Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mol Cell ; 80(4): 621-632.e6, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33152269

RESUMEN

Mitochondria are highly dynamic organelles that continuously grow, divide, and fuse. The division of mitochondria is crucial for human health. During mitochondrial division, the mechano-guanosine triphosphatase (GTPase) dynamin-related protein (Drp1) severs mitochondria at endoplasmic reticulum (ER)-mitochondria contact sites, where peripheral ER tubules interact with mitochondria. Here, we report that Drp1 directly shapes peripheral ER tubules in human and mouse cells. This ER-shaping activity is independent of GTP hydrolysis and located in a highly conserved peptide of 18 amino acids (termed D-octadecapeptide), which is predicted to form an amphipathic α helix. Synthetic D-octadecapeptide tubulates liposomes in vitro and the ER in cells. ER tubules formed by Drp1 promote mitochondrial division by facilitating ER-mitochondria interactions. Thus, Drp1 functions as a two-in-one protein during mitochondrial division, with ER tubulation and mechano-GTPase activities.


Asunto(s)
Dinaminas/metabolismo , Dinaminas/fisiología , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Mitocondrias/metabolismo , Animales , Dinaminas/genética , Retículo Endoplásmico/efectos de los fármacos , GTP Fosfohidrolasas/genética , Humanos , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Dinámicas Mitocondriales , Oligopéptidos/farmacología
2.
Mol Cell ; 76(5): 811-825.e14, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31628041

RESUMEN

Physical contact between organelles is vital to the function of eukaryotic cells. Lipid droplets (LDs) are dynamic organelles specialized in lipid storage that interact physically with mitochondria in several cell types. The mechanisms coupling these organelles are, however, poorly understood, and the cell-biological function of their interaction remains largely unknown. Here, we discover in adipocytes that the outer mitochondrial membrane protein MIGA2 links mitochondria to LDs. We identify an amphipathic LD-targeting motif and reveal that MIGA2 binds to the membrane proteins VAP-A or VAP-B in the endoplasmic reticulum (ER). We find that in adipocytes MIGA2 is involved in promoting triglyceride (TAG) synthesis from non-lipid precursors. Our data indicate that MIGA2 links reactions of de novo lipogenesis in mitochondria to TAG production in the ER, thereby facilitating efficient lipid storage in LDs. Based on its presence in many tissues, MIGA2 is likely critical for lipid and energy homeostasis in a wide spectrum of cell types.


Asunto(s)
Adipocitos/metabolismo , Lipogénesis/fisiología , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Células 3T3 , Adipocitos/fisiología , Animales , Células COS , Diferenciación Celular/fisiología , Chlorocebus aethiops , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Gotas Lipídicas/metabolismo , Lipogénesis/genética , Proteínas de la Membrana/fisiología , Ratones , Mitocondrias/metabolismo , Proteínas Mitocondriales/fisiología , Triglicéridos/biosíntesis , Proteínas de Transporte Vesicular/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(39): e2209823119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36122245

RESUMEN

Autophagosomes are unique organelles that form de novo as double-membrane vesicles engulfing cytosolic material for destruction. Their biogenesis involves membrane transformations of distinctly shaped intermediates whose ultrastructure is poorly understood. Here, we combine cell biology, correlative cryo-electron tomography (cryo-ET), and extensive data analysis to reveal the step-by-step structural progression of autophagosome biogenesis at high resolution directly within yeast cells. The analysis uncovers an unexpectedly thin intermembrane distance that is dilated at the phagophore rim. Mapping of individual autophagic structures onto a timeline based on geometric features reveals a dynamical change of membrane shape and curvature in growing phagophores. Moreover, our tomograms show the organelle interactome of growing autophagosomes, highlighting a polar organization of contact sites between the phagophore and organelles, such as the vacuole and the endoplasmic reticulum (ER). Collectively, these findings have important implications for the contribution of different membrane sources during autophagy and for the forces shaping and driving phagophores toward closure without a templating cargo.


Asunto(s)
Autofagosomas , Macroautofagia , Vacuolas , Autofagosomas/metabolismo , Membrana Celular , Retículo Endoplásmico/metabolismo , Saccharomyces cerevisiae , Vacuolas/metabolismo
4.
Int J Mol Sci ; 21(21)2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142798

RESUMEN

Organelle intercommunication represents a wide area of interest. Over the last few decades, increasing evidence has highlighted the importance of organelle contact sites in many biological processes including Ca2+ signaling, lipid biosynthesis, apoptosis, and autophagy but also their involvement in pathological conditions. ER-mitochondria tethering is one of the most investigated inter-organelle communications and it is differently modulated in response to several cellular conditions including, but not limited to, starvation, Endoplasmic Reticulum (ER) stress, and mitochondrial shape modifications. Despite many studies aiming to understand their functions and how they are perturbed under different conditions, approaches to assess organelle proximity are still limited. Indeed, better visualization and characterization of contact sites remain a fascinating challenge. The aim of this review is to summarize strengths and weaknesses of the available methods to detect and quantify contact sites, with a main focus on ER-mitochondria tethering.


Asunto(s)
Apoptosis , Autofagia , Señalización del Calcio , Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Animales , Humanos
5.
Adv Exp Med Biol ; 993: 213-216, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28900916

RESUMEN

In the title of this part of the book, the tail is wagging not just in a single dog but multiple dogs; in other words, a single process SOCE (tail) somehow involves a cross talk of (wagging) large and powerful organelle and cellular compartments (dogs). So how is this possible? Is this really necessary? Is the title actually appropriate?SOCE is a rather special process, it allows efficient signaling based on a ubiquitous second messenger (Ca2+) in multiple cell and tissue types, it has specific signaling modality (i.e., some downstream reactions depend specifically on SOCE and not just on global Ca2+ increase), it is vital for the normal functioning of multiple types of cells and tissues, and when misregulated it induces important pathological processes. The reader hopefully agree that such an important "tail" is more appropriate for a kangaroo than for a Chihuahua and that it has awesome wagging capacity.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Sistemas de Mensajero Secundario/fisiología , Animales , Humanos
6.
Biochem Soc Trans ; 44(2): 467-73, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27068956

RESUMEN

Effective cellular function requires both compartmentalization of tasks in space and time, and coordination of those efforts. The endoplasmic reticulum's (ER) expansive and ramifying structure makes it ideally suited to serve as a regulatory platform for organelle-organelle communication through membrane contacts. These contact sites consist of two membranes juxtaposed at a distance less than 30 nm that mediate the exchange of lipids and ions without the need for membrane fission or fusion, a process distinct from classical vesicular transport. Membrane contact sites are positioned by organelle-specific membrane-membrane tethering proteins and contain a growing number of additional proteins that organize information transfer to shape membrane identity. Here we briefly review the role of ER-containing membrane junctions in two important cellular functions: calcium signalling and phosphoinositide processing.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Orgánulos/metabolismo , Fosfatidilinositoles/metabolismo
7.
ACS Appl Mater Interfaces ; 15(3): 3882-3893, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36629473

RESUMEN

The catalytic and antioxidant properties of platinum nanoparticles (PtNPs) make them promising candidates for several applications in nanomedicine. However, an open issue, still shared among most nanomaterials, is the understanding on how internalized PtNPs, which are confined within endo-lysosomal compartments, can exert their activities. To address this problem, here we study the protective effect of 5 nm PtNPs on a human hepatic (HepG2) cell line exposed to dichlorodiphenylethylene (DDE) as a model of oxidative stress. Our results indicate that PtNPs are very efficient to reduce DDE-induced damage in HepG2 cells, in an extent that depends on DDE dose. PtNPs can contrast the unbalance of mitochondrial dynamics induced by DDE and increase the expression of the SOD2 mitochondrial enzyme that recovers cells from oxidative stress. Interestingly, in cells treated with PtNPs─alone or in combination with DDE─mitochondria form contact sites with a rough endoplasmic reticulum and endo-lysosomes containing nanoparticles. These findings indicate that the protective capability of PtNPs, through their intrinsic antioxidant properties and modulating mitochondrial functionality, is mediated by an inter-organelle crosstalk. This study sheds new light about the protective action mechanisms of PtNPs and discloses a novel nano-biointeraction mechanism at the intracellular level, modulated by inter-organelle communication and signaling.


