knockdown of dOSCP1 in the eye imaginal discs induced a rough-eye phenotype in adult flies. This phenotype resulted from induction of caspase-dependent apoptosis followed by a compensatory cell proliferation and generation of reactive oxygen species in eye imaginal discs. The induction of apoptosis appears to be associated with down-regulation of the anti-apoptotic Buffy gene and up-regulation of the pro-apoptotic Debcl gene. These effects of knockdown of dOSCP1 lead to mitochondrial fragmentation, degradation, and a shortfall in ATP production. We also found that knockdown of dOSCP1 causes a defect in cone cell and pigment cell differentiation in pupal retinae. Moreover, mutations in epidermal growth factor receptor pathway-related genes, such as Spitz and Drk, enhanced the rough-eye phenotype induced by dOSCP1 knockdown. These results suggest that dOSCP1 positively regulates the epidermal growth factor receptor signaling pathway. Overall, our findings indicate that dOSCP1 plays multiple roles during eye development in Drosophila.


Asunto(s)
Apoptosis , Proteínas de Drosophila/agonistas , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Receptores ErbB/agonistas , Ojo/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Péptidos de Invertebrados/agonistas , Transducción de Señal , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Proliferación Celular , Cruzamientos Genéticos , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Ojo/citología , Ojo/crecimiento & desarrollo , Ojo/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Discos Imaginales/citología , Discos Imaginales/crecimiento & desarrollo , Discos Imaginales/metabolismo , Discos Imaginales/ultraestructura , Larva/genética , Larva/fisiología , Proteínas de Transporte de Membrana/genética , Microscopía Electrónica de Rastreo , Mutación , Células Fotorreceptoras de Invertebrados/citología , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/ultraestructura , Interferencia de ARN , Receptores de Péptidos de Invertebrados/genética , Receptores de Péptidos de Invertebrados/metabolismo
13.
Korean J Food Sci Anim Resour ; 34(3): 372-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-26761179

RESUMEN

This study was conducted to evaluate the effects of oyster shell calcium powder (OSCP) as a substitute for phosphates in curing agent, on the quality of restructured pork ham. Restructured pork ham was processed under six treatment conditions: T1 (no additives), T2 (0.3% sodium tripolyphosphate), T3 (1.5% NaCl+0.5% whey protein), T4 (1.5% NaCl+0.5% whey protein+0.15% OSCP), T5 (1.5% NaCl+0.5% whey protein+0.3% OSCP), and T6 (1.5% NaCl+0.5% whey protein+0.5% OSCP). Addition of OSCP significantly increased the ash content and pH of restructured pork ham (p<0.05), but did not affect the cooking loss and water holding capacity values of restructured pork ham. Addition of OSCP had no effect on Hunter a and b surface color values of restructured pork ham, but did decrease the Hunter L surface color value (p<0.05). The addition of 0.5% OSCP showed significantly higher chewiness and springiness values of restructured pork ham, compared with the addition of phosphates (p<0.05). In conclusion, the addition of OSCP combined with low NaCl and 0.5% whey protein can be considered a viable substitute for phosphates in the curing agent, when processing restructured pork ham.

14.
Cell Cycle ; 12(17): 2781-93, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23966169

RESUMEN

We and others previously reported that endogenous p53 can be located at mitochondria in the absence of stress, suggesting that p53 has a role in the normal physiology of this organelle. The aim of this study was to characterize in unstressed cells the intramitochondrial localization of p53 and identify new partners and functions of p53 in mitochondria. We find that the intramitochondrial pool of p53 is located in the intermembrane space and the matrix. Of note, unstressed HCT116 p53(+/+) cells simultaneously show increased O2 consumption and decreased mitochondrial superoxide production compared with their p53-null counterpart. This data was confirmed by stable H1299 cell lines expressing low levels of p53 specifically targeted to the matrix. Using immunoprecipitation and mass spectrometry, we identified the oligomycin sensitivity-conferring protein (OSCP), a subunit of the F1F0-ATP synthase complex, as a new partner of endogenous p53, specifically interacting with p53 localized in the matrix. Interestingly, this interaction seems implicated in mitochondrial p53 localization. Moreover, p53 localized in the matrix promotes the assembly of F1F0-ATP synthase. Taking into account that deregulations of mitochondrial respiration and reactive oxygen species production are tightly linked to cancer development, we suggest that mitochondrial p53 may be an important regulator of normal mitochondrial and cellular physiology, potentially exerting tumor suppression activity inside mitochondria.


Asunto(s)
Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Transcripción Genética , Proteína p53 Supresora de Tumor/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Respiración de la Célula/genética , Estabilidad de Enzimas , Técnicas de Silenciamiento del Gen , Células HCT116 , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Consumo de Oxígeno , Unión Proteica/genética , Transporte de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA