Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Methods ; 228: 1-11, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38759909

RESUMEN

The necessity of animal-free performance tests for novel ophthalmic formulation screening is challenging. For this, we developed and validated a new device to simulate the dynamics and physical-chemical barriers of the eye for in vitro performance tests of topic ophthalmic formulations. The OphthalMimic is a 3D-printed device with an artificial lacrimal flow, a cul-de-sac area, a support base, and a simulated cornea comprised of a polymeric membrane containing poly-vinyl alcohol 10 % (w/v), gelatin 2.5 % (w/v), and different proportions of mucin and poloxamer, i.e., 1:1 (M1), 1:2 (M2), and 2:1 (M3) w/v, respectively. The support base is designed to move between 0° and 50° to replicate the movement of an eyelid. We challenged the model by testing the residence performance of poloxamer®407 16 % and poloxamer®407 16 % + chitosan 1 % (PLX16CS10) gels containing fluconazole. The test was conducted with a simulated tear flow of 1.0 mL.min-1 for 5 min. The OphthalMimic successfully distinguished PLX16 and PLX16C10 formulations based on their fluconazole drainage (M1: 65 ± 14 % and 27 ± 10 %; M2: 58 ± 6 % and 38 ± 9 %; M3: 56 ± 5 % and 38 ± 18 %). In conclusion, the OphthalMimic is a promising tool for comparing the animal-free performance of ophthalmic formulations.


Asunto(s)
Soluciones Oftálmicas , Poloxámero , Poloxámero/química , Soluciones Oftálmicas/química , Administración Oftálmica , Fluconazol/administración & dosificación , Impresión Tridimensional , Córnea/efectos de los fármacos , Córnea/metabolismo , Animales , Quitosano/química , Alternativas a las Pruebas en Animales/métodos , Lágrimas/química , Humanos , Gelatina/química
2.
Methods ; 230: 21-31, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39074539

RESUMEN

Envisaging to improve the evaluation of ophthalmic drug products while minimizing the need for animal testing, our group developed the OphthalMimic device, a 3D-printed device that incorporates an artificial lacrimal flow, a cul-de-sac area, a moving eyelid, and a surface that interacts effectively with ophthalmic formulations, thereby providing a close representation of human ocular conditions. An important application of such a device would be its use as a platform for dissolution/release tests that closely mimic in vivo conditions. However, the surface that artificially simulates the cornea should have a higher resistance (10 min) than the previously described polymeric films (5 min). For this key assay upgrade, we describe the process of obtaining and thoroughly characterizing a hydrogel-based hybrid membrane to be used as a platform base to simulate the cornea artificially. Also, the OphthalMimic device suffered design improvements to fit the new membrane and incorporate the moving eyelid. The results confirmed the successful synthesis of the hydrogel components. The membrane's water content (86.25 ± 0.35 %) closely mirrored the human cornea (72 to 85 %). Furthermore, morphological analysis supported the membrane's comparability to the natural cornea. Finally, the performance of different formulations was analysed, demonstrating that the device could differentiate their drainage profile through the viscosity of PLX 14 (79 ± 5 %), PLX 16 (72 ± 4 %), and PLX 20 (57 ± 14 %), and mucoadhesion of PLXCS0.5 (69 ± 1 %), PLX16CS1.0 (65 ± 3 %), PLX16CS1.25 (67 ± 3 %), and the solution (97 ± 8 %). In conclusion, using the hydrogel-based hybrid membrane in the OphthalMimic device represents a significant advancement in the field of ophthalmic drug evaluation, providing a valuable platform for dissolution/release tests. Such a platform aligns with the ethical mandate to reduce animal testing and promises to accelerate the development of safer and more effective ophthalmic drugs.


Asunto(s)
Hidrogeles , Humanos , Hidrogeles/química , Soluciones Oftálmicas/química , Impresión Tridimensional , Córnea/efectos de los fármacos , Córnea/metabolismo , Administración Oftálmica , Membranas Artificiales
3.
Molecules ; 29(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38338402

RESUMEN

Triamcinolone acetonide (TA), a medium-potency synthetic glucocorticoid, is primarily employed to treat posterior ocular diseases using vitreous injection. This study aimed to design novel ocular nanoformulation drug delivery systems using PLGA carriers to overcome the ocular drug delivery barrier and facilitate effective delivery into the ocular tissues after topical administration. The surface of the PLGA nanodelivery system was made hydrophilic (2-HP-ß-CD) through an emulsified solvent volatilization method, followed by system characterization. The mechanism of cellular uptake across the corneal epithelial cell barrier used rhodamine B (Rh-B) to prepare fluorescent probes for delivery systems. The triamcinolone acetonide (TA)-loaded nanodelivery system was validated by in vitro release behavior, isolated corneal permeability, and in vivo atrial hydrodynamics. The results indicated that the fluorescent probes, viz., the Rh-B-(2-HP-ß-CD)/PLGA NPs and the drug-loaded TA-(2-HP-ß-CD)/PLGA NPs, were within 200 nm in size. Moreover, the system was homogeneous and stable. The in vitro transport mechanism across the epithelial barrier showed that the uptake of nanoparticles was time-dependent and that NPs were actively transported across the epithelial barrier. The in vitro release behavior of the TA-loaded nanodelivery systems revealed that (2-HP-ß-CD)/PLGA nanoparticles could prolong the drug release time to up to three times longer than the suspensions. The isolated corneal permeability demonstrated that TA-(2-HP-ß-CD)/PLGA NPs could extend the precorneal retention time and boost corneal permeability. Thus, they increased the cumulative release per unit area 7.99-fold at 8 h compared to the suspension. The pharmacokinetics within the aqueous humor showed that (2-HP-ß-CD)/PLGA nanoparticles could elevate the bioavailability of the drug, and its Cmax was 51.91 times higher than that of the triamcinolone acetonide aqueous solution. Therefore, (2-HP-ß-CD)/PLGA NPs can potentially elevate transmembrane uptake, promote corneal permeability, and improve the bioavailability of drugs inside the aqueous humor. This study provides a foundation for future research on transocular barrier nanoformulations for non-invasive drug delivery.


Asunto(s)
Dieldrín/análogos & derivados , Nanopartículas , beta-Ciclodextrinas , Polímeros/farmacología , Portadores de Fármacos/farmacología , 2-Hidroxipropil-beta-Ciclodextrina/farmacología , Triamcinolona Acetonida , Colorantes Fluorescentes/farmacología , Córnea , beta-Ciclodextrinas/farmacología
4.
AAPS PharmSciTech ; 25(5): 119, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816667

RESUMEN

Loteprednol etabonate (LE) is a topical corticosteroid for the symptomatic management of ocular conditions, encompassing both allergic and infectious etiologies. Owing to the dynamic and static barriers of the eye, LE exhibits significantly low bioavailability, necessitating an increase in the frequency of drug administration. The objective of this study is to overcome the limitations by developing niosomal systems loaded with LE. Design of Experiments (DoE) approach was used for the development of optimal niosome formulation. The optimal formulation was characterized using DLS, FT-IR, and DSC analysis. In vitro and ex vivo release studies were performed to demonstrate drug release patterns. After that HET-CAM evaluation was conducted to determine safety profile. Then, in vivo studies were carried out to determine therapeutic activity of niosomes. Zeta potential (ZP), particle size, polydispersity index (PI), and encapsulation efficacy (EE) were -33.8 mV, 89.22 nm, 0.192, and 89.6%, respectively. Medicated niosomes had a broad distribution within rabbit eye tissues and was absorbed by the aqueous humor of the bovine eye for up to 6 h after treatment. Cumulative permeated drug in the bovine eye and rabbit eye were recorded 52.45% and 54.8%, respectively. No irritation or hemorrhagic situation was observed according to the results of HET-CAM study. Thus, novel LE-loaded niosomal formulations could be considered as a promising treatment option for the dry-eye-disease (DED) due to enhanced bioavailability and decreased side effects.


Asunto(s)
Preparaciones de Acción Retardada , Síndromes de Ojo Seco , Liposomas , Etabonato de Loteprednol , Animales , Conejos , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/farmacocinética , Etabonato de Loteprednol/administración & dosificación , Etabonato de Loteprednol/farmacocinética , Síndromes de Ojo Seco/tratamiento farmacológico , Bovinos , Liberación de Fármacos , Tamaño de la Partícula , Modelos Animales de Enfermedad , Administración Oftálmica , Disponibilidad Biológica , Sistemas de Liberación de Medicamentos/métodos , Ojo/metabolismo , Ojo/efectos de los fármacos , Humor Acuoso/metabolismo , Química Farmacéutica/métodos , Soluciones Oftálmicas/administración & dosificación , Soluciones Oftálmicas/farmacocinética
5.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36769037

RESUMEN

The therapeutic efficacy of topically administered drugs, however powerful, is largely affected by their bioavailability and, thus, ultimately, on their aqueous solubility and stability. The aim of this study was to evaluate the use of ionic liquids (ILs) as functional excipients to solubilise, stabilise, and prolong the ocular residence time of diacerein (DIA) in eye drop formulations. DIA is a poorly soluble and unstable anthraquinone prodrug, rapidly hydrolysed to rhein (Rhe), for the treatment of osteoarthritis. DIA has recently been evaluated as an antimicrobial agent for bacterial keratitis. Two ILs based on natural zwitterionic compounds were investigated: L-carnitine C6 alkyl ester bromide (Carn6), and betaine C6 alkyl ester bromide (Bet6). The stabilising, solubilising, and mucoadhesive properties of ILs were investigated, as well as their cytotoxicity to the murine fibroblast BALB/3T3 clone A31 cell line. Two IL-DIA-based eye drop formulations were prepared, and their efficacy against both Staphylococcus aureus and Pseudomonas aeruginosa was determined. Finally, the eye drops were administered in vivo on New Zealand albino rabbits, testing their tolerability as well as their elimination and degradation kinetics. Both Bet6 and Carn6 have good potential as functional excipients, showing solubilising, stabilising, mucoadhesive, and antimicrobial properties; their in vitro cytotoxicity and in vivo ocular tolerability pave the way for their future use in ophthalmic applications.


Asunto(s)
Antiinfecciosos , Líquidos Iónicos , Ratones , Animales , Excipientes , Betaína/farmacología , Líquidos Iónicos/farmacología , Carnitina , Soluciones Oftálmicas/farmacología , Bromuros , Antiinfecciosos/farmacología , Antraquinonas/farmacología , Ésteres
6.
Molecules ; 28(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36770926

RESUMEN

This study investigates the development of topically applied non-invasive amino-functionalized silica nanoparticles (AMSN) and O-Carboxymethyl chitosan-coated AMSN (AMSN-CMC) for ocular delivery of 5-Fluorouracil (5-FU). Particle characterization was performed by the DLS technique (Zeta-Sizer), and structural morphology was examined by SEM and TEM. The drug encapsulation and loading were determined by the indirect method using HPLC. Physicochemical characterizations were performed by NMR, TGA, FTIR, and PXRD. In vitro release was conducted through a dialysis membrane in PBS (pH 7.4) using modified Vertical Franz diffusion cells. The mucoadhesion ability of the prepared nanoparticles was tested using the particle method by evaluating the change in zeta potential. The transcorneal permeabilities of 5-FU from AMNS-FU and AMSN-CMC-FU gel formulations were estimated through excised goat cornea and compared to that of 5-FU gel formulation. Eye irritation and ocular pharmacokinetic studies from gel formulations were evaluated in rabbit eyes. The optimum formulation of AMSN-CMC-FU was found to be nanoparticles with a particle size of 249.4 nm with a polydispersity of 0.429, encapsulation efficiency of 25.8 ± 5.8%, and drug loading capacity of 5.2 ± 1.2%. NMR spectra confirmed the coating of AMSN with the CMC layer. In addition, TGA, FTIR, and PXRD confirmed the drug loading inside the AMSN-CMC. Release profiles showed 100% of the drug was released from the 5-FU gel within 4 h, while AMSN-FU gel released 20.8% of the drug and AMSN-CMC-FU gel released around 55.6% after 4 h. AMSN-CMC-FU initially exhibited a 2.45-fold increase in transcorneal flux and apparent permeation of 5-FU compared to 5-FU gel, indicating a better corneal permeation. Higher bioavailability of AMSN-FU and AMSN-CMC-FU gel formulations was found compared to 5-FU gel in the ocular pharmacokinetic study with superior pharmacokinetics parameters of AMSN-CMC-FU gel. AMSN-CMC-FU showed 1.52- and 6.14-fold higher AUC0-inf in comparison to AMSN-FU and 5-FU gel, respectively. AMSN-CMC-FU gel and AMSN-FU gel were "minimally irritating" to rabbit eyes but showed minimal eye irritation potency in comparison to the 5 FU gel. Thus, the 5-FU loaded in AMSN-CMC gel could be used as a topical formulation for the treatment of ocular cancer.


Asunto(s)
Quitosano , Nanopartículas , Animales , Conejos , Fluorouracilo/química , Quitosano/química , Diálisis Renal , Nanopartículas/química , Córnea , Tamaño de la Partícula , Portadores de Fármacos , Sistemas de Liberación de Medicamentos/métodos
7.
Pharm Dev Technol ; 28(6): 535-546, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37212329

RESUMEN

In this work, novel carriers- nanoemulsomes (NE) of ganciclovir (GCV) and a fluorescent marker sodium fluorescein (SF) were developed and evaluated for posterior ocular delivery via topical route. GCV loaded emulsomes (GCV NE) were optimized by a factorial design and various characterization parameters were performed on the optimized batch. The optimized batch had particle size of 131.04 ± 1.87 nm, % entrapment efficiency of 36.42 ± 3.09% and its TEM image showed discrete spherical structures below 200 nm. Ocular irritation potential of excipients and formulation were evaluated by cell line based in vitro tests on SIRC cell line, results confirmed the safety of excipients for ocular use. Precorneal retention and pharmacokinetic studies of GCV NE were performed in rabbit eyes which showed significant retention of GCV NE in the cul-de-sac. The ocular distribution study of SF-loaded nanoemulsomes (SF NE) were performed in mice eyes by confocal microscopy, images showed fluorescence in the various internal layers of retina, suggesting efficacy of emulsomes in delivering agents to the back of eye via topical administration.


Asunto(s)
Excipientes , Ganciclovir , Animales , Ratones , Conejos , Ganciclovir/farmacocinética , Excipientes/metabolismo , Retina/metabolismo , Línea Celular , Administración Tópica , Tamaño de la Partícula , Sistemas de Liberación de Medicamentos , Portadores de Fármacos/química
8.
AAPS PharmSciTech ; 24(2): 66, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788150

RESUMEN

The human eye is a sophisticated organ with distinctive anatomy and physiology that hinders the passage of drugs into targeted ophthalmic sites. Effective topical administration is an interest of scientists for many decades. Their difficult mission is to prolong drug residence time and guarantee an appropriate ocular permeation. Several ocular obstacles oppose effective drug delivery such as precorneal, corneal, and blood-corneal barriers. Routes for ocular delivery include topical, intravitreal, intraocular, juxtascleral, subconjunctival, intracameral, and retrobulbar. More than 95% of marketed products exists in liquid state. However, other products could be in semi-solid (ointments and gels), solid state (powder, insert and lens), or mixed (in situ gel). Nowadays, attractiveness to nanotechnology-based carries is resulted from their capabilities to entrap both hydrophilic and lipophilic drugs, enhance ocular permeability, sustain residence time, improve drug stability, and augment bioavailability. Different in vitro, ex vivo, and in vivo characterization approaches help to predict the outcomes of the constructed nanocarriers. This review aims to clarify anatomy of the eye, various ocular diseases, and obstacles to ocular delivery. Moreover, it studies the advantages and drawbacks of different ocular routes of administration and dosage forms. This review also discusses different nanostructured platforms and their characterization approaches. Strategies to enhance ocular bioavailability are also explained. Finally, recent advances in ocular delivery are described.


Asunto(s)
Córnea , Sistemas de Liberación de Medicamentos , Humanos , Administración Oftálmica , Administración Tópica , Permeabilidad
9.
Mol Pharm ; 19(1): 258-273, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34928610

RESUMEN

Fungal keratitis is one of the leading causes of ophthalmic mycosis affecting the vision due to corneal scarring. Voriconazole (VRC) is the most preferred azole antifungal agent for treating ocular mycotic infections. Ocular drug delivery is challenging due to the shorter corneal residence time of the formulation requiring frequent administration, leading to poor patient compliance. The present study aimed at improving the solubility, transcorneal permeation, and efficacy of voriconazole via the formation of cyclodextrin-based ternary complexes and incorporation of the complex into mucoadhesive films. A phase solubility study suggested a ∼14-fold improvement in VRC solubility, whereas physicochemical characterization confirmed the inclusion of VRC in the cyclodextrin inner cavity. In silico docking studies were performed to predict the docking conformation and stability of the inclusion complex. Complex-loaded films showed sustained release of voriconazole from the films and improved transcorneal permeation by ∼4-fold with an improved flux of 8.36 µg/(cm2 h) for ternary complex-loaded films compared to 1.86 µg/(cm2 h) for the pure VRC film. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and hen's egg-chorioallantoic membrane test (HET-CAM) assays confirmed that the complexes and ocular films were nonirritant and safe for ocular administration. The antifungal study performed using Aspergillus fumigatus and Fusarium oxysporum suggested improved antifungal activity compared to the pure drug film. In conclusion, the supramolecular cyclodextrin ternary complex proved to be a promising strategy for enhancing the solubility and permeability and augmenting the antifungal activity of voriconazole in the management of fungal keratitis.


Asunto(s)
Antifúngicos/administración & dosificación , Ciclodextrinas , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Fusariosis/tratamiento farmacológico , Fusarium/efectos de los fármacos , Queratitis/tratamiento farmacológico , Voriconazol/administración & dosificación , Administración Oftálmica , Animales , Antifúngicos/uso terapéutico , Córnea/citología , Córnea/efectos de los fármacos , Infecciones Fúngicas del Ojo/microbiología , Fusariosis/microbiología , Cabras , Humanos , Queratitis/microbiología , Solubilidad , Voriconazol/uso terapéutico
10.
Mol Pharm ; 19(1): 274-286, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34877863

RESUMEN

Most common intraocular pressure (IOP) reduction regimens for the management of glaucoma include the topical use of eye drops, a dosage form that is associated with short residence time at the site of action, increased dosing frequency, and reduced patient compliance. In situ gelling nanofiber films comprising poly(vinyl alcohol) and Poloxamer 407 were fabricated via electrospinning for the ocular delivery of timolol maleate (TM), aiming to sustain the IOP-lowering effect of the ß-blocker, compared to conventional eye drops. The electrospinning process was optimized, and the physicochemical properties of the developed formulations were thoroughly investigated. The fiber diameters of the drug-loaded films ranged between 123 and 145 nm and the drug content between 5.85 and 7.83% w/w. Total in vitro drug release from the ocular films was attained within 15 min following first-order kinetics, showing higher apparent permeability (Papp) values across porcine corneas compared to the drug's solution. The fabricated films did not induce any ocular irritation as evidenced by both the hen's egg test on chorioallantoic membrane and the in vivo Draize test. In vivo administration of the ocular films in rabbits induced a faster onset of action and a sustained IOP-lowering effect up to 24 h compared to TM solution, suggesting that the proposed ocular films are promising systems for the sustained topical delivery of TM.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Geles , Presión Intraocular/efectos de los fármacos , Timolol/farmacología , Administración Oftálmica , Antagonistas Adrenérgicos beta/administración & dosificación , Animales , Cromatografía Líquida de Alta Presión , Córnea/efectos de los fármacos , Córnea/metabolismo , Geles/administración & dosificación , Poloxámero , Alcohol Polivinílico , Porcinos , Timolol/administración & dosificación
11.
Mar Drugs ; 20(5)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35621986

RESUMEN

Chitosan (CS) is a linear polysaccharide obtained by the deacetylation of chitin, which, after cellulose, is the second biopolymer most abundant in nature, being the primary component of the exoskeleton of crustaceans and insects. Since joining the pharmaceutical field, in the early 1990s, CS attracted great interest, which has constantly increased over the years, due to its several beneficial and favorable features, including large availability, biocompatibility, biodegradability, non-toxicity, simplicity of chemical modifications, mucoadhesion and permeation enhancer power, joined to its capability of forming films, hydrogels and micro- and nanoparticles. Moreover, its cationic character, which renders it unique among biodegradable polymers, is responsible for the ability of CS to strongly interact with different types of molecules and for its intrinsic antimicrobial, anti-inflammatory and hemostatic activities. However, its pH-dependent solubility and susceptibility to ions presence may represent serious drawbacks and require suitable strategies to be overcome. Presently, CS and its derivatives are widely investigated for a great variety of pharmaceutical applications, particularly in drug delivery. Among the alternative routes to overcome the problems related to the classic oral drug administration, the mucosal route is becoming the favorite non-invasive delivery pathway. This review aims to provide an updated overview of the applications of CS and its derivatives in novel formulations intended for different methods of mucosal drug delivery.


Asunto(s)
Quitosano , Nanopartículas , Quitina , Quitosano/química , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Preparaciones Farmacéuticas
12.
Mar Drugs ; 20(2)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35200680

RESUMEN

Neuroprotection in glaucoma using epoetin beta (EPOß) has yielded promising results. Our team has developed chitosan-hyaluronic acid nanoparticles (CS/HA) designed to carry EPOß into the ocular globe, improving the drug's mucoadhesion and retention time on the ocular surface to increase its bioavailability. In the present in vivo study, we explored the possibility of delivering EPOß to the eye through subconjunctival administration of chitosan-hyaluronic acid-EPOß (CS/HA-EPOß) nanoparticles. Healthy Wistar Hannover rats (n = 21) were split into 7 groups and underwent complete ophthalmological examinations, including electroretinography and microhematocrit evaluations before and after the subconjunctival administrations. CS/HA-EPOß nanoparticles were administered to the right eye (OD), and the contralateral eye (OS) served as control. At selected timepoints, animals from each group (n = 3) were euthanized, and both eyes were enucleated for histological evaluation (immunofluorescence and HE). No adverse ocular signs, no changes in the microhematocrits (≈45%), and no deviations in the electroretinographies in both photopic and scotopic exams were observed after the administrations (p < 0.05). Intraocular pressure remained in the physiological range during the assays (11-22 mmHg). EPOß was detected in the retina by immunofluorescence 12 h after the subconjunctival administration and remained detectable until day 21. We concluded that CS/HA nanoparticles could efficiently deliver EPOß into the retina, and this alternative was considered biologically safe. This nanoformulation could be a promising tool for treating retinopathies, namely optic nerve degeneration associated with glaucoma.


Asunto(s)
Quitosano/química , Eritropoyetina/farmacocinética , Ácido Hialurónico/química , Nanopartículas , Animales , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Eritropoyetina/administración & dosificación , Eritropoyetina/toxicidad , Ojo/metabolismo , Masculino , Ratas , Ratas Wistar , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/toxicidad , Retina/metabolismo , Factores de Tiempo
13.
Molecules ; 27(3)2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35163997

RESUMEN

Conjunctivitis and endogenous bacterial endophthalmitis mostly occurred after ophthalmic surgery. Therefore, the present study aimed to maximize the ocular delivery of ciprofloxacin (CPX) using colloidal lipid-based carrier to control the post-surgical infection. In this study, CPX was formulated as ophthalmic liposomal drops. Two different phospholipids in different ratios were utilized, including phosphatidylcholine (PC) and dimyrestoyl phosphatidylcholine (DMPC). The physiochemical properties of the prepared ophthalmic liposomes were evaluated in terms of particle size, entrapment efficiency, polydispersity index, zeta potential, and cumulative CPX in-vitro release. In addition, the effect of sonication time on particle size and entrapment efficiency of CPX ophthalmic drops was also evaluated. The results revealed that most of the prepared formulations showed particle size in nanometer size range (460-1047 nm) and entrapment efficiency ranging from 36.4-44.7%. The antibacterial activity and minimum inhibitory concentration (MIC) were investigated. Ex vivo antimicrobial effect of promising formulations was carried out against the most common causes of endophthalmitis microorganisms. The pharmacokinetics of the prepared ophthalmic drops were tested in rabbit aqueous humor and compared with commercial CPX ophthalmic drops (Ciloxan®). Observed bacterial suppression was detected in rabbit's eyes conjunctivitis with an optimized formulation A3 compared with the commercial ophthalmic drops. CPX concentration in the aqueous humor was above MIC against tested bacterial strains. The in vivo data revealed that the tested CPX drops showed superiority over the commercial ones with respect to peak aqueous humor concentration, time to reach peak aqueous humor concentration, elimination rate constant, half-life, and relative bioavailability. Based on these results, it was concluded that the prepared ophthalmic formulations significantly enhanced CPX bioavailability compared with the commercial one.


Asunto(s)
Antibacterianos/farmacología , Humor Acuoso/efectos de los fármacos , Ciprofloxacina/farmacología , Ojo/efectos de los fármacos , Lípidos/química , Staphylococcus aureus/efectos de los fármacos , Infección de la Herida Quirúrgica/tratamiento farmacológico , Animales , Manejo de la Enfermedad , Portadores de Fármacos/química , Masculino , Conejos , Infección de la Herida Quirúrgica/microbiología
14.
Exp Eye Res ; 202: 108313, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33080302

RESUMEN

The purpose of this study was to explore the potential of formulating hesperetin into an ophthalmic solution with dipotassium glycyrrhizinate (DG) as a micelle nanocarrier. A DG-based micelle ophthalmic solution encapsulating hesperetin (DG-Hes) was developed and its in vitro/in vivo characterizations were evaluated. The optimal formulation featured a DG/hesperetin (Hes) weight ratio of 12:1 and an encapsulation efficiency of 90.4 ± 1.7%; The optimized DG-Hes was characterized as small uniform spheres with an average micelle size of 70.93 ± 3.41 nm, a polydispersity index of 0.11 ± 0.02, and an electrically negative surface (-36.12 ± 2.79 mV). The DG-Hes ophthalmic solution had good tolerance in rabbit eyes. DG-Hes significantly improved the in vitro passive permeation, ex vivo corneal permeation, and in vivo ocular bioavailability of Hes. DG-Hes showed markedly increases in in vitro antioxidant activity. In vitro antibacterial activity tests revealed a lower minimum inhibitory concentration and lower minimum bactericidal concentration for DG-Hes ophthalmic solution were lower than for free Hes. DG-Hes ophthalmic solution also significantly reduced symptoms of eye infection in the rabbit bacterial keratitis model when compared to a Hes suspension. These results suggest that DG-Hes eye drops may be useful as a new ophthalmic preparation for the treatment of ocular diseases, especially bacterial ophthalmopathy.


Asunto(s)
Úlcera de la Córnea/tratamiento farmacológico , Portadores de Fármacos/química , Infecciones Bacterianas del Ojo/tratamiento farmacológico , Ácido Glicirrínico/química , Hesperidina/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Administración Oftálmica , Animales , Disponibilidad Biológica , Córnea/metabolismo , Úlcera de la Córnea/microbiología , Úlcera de la Córnea/patología , Sistemas de Liberación de Medicamentos , Infecciones Bacterianas del Ojo/microbiología , Infecciones Bacterianas del Ojo/patología , Hesperidina/química , Hesperidina/farmacocinética , Micelas , Microscopía Electrónica de Transmisión , Nanopartículas , Soluciones Oftálmicas , Tamaño de la Partícula , Preparaciones Farmacéuticas/química , Conejos , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Propiedades de Superficie
15.
Mol Pharm ; 18(2): 506-521, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32501716

RESUMEN

Retinal diseases, such as age-related macular degeneration and diabetic retinopathy, are the leading causes of blindness worldwide. The mainstay of treatment for these blinding diseases remains to be surgery, and the available pharmaceutical therapies on the market are limited, partially owing to various biological barriers in hindering the delivery of therapeutics to the retina. The nanoparticulate drug delivery system confers the capability for delivering therapeutics to the specific ocular targets and, hence, potentially revolutionizes the current treatment landscape of retinal diseases. While the research to date indicates the enormous therapeutics potentials of the nanoparticulate delivery systems, the successful translation of these systems from the bench to bedside is challenging and requires a combined understanding of retinal pathology, physiology of the eye, and particle and formulation designs of nanoparticles. To this end, the review begins with an overview of the most prevalent retinal diseases and related pharmacotherapy. Highlights of the current challenges encountered in ocular drug delivery for each administration route are provided, followed by critical appraisal of various nanoparticulate drug delivery systems for the retinal diseases, including their formulation designs, therapeutic merits, limitations, and future direction. It is believed that a greater understanding of the nano-biointeraction in eyes will lead to the development of more sophisticated drug delivery systems for retinal diseases.


Asunto(s)
Ceguera/prevención & control , Nanopartículas/química , Soluciones Oftálmicas/administración & dosificación , Enfermedades de la Retina/tratamiento farmacológico , Administración Intravenosa , Administración Oftálmica , Administración Oral , Animales , Ceguera/etiología , Barrera Hematorretinal/metabolismo , Coroides/metabolismo , Conjuntiva/metabolismo , Córnea/metabolismo , Modelos Animales de Enfermedad , Liberación de Fármacos , Humanos , Soluciones Oftálmicas/farmacocinética , Permeabilidad , Retina/patología , Enfermedades de la Retina/complicaciones , Enfermedades de la Retina/patología , Esclerótica/metabolismo
16.
Mol Pharm ; 18(1): 377-385, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33295773

RESUMEN

RNAi therapy has been developed and explored for treating retinal conditions since last decades. The progression of retinal diseases including the age-related macular degeneration and glaucoma is associated with the malfunction of specific retinal cells. Therefore, to deliver therapeutic RNAi to selective retinal tissues with desired gene downregulation is crucial for the treatment of retinal diseases via RNAi therapy. Lipid-based nanoparticles are potent delivery vectors for RNAi therapeutics to achieve high gene silencing efficiency. The surface charge has been demonstrated to affect the intraocular behaviors and retinal distribution of intravitreally administered lipid nanoparticles (LNPs), which could subsequently affect the gene knockdown efficiency in specific retinal layers. Here, we evaluated three charged LNPs for their ability to deliver siRNA and facilitate gene downregulation both in vitro and in vivo. LNPs with different surface charges ranging from neutral to positive (5-34 mV) were successfully formulated. All types of charged LNPs managed gene knockdown in both mammalian cell line and primary neurons. At 48 h post intravitreal injection, neutral LNPs (6.2 mV) and mildly positive LNPs (15.9 mV) mediated limited retinal gene suppression (<10%) and the more positive LNPs (31.2 mV) led to ∼25% gene suppression in the retinal ganglion cell (RGC) layer. No gene silencing in the retinal pigmented epithelium layer was facilitated by any LNPs independent of the charges. In summary, this study has shown that positive LNPs with an optimized charge managed specific gene downregulation in the RGC layer. These RNAi carriers hold potential for the treatment of RGC-associated retinal diseases.


Asunto(s)
Lípidos/química , Nanopartículas/administración & dosificación , Nanopartículas/química , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/química , Células Ganglionares de la Retina/efectos de los fármacos , Animales , Silenciador del Gen/efectos de los fármacos , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Interferencia de ARN/efectos de los fármacos , Tratamiento con ARN de Interferencia/métodos
17.
Saudi Pharm J ; 29(6): 576-585, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34194264

RESUMEN

The goal of this research was to prepare and characterize nanonized particles of the antifungal drug, fluconazole (FLZ) using antisolvent precipitation nanonization technique to improve its ocular permeation. The impact of various concentrations of different stabilizers, namely Pluronic F-127 (PL F 127), Kollicoat IR (KL), hydroxypropyl methylcellulose E3 (HPMC), xanthan gum (XG), polyvinyl pyrrolidone K30 (PVP), and sodium lauryl sulfate (SLS) upon the resulting nanoparticles was investigated. Additionally, the ex vivo release of the FLZ nanonized particles from ophthalmic gel bases was studied by using goat cornea, and the ocular pharmacokinetics of appropriate ophthalmic gel base containing optimized drug nanoparticle formula compared to the untreated drug were studied in rabbits. FLZ nanoparticles were successfully prepared with different concentrations of stabilizers. However, the effects of these stabilizers on nanoparticle size and zeta potential values varied according to the concentration and type of stabilizer used. Based on differential scanning calorimetry, the drug was in its amorphous state in the tested nanoparticle formulations. The results of ex vivo ocular diffusion of the FLZ nanoparticle gel formulations revealed an improvement compared to that with the FLZ untreated gel. Nanoparticle formula (F3) prepared by using 5% PL F127 showed small particle size (352 ± 6.1 nm) with zeta potential value of -18.3 mV with highest ex vivo release rate from goat cornea (100% after 6 h). Moreover, the AUC0-8h from ocular application of FLZ from sodium alginate gel containing nanoparticle formula F3 was 1.4-fold higher than that after its administration in the untreated formula. Based on our findings, the ophthalmic gel formulations containing FLZ nanoparticles enhanced drug corneal permeation and improved the ocular pharmacokinetic parameters.