Asunto(s)
Antioxidantes , Nanopartículas del Metal , Humanos , Antioxidantes/farmacología , Platino (Metal)/farmacología , Transducción de Señal , Mitocondrias/metabolismo
8.
Contact (Thousand Oaks) ; 5: 25152564221135748, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37366505

RESUMEN

To maintain cellular homeostasis and to coordinate the proper response to a specific stimulus, information must be integrated throughout the cell in a well-organized network, in which organelles are the crucial nodes and membrane contact sites are the main edges. Membrane contact sites are the cellular subdomains where two or more organelles come into close apposition and interact with each other. Even though many inter-organelle contacts have been identified, most of them are still not fully characterized, therefore their study is an appealing and expanding field of research. Thanks to significant technological progress, many tools are now available or are in rapid development, making it difficult to choose which one is the most suitable for answering a specific biological question. Here we distinguish two different experimental approaches for studying inter-organelle contact sites. The first one aims to morphologically characterize the sites of membrane contact and to identify the molecular players involved, relying mainly on the application of biochemical and electron microscopy (EM)-related methods. The second approach aims to understand the functional importance of a specific contact, focusing on spatio-temporal details. For this purpose, proximity-driven fluorescent probes are the experimental tools of choice, since they allow the monitoring and quantification of membrane contact sites and their dynamics in living cells under different cellular conditions or upon different stimuli. In this review, we focus on these tools with the purpose of highlighting their great versatility and how they can be applied in the study of membrane contacts. We will extensively describe all the different types of proximity-driven fluorescent tools, discussing their benefits and drawbacks, ultimately providing some suggestions to choose and apply the appropriate methods on a case-to-case basis and to obtain the best experimental outcomes.

9.
Cells ; 11(10)2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-35626680

RESUMEN

The study of organelle contact sites has received a great impulse due to increased interest in the understanding of their involvement in many disease conditions. Split-GFP-based contact sites (SPLICS) reporters emerged as essential tools to easily detect changes in a wide range of organelle contact sites in cultured cells and in vivo, e.g., in zebrafish larvae. We report here on the generation of a new vector library of SPLICS cloned into a piggyBac system for stable and inducible expression of the reporters in a cell line of interest to overcome any potential weakness due to variable protein expression in transient transfection studies. Stable HeLa cell lines expressing SPLICS between the endoplasmic reticulum (ER) and mitochondria (MT), the ER and plasma membrane (PM), peroxisomes (PO) and ER, and PO and MT, were generated and tested for their ability to express the reporters upon treatment with doxycycline. Moreover, to take advantage of these cellular models, we decided to follow the behavior of different membrane contact sites upon modulating cholesterol traffic. Interestingly, we found that the acute pharmacological inhibition of the intracellular cholesterol transporter 1 (NPC1) differently affects membrane contact sites, highlighting the importance of different interfaces for cholesterol sensing and distribution within the cell.


Asunto(s)
Retículo Endoplásmico , Pez Cebra , Animales , Colesterol/metabolismo , Retículo Endoplásmico/metabolismo , Células HeLa , Humanos , Análisis Espacio-Temporal , Pez Cebra/metabolismo
10.
Trends Neurosci ; 45(4): 312-322, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35249745

RESUMEN

Neurons rely heavily on properly regulated mitochondrial and lysosomal homeostasis, with multiple neurodegenerative diseases linked to dysfunction in these two organelles. Interestingly, mitochondria-lysosome membrane contact sites have been identified as a key pathway mediating their crosstalk in neurons. Recent studies have further elucidated the regulation of mitochondria-lysosome contact dynamics via distinct tethering/untethering protein machinery. Moreover, this pathway has been shown to have additional functions in regulating organelle network dynamics and metabolite transfer between lysosomes and mitochondria. In this review, we highlight recent advances in the field of mitochondria-lysosome contact sites and their misregulation across multiple neurodegenerative disorders, which further underscore a potential role for this pathway in neuronal homeostasis and disease.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Membranas Intracelulares/metabolismo , Lisosomas/metabolismo , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo
11.
Elife ; 112022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36448541

RESUMEN

Mitochondria are dynamic organelles that undergo cycles of fission and fusion at a unified platform defined by endoplasmic reticulum (ER)-mitochondria membrane contact sites (MCSs). These MCSs or nodes co-localize fission and fusion machinery. We set out to identify how ER-associated mitochondrial nodes can regulate both fission and fusion machinery assembly. We have used a promiscuous biotin ligase linked to the fusion machinery, Mfn1, and proteomics to identify an ER membrane protein, ABHD16A, as a major regulator of node formation. In the absence of ABHD16A, fission and fusion machineries fail to recruit to ER-associated mitochondrial nodes, and fission and fusion rates are significantly reduced. ABHD16A contains an acyltransferase motif and an α/ß hydrolase domain, and point mutations in critical residues of these regions fail to rescue the formation of ER-associated mitochondrial hot spots. These data suggest a mechanism whereby ABHD16A functions by altering phospholipid composition at ER-mitochondria MCSs. Our data present the first example of an ER membrane protein that regulates the recruitment of both fission and fusion machineries to mitochondria.


Asunto(s)
Hidrolasas , Fosfolípidos , Proteómica , Proteínas de la Membrana
12.
Cell Calcium ; 94: 102343, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33418313

RESUMEN

In the last decades, the communication between the Endoplasmic reticulum (ER) and mitochondria has obtained great attention: mitochondria-associated membranes (MAMs), which represent the contact sites between the two organelles, have indeed emerged as central hub involved in different fundamental cell processes, such as calcium signalling, apoptosis, autophagy and lipid biosynthesis. Consistently, dysregulation of ER-mitochondria crosstalk has been associated with different pathological conditions, ranging from diabetes to cancer and neurodegenerative diseases. In this review, we will try to summarize the current knowledge on MAMs' structure and functions in health and their relevance for human diseases.


Asunto(s)
Membranas Mitocondriales/fisiología , Animales , Autofagia , Enfermedad , Retículo Endoplásmico/metabolismo , Salud , Humanos , Lípidos/química , Mitocondrias/metabolismo
13.
Front Cell Dev Biol ; 9: 653828, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34095118

RESUMEN

It has become apparent that our textbook illustration of singular isolated organelles is obsolete. In reality, organelles form complex cooperative networks involving various types of organelles. Light microscopic and ultrastructural studies have revealed that mitochondria-endoplasmic reticulum (ER) contact sites (MERCSs) are abundant in various tissues and cell types. Indeed, MERCSs have been proposed to play critical roles in various biochemical and signaling functions such as Ca2+ homeostasis, lipid transfer, and regulation of organelle dynamics. While numerous proteins involved in these MERCS-dependent functions have been reported, how they coordinate and cooperate with each other has not yet been elucidated. In this review, we summarize the functions of mammalian proteins that localize at MERCSs and regulate their formation. We also discuss potential roles of the MERCS proteins in regulating multiple organelle contacts.

14.
Curr Opin Cell Biol ; 71: 69-76, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33706236

RESUMEN

The dynamics and interactions of cellular organelles underlie many aspects of cellular functioning. Until recently, assessment of organelle dynamics has been primarily observational or required whole-cell perturbations to assess the implications of altered organelle motility and positioning. However, thanks to recently developed and optimized intervention strategies, we now have the ability to control organelles in their unperturbed state, altering organelle positioning, membrane trafficking pathways, as well as organelle interactions. This can be performed both globally and locally, giving fine control over the range, reversibility, and extent of organelle dynamics. Here, we describe how these tools are currently used for controlling organelles and give insight into the exciting future of this emerging field.


Asunto(s)
Orgánulos
15.
Front Cell Dev Biol ; 9: 789959, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34926468

RESUMEN

Organelles cooperate with each other to regulate vital cellular homoeostatic functions. This occurs through the formation of close connections through membrane contact sites. Mitochondria-Endoplasmic-Reticulum (ER) contact sites (MERCS) are one of such contact sites that regulate numerous biological processes by controlling calcium and metabolic homeostasis. However, the extent to which contact sites shape cellular biology and the underlying mechanisms remain to be fully elucidated. A number of biochemical and imaging approaches have been established to address these questions, resulting in the identification of a number of molecular tethers between mitochondria and the ER. Among these techniques, fluorescence-based imaging is widely used, including analysing signal overlap between two organelles and more selective techniques such as in-situ proximity ligation assay (PLA). While these two techniques allow the detection of endogenous proteins, preventing some problems associated with techniques relying on overexpression (FRET, split fluorescence probes), they come with their own issues. In addition, proper image analysis is required to minimise potential artefacts associated with these methods. In this review, we discuss the protocols and outline the limitations of fluorescence-based approaches used to assess MERCs using endogenous proteins.

16.
Artículo en Inglés | MEDLINE | ID: mdl-34118431

RESUMEN

Cholesterol is an essential component of eukaryotic cellular membranes. Information about its subcellular localization and transport pathways inside cells are key for the understanding and treatment of cholesterol-related diseases. In this review we give an overview over the most commonly used methods that contributed to our current understanding of subcellular cholesterol localization and transport routes. First, we discuss methods that provide insights into cholesterol metabolism based on readouts of downstream effects such as esterification. Subsequently, we focus on the use of cholesterol-binding molecules as probes that facilitate visualization and quantification of sterols inside of cells. Finally, we explore different analogues of cholesterol which, when taken up by living cells, are integrated and transported in a similar fashion as endogenous sterols. Taken together, we highlight the challenges and advantages of each method such that researchers studying aspects of cholesterol transport may choose the most pertinent approach for their problem.


Asunto(s)
Colesterol/metabolismo , Animales , Transporte Biológico , Humanos
17.
Methods Mol Biol ; 2275: 363-378, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34118050

RESUMEN

In the last decades, membrane contact sites (MCSs) have been the object of intense investigation in different fields of cell physiology and pathology and their importance for the correct functioning of the cell is now widely recognized. MCS between any known intercellular organelles, including endoplasmic reticulum (ER), mitochondria, Golgi, endosomes, peroxisomes, lysosomes, lipid droplets, and the plasma membrane (PM), have been largely documented and in some cases the molecules responsible for the tethering also identified. They represent specific membrane hubs where a tightly coordinated exchange of ions, lipids, nutrients, and factors required to maintain proper cellular homeostasis takes place. Their delicate, dynamic, and sometimes elusive nature prevented and/or delayed the development of tools to easily image interorganelle proximity under physiological conditions and in living organisms. Nowadays, this aspect received great momentum due to the finding that MCSs' dysregulation is involved in several pathological conditions. We have recently developed modular, split-GFP-based contact site sensors (SPLICS) engineered to fluoresce when homo- and heterotypic juxtapositions between ER and mitochondria occur over a range of specific distances. Here we describe in detail, by highlighting strengths and weaknesses, the use and the application of these novel genetically encoded SPLICS sensors and how to properly quantify short- and long-range ER-mitochondria interactions.


Asunto(s)
Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Mitocondrias/metabolismo , Células HeLa , Humanos , Membranas Mitocondriales/metabolismo , Transporte de Proteínas
18.
Protein Sci ; 29(6): 1269-1284, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32056317

RESUMEN

The orchestration of mitochondria within the cell represents a critical aspect of cell biology. At the center of this process is the outer mitochondrial membrane protein, Miro. Miro coordinates diverse cellular processes by regulating connections between organelles and the cytoskeleton that range from mediating contacts between the endoplasmic reticulum and mitochondria to the regulation of both actin and microtubule motor proteins. Recently, a number of cell biological, biochemical, and protein structure studies have helped to characterize the myriad roles played by Miro. In addition to answering questions regarding Miro's function, these studies have opened the door to new avenues in the study of Miro in the cell. This review will focus on summarizing recent findings for Miro's structure, function, and activity while highlighting key questions that remain unanswered.


Asunto(s)
Mitocondrias/metabolismo , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Humanos , Mitocondrias/química , Proteínas Mitocondriales/química , Modelos Moleculares , Proteínas de Unión al GTP rho/química , Proteínas de Unión al GTP rho/metabolismo
19.
Methods Cell Biol ; 155: 33-44, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32183966

RESUMEN

Organelles within cells are interconnected by physical associations or contact sites. In the last decade, many reports have shown that these interactions are functional domains that maintain cellular homeostasis. One of the best studied interactions is between endoplasmic reticulum (ER) and mitochondria via mitochondria-associated membranes or MAMs. MAMs are lipid rafts in the ER in close apposition to mitochondria, where multiple enzymatic activities converge to coordinately regulate cellular functions such as: the import of phosphatidylserine into mitochondria from the ER for decarboxylation to phosphatidylethanolamine, cholesterol esterification, calcium signaling, mitochondrial shape and motility, autophagy and apoptosis. In this chapter, we describe and discuss some of the methods to isolate and assay this interesting cellular region.


Asunto(s)
Técnicas Citológicas/métodos , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Mitocondrias/metabolismo , Animales , Centrifugación por Gradiente de Densidad , Humanos , Microdominios de Membrana/metabolismo
20.
Front Neurosci ; 14: 48, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32116502

RESUMEN

The physical continuity of axons over long cellular distances poses challenges for their maintenance. One organelle that faces this challenge is endoplasmic reticulum (ER); unlike other intracellular organelles, this forms a physically continuous network throughout the cell, with a single membrane and a single lumen. In axons, ER is mainly smooth, forming a tubular network with occasional sheets or cisternae and low amounts of rough ER. It has many potential roles: lipid biosynthesis, glucose homeostasis, a Ca2+ store, protein export, and contacting and regulating other organelles. This tubular network structure is determined by ER-shaping proteins, mutations in some of which are causative for neurodegenerative disorders such as hereditary spastic paraplegia (HSP). While axonal ER shares many features with the tubular ER network in other contexts, these features must be adapted to the long and narrow dimensions of axons. ER appears to be physically continuous throughout axons, over distances that are enormous on a subcellular scale. It is therefore a potential channel for long-distance or regional communication within neurons, independent of action potentials or physical transport of cargos, but involving its physiological roles such as Ca2+ or organelle homeostasis. Despite its apparent stability, axonal ER is highly dynamic, showing features like anterograde and retrograde transport, potentially reflecting continuous fusion and breakage of the network. Here we discuss the transport processes that must contribute to this dynamic behavior of ER. We also discuss the model that these processes underpin a homeostatic process that ensures both enough ER to maintain continuity of the network and repair breaks in it, but not too much ER that might disrupt local cellular physiology. Finally, we discuss how failure of ER organization in axons could lead to axon degenerative diseases, and how a requirement for ER continuity could make distal axons most susceptible to degeneration in conditions that disrupt ER continuity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA