RESUMEN
Understanding how animals evolve to become parasites is key to unravelling how biodiversity is generated as a whole, as parasites could account for half of all species richness. Two significant impediments to this are that parasites fossilize poorly and that they retain few clear shared morphological features with non-parasitic relatives. Barnacles include some of the most astonishingly adapted parasites with the adult body reduced to just a network of tubes plus an external reproductive body, but how they originated from the sessile, filter-feeding form is still a mystery. Here, we present compelling molecular evidence that the exceedingly rare scale-worm parasite barnacle Rhizolepas is positioned within a clade comprising species currently assigned to Octolasmis, a genus exclusively commensal with at least six different phyla of animals. Our results imply that species in this genus-level clade represent an array of species at various transitional stages from free-living to parasitic in terms of plate reduction and host-parasite intimacy. Diverging only about 19.15 million years ago, the route to parasitism in Rhizolepas was associated with rapid modifications in anatomy, a pattern that was likely true for many other parasitic lineages.
Asunto(s)
Parásitos , Thoracica , Animales , Interacciones Huésped-Parásitos , Simbiosis , ReproducciónRESUMEN
The Caribbean spiny lobster, Panulirus argus (Latreille, 1804) is a highly commercial species and comprises the largest spiny lobster fishery in the world. Although populations have declined throughout its range, there is little known regarding its diseases and pathogens. The objectives of this study were to provide illustrated and standardized methods for postmortem examination, and to describe baseline gross and microscopic pathology for P. argus. From July 2017-March 2019, a postmortem examination including comprehensive histological assessment was performed on 313 fishery-caught lobsters. Epibionts and lesions observed include branchial cirriped infestation (69%), branchial encysted nemertean worm larvae (23%), tail fan necrosis (11%), skeletal muscle necrosis (7%), antennal gland calculi (6%), branchial infarction (2%), and microsporidiosis (0.6%). This report confirms the rare prevalence of microsporidiosis in P. argus and describes nemertean worm larvae in the gill. This study also reports a condition resembling excretory calcinosis in spiny lobster. The methods and data produced by this study facilitate disease diagnosis and sustainable stock management of P. argus.
Asunto(s)
Explotaciones Pesqueras , Palinuridae/microbiología , Palinuridae/parasitología , Animales , Femenino , Masculino , San Kitts y NevisRESUMEN
The advancements in microscopic techniques have stimulated great interest in the muscular and neural architectures of invertebrates, specifically using muscle and neural structures to infer phylogenetic relationships. Here, we provide the data on the development of the muscular and nervous systems during the larval development of stalked barnacle, Octolasmis angulata using the phalloidin F-actin and immunohistochemical labelling (e.g. acetylated α-tubulin and serotonin) and confocal laser scanning microscopy analysis. All naupliar stages shared the same muscle and neural architectures with only the discrepancy in size. The nauplii have a complex muscle arrangement in their feeding apparatus and naupliar appendages. Most naupliar muscles undergo histolyse during the cyprid metamorphosis. The cyprid muscles form beneath the head shield at the end of nauplius VI. The naupliar and cyprid central nervous systems exhibit the typical tripartite brain comprising the protocerebrum, deutocerebrum and tritocerebrum. The serotonin-like immunoreactivity is mainly found in the naupliar brain, mandibular ganglia, cyprid brain and posterior ganglia. Our study revealed that numerous muscle and neural architectures in the naupliar and cyprids have phylogenetic significance, but future studies on the myoanatomy and neuroanatomy of other barnacle species are necessary to determine the homology of these structures.
Asunto(s)
Thoracica , Animales , Filogenia , Serotonina , Músculos , Sistema Nervioso CentralRESUMEN
BACKGROUND: By comparing spatial geographical structures of host populations with that of their symbionts light can be shed on their biological interactions, and the degree of congruence between host and symbiont phylogeographies should reflect their life histories and especially dispersal mechanisms. METHODS: Here, we analyzed the genetic diversity and structure of a host, the blue swimming crab, Portunus pelagicus, and its symbiotic pedunculate barnacle Octolasmis angulata from six location sites representing three geographic regions (north, central and south) along the Vietnam coastline. High levels of congruence in their phylogeographic patterns were expected as they both undergo planktonic larval stages. RESULTS: Based on the COI mtDNA markers, O. angulata populations showed higher genetic diversity in comparison with their host P. pelagicus (number of haplotype/individuals, haplotype and nucleotide diversity are 119/192, 0.991 ± 0.002 and 0.02; and 89/160, 0.913 ± 0.02 and 0.015, respectively). Pairwise Fst and AMOVA analyses showed a more pronounced population structure in the symbiotic barnacle than in its crab host. The DAPC analyses identified three genetic clusters. However, both haplotype networks and scatter plots supported connectivity of the host and the symbiotic barnacle throughout their distribution range, except for low subdivision of southern population. Isolation by distance were detected only for the symbiont O. angulata (R2 = 0.332, P = 0.05), while dbMEM supported spatial structure of both partners, but only at MEM-1 (Obs. 0.2686, P < 0.01 and Obs. 0.2096, P < 0.01, respectively).
RESUMEN
Detailed studies of larval development of Octolasmis angulata and Octolasmis cor are pivotal in understanding the larval morphological evolution as well as enhancing the functional ecology. Six planktotrophic naupliar stages and one non-feeding cyprid stage are documented in details for the first time for the two species of Octolasmis. Morphologically, the larvae of O. angulata and O. cor are similar in body size, setation patterns on the naupliar appendages, labrum, dorsal setae-pores, frontal horns, cyprid carapace, fronto-lateral gland pores, and lattice organs. Numbers of peculiarities were observed on the gnathobases of the antennae and mandible throughout the naupliar life-cycle. The setation pattern on the naupliar appendages are classified based on the segmentation on the naupliar appendages. The nauplius VI of both species undergoes a conspicuous change before metamorphosis into cyprid stage. The cyprid structures begin to form and modify beneath the naupliar body towards the end of stage VI. This study emphasises the importance of the pedunculate barnacle larval developmental studies not only to comprehend the larval morphological evolution but also to fill in the gaps in understanding the modification of the naupliar structures to adapt into the cyprid life-style.