18.
Nanomedicine ; 26: 102181, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32169399

RESUMEN

As vascular endothelial growth factor in choroidal neovascularization is a major cause of visual loss of the elderlies and diabetics, gene therapy may offer an alternative treatment. However, siRNA instability and inefficient delivery are the main hindrances. To address this issue, we developed a nano-sized siRNA loaded therapeutic delivery system. The chitosan-hyaluronic acid nano-polyplexes were prepared by the modified ionic gelation method. The obtained nano-polyplex with a narrow size distribution, indicated no significant cytotoxicity in the MTT test and proper cellular uptake in confocal images. The RT-PCR analysis indicated remarkable gene silencing on HUVEC cells. The intravitreally administered nano-polyplexes in rabbits overcame both the vitreous and retina barriers and reached the posterior tissues efficiently. Intravitreal injections of the VEGFR-2 siRNA nano-polyplexes significantly reduced the size of the laser-induced choroidal neovascularization, compared to the control group. Consequently, the developed formulation can be a promising candidate for intravitreal delivery of siRNA.


Asunto(s)
Quitosano/farmacología , Neovascularización Coroidal/tratamiento farmacológico , ARN Interferente Pequeño/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Quitosano/química , Neovascularización Coroidal/genética , Neovascularización Coroidal/patología , Composición de Medicamentos , Sistemas de Liberación de Medicamentos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Inyecciones Intravítreas , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores
19.
Drug Dev Ind Pharm ; 46(5): 806-813, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32281424

RESUMEN

Objective: Glaucoma is a leading cause of irreversible blindness worldwide. Whereas latanoprost is one of the most effective drugs in glaucoma treatment, its eye drops need frequent application leading to lack of patient adherence. This study aimed to develop a patient-friendly niosome-in-gel system for the sustained ocular delivery of latanoprost.Methods: Niosomes were prepared by the reverse-phase evaporation technique and optimized for different formulation parameters, such as cholesterol/surfactant and drug/surfactant ratios. Selected niosomal formulations were incorporated into different gels and their viscosity and drug release kinetics were evaluated. Optimal niosomal gel was evaluated in vivo in rabbits' eyes for irritation potential and ability to reduce intraocular pressure.Results: FT-IR studies showed that there were nonspecific interactions between latanoprost and different niosomal components leading to drug encapsulation efficiency ≥88%. Latanoprost encapsulation efficiency increased with the drug/surfactant ratio and encapsulation efficiency ∼98% was obtained at a ratio of 50%. Pluronic® F127 had the best ability to sustain drug release from the niosomes. In rabbits' eyes, this gel was free of toxic and irritant effects and reduced intraocular pressure over a period of three days, which was significantly longer than that of commercial latanoprost eye drops.Conclusion: Latanoprost niosomal Pluronic® F127 gel may find applications in glaucoma management.


Asunto(s)
Preparaciones de Acción Retardada/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Glaucoma/tratamiento farmacológico , Latanoprost/administración & dosificación , Absorción Ocular/efectos de los fármacos , Soluciones Oftálmicas/administración & dosificación , Administración Oftálmica , Animales , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/metabolismo , Glaucoma/metabolismo , Glaucoma/patología , Latanoprost/química , Latanoprost/metabolismo , Liposomas , Masculino , Absorción Ocular/fisiología , Soluciones Oftálmicas/química , Soluciones Oftálmicas/metabolismo , Ratas
20.
Pharm Dev Technol ; 25(1): 116-132, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31642717

RESUMEN

Controlled/sustained delivery systems have been developed rapidly which show the ability to overcome the obstacles of traditional delivery systems. Daily development of biomedical and biomaterial sciences has brought more attention to the implantable delivery systems. As a result, these systems have found their position in the medical field since they were introduced. The advances in the polymeric science along with the other fields, make the production of a wide variety of implantable systems, possible. The influence of these systems in medical field could not be denied Here', the pharmaceutical applications which have been mostly focused on, are discussed. Since these systems have proven to be beneficial, researchers are trying to adjust their defects to the desired properties. Doing so, the path that implantable delivery systems have crossed so far should be studied, and that's the aim of this review. In the present report, the advantages of these systems in chemotherapeutic, contraceptive, neuropsychology, pain management, peptide delivery, ocular delivery, cardiovascular, orthopedic, and dental fields have been evaluated.


Asunto(s)
Preparaciones de Acción Retardada/química , Animales , Sistemas de Liberación de Medicamentos/métodos , Humanos , Polímeros/química , Prótesis e Implantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA