Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 406
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(10): e2220131120, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36848575

RESUMEN

Hydroperoxides are formed in the atmospheric oxidation of volatile organic compounds, in the combustion autoxidation of fuel, in the cold environment of the interstellar medium, and also in some catalytic reactions. They play crucial roles in the formation and aging of secondary organic aerosols and in fuel autoignition. However, the concentration of organic hydroperoxides is seldom measured, and typical estimates have large uncertainties. In this work, we developed a mild and environmental-friendly method for the synthesis of alkyl hydroperoxides (ROOH) with various structures, and we systematically measured the absolute photoionization cross-sections (PICSs) of the ROOHs using synchrotron vacuum ultraviolet-photoionization mass spectrometry (SVUV-PIMS). A chemical titration method was combined with an SVUV-PIMS measurement to obtain the PICS of 4-hydroperoxy-2-pentanone, a typical molecule for combustion and atmospheric autoxidation ketohydroperoxides (KHPs). We found that organic hydroperoxide cations are largely dissociated by loss of OOH. This fingerprint was used for the identification and accurate quantification of the organic peroxides, and it can therefore be used to improve models for autoxidation chemistry. The synthesis method and photoionization dataset for organic hydroperoxides are useful for studying the chemistry of hydroperoxides and the reaction kinetics of the hydroperoxy radicals and for developing and evaluating kinetic models for the atmospheric autoxidation and combustion autoxidation of the organic compounds.

2.
Proc Natl Acad Sci U S A ; 119(43): e2208121119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36269861

RESUMEN

Secondary organic aerosol (SOA) plays a critical, yet uncertain, role in air quality and climate. Once formed, SOA is transported throughout the atmosphere and is exposed to solar UV light. Information on the viscosity of SOA, and how it may change with solar UV exposure, is needed to accurately predict air quality and climate. However, the effect of solar UV radiation on the viscosity of SOA and the associated implications for air quality and climate predictions is largely unknown. Here, we report the viscosity of SOA after exposure to UV radiation, equivalent to a UV exposure of 6 to 14 d at midlatitudes in summer. Surprisingly, UV-aging led to as much as five orders of magnitude increase in viscosity compared to unirradiated SOA. This increase in viscosity can be rationalized in part by an increase in molecular mass and oxidation of organic molecules constituting the SOA material, as determined by high-resolution mass spectrometry. We demonstrate that UV-aging can lead to an increased abundance of aerosols in the atmosphere in a glassy solid state. Therefore, UV-aging could represent an unrecognized source of nuclei for ice clouds in the atmosphere, with important implications for Earth's energy budget. We also show that UV-aging increases the mixing times within SOA particles by up to five orders of magnitude throughout the troposphere with important implications for predicting the growth, evaporation, and size distribution of SOA, and hence, air pollution and climate.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Luz Solar , Hielo , Aerosoles/química , Atmósfera/química
3.
Proc Natl Acad Sci U S A ; 119(38): e2205610119, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36095180

RESUMEN

Biomass burning organic aerosol (BBOA) in the atmosphere contains many compounds that absorb solar radiation, called brown carbon (BrC). While BBOA is in the atmosphere, BrC can undergo reactions with oxidants such as ozone which decrease absorbance, or whiten. The effect of temperature and relative humidity (RH) on whitening has not been well constrained, leading to uncertainties when predicting the direct radiative effect of BrC on climate. Using an aerosol flow-tube reactor, we show that the whitening of BBOA by oxidation with ozone is strongly dependent on RH and temperature. Using a poke-flow technique, we show that the viscosity of BBOA also depends strongly on these conditions. The measured whitening rate of BrC is described well with the viscosity data, assuming that the whitening is due to oxidation occurring in the bulk of the BBOA, within a thin shell beneath the surface. Using our combined datasets, we developed a kinetic model of this whitening process, and we show that the lifetime of BrC is 1 d or less below ∼1 km in altitude in the atmosphere but is often much longer than 1 d above this altitude. Including this altitude dependence of the whitening rate in a chemical transport model causes a large change in the predicted warming effect of BBOA on climate. Overall, the results illustrate that RH and temperature need to be considered to understand the role of BBOA in the atmosphere.


Asunto(s)
Atmósfera , Biomasa , Carbono , Atmósfera/química , Carbono/análisis , Ozono
4.
Environ Sci Technol ; 58(3): 1589-1600, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38154035

RESUMEN

Hydroxymethanesulfonate (HMS) has been found to be an abundant organosulfur aerosol compound in the Beijing-Tianjin-Hebei (BTH) region with a measured maximum daily mean concentration of up to 10 µg per cubic meter in winter. However, the production medium of HMS in aerosols is controversial, and it is unknown whether chemical transport models are able to capture the variations of HMS during individual haze events. In this work, we modify the parametrization of HMS chemistry in the nested-grid GEOS-Chem chemical transport model, whose simulations provide a good account of the field measurements during winter haze episodes. We find the contribution of the aqueous aerosol pathway to total HMS is about 36% in winter in Beijing, due primarily to the enhancement effect of the ionic strength on the rate constants of the reaction between dissolved formaldehyde and sulfite. Our simulations suggest that the HMS-to-inorganic sulfate ratio will increase from the baseline of 7% to 13% in the near future, given the ambitious clean air and climate mitigation policies for the BTH region. The more rapid reductions in emissions of SO2 and NOx compared to NH3 alter the atmospheric acidity, which is a critical factor leading to the rising importance of HMS in particulate sulfur species.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Beijing , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Material Particulado/análisis , Monitoreo del Ambiente , China , Aerosoles/análisis , Agua
5.
Environ Sci Technol ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231115

RESUMEN

Limonene, a key volatile chemical product (VCP) commonly found in personal care and cleaning agents, is emerging as a major indoor air pollutant. Recently, elevated levels of reactive chlorine species during bleach cleaning and disinfection have been reported to increase indoor oxidative capacity. However, incomplete knowledge of the indoor transformation of limonene, especially the missing chlorine chemistry, poses a barrier to evaluating the environmental implications associated with the concurrent use of cleaning agents and disinfectants. Here, we investigated the reaction mechanisms of chlorinated limonene peroxy radicals (Cl-lim-RO2•), key intermediates in determining the chlorine chemistry of limonene, and toxicity of transformation products (TPs) using quantum chemical calculations and toxicology modeling. The results indicate that Cl-lim-RO2• undergoes a concerted autoxidation process modulated by RO2• and alkoxy radicals (RO•), particularly emphasizing the importance of RO• isomerization. Following this generalized autoxidation mechanism, Cl-lim-RO2• can produce low-volatility precursors of secondary organic aerosols. Toxicological findings further indicate that the majority of TPs exhibit increased respiratory toxicity, mutagenicity, and eye/skin irritation compared to limonene, presenting an occupational hazard for indoor occupants. The proposed near-explicit reaction mechanism of chlorine-initiated limonene significantly enhances our current understanding of both RO2• and RO• chemistry while also highlighting the health risks associated with the concurrent use of cleaning agents and disinfectants.

6.
Environ Sci Technol ; 58(25): 11074-11083, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38869056

RESUMEN

The contribution of volatile chemical products (VCPs) to ambient air pollution has increased following decades of regulating combustion sources. There is a research gap concerning the impact of indoor physicochemical phenomena on VCP emissions. In this work, a bottom-up speciated VCP emission inventory with indoor-outdoor resolution was developed for Canada, an industrialized country with low air pollution levels, whose major cities are among the largest urban areas in North America. VCPs were estimated to account for about 290 kilotons of gaseous organic emissions for a typical year in the 2010s, with more than 60% of emissions occurring indoors. Coatings and cleaners were the most emissive VCP categories. Oxygenated species and saturated aliphatics dominated the chemical profiles of most emissions. Less than 5% of VCP emissions were impacted by indoor physicochemical phenomena. VCP emissions were predicted to account for 0.8-3.2 s-1 of OH reactivity and 0.22-0.52 µg/m3 of secondary organic aerosol formation potential in major urban areas in Canada. Our predictions aligned with previous measurements concerning indoor and outdoor organic pollutant levels, underscoring the important air quality impacts of VCPs relative to other sources. Our results provide helpful insights for future research regarding VCP emissions, especially from indoor spaces.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Monitoreo del Ambiente , Compuestos Orgánicos Volátiles , Canadá , Compuestos Orgánicos Volátiles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Contaminación del Aire
7.
Environ Sci Technol ; 58(23): 10060-10071, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38709895

RESUMEN

Atmospheric particles play critical roles in climate. However, significant knowledge gaps remain regarding the vertically resolved organic molecular-level composition of atmospheric particles due to aloft sampling challenges. To address this, we use a tethered balloon system at the Southern Great Plains Observatory and high-resolution mass spectrometry to, respectively, collect and characterize organic molecular formulas (MF) in the ground level and aloft (up to 750 m) samples. We show that organic MF uniquely detected aloft were dominated by organonitrates (139 MF; 54% of all uniquely detected aloft MF). Organonitrates that were uniquely detected aloft featured elevated O/C ratios (0.73 ± 0.23) compared to aloft organonitrates that were commonly observed at the ground level (0.63 ± 0.22). Unique aloft organic molecular composition was positively associated with increased cloud coverage, increased aloft relative humidity (∼40% increase compared to ground level), and decreased vertical wind variance. Furthermore, 29% of extremely low volatility organic compounds in the aloft sample were truly unique to the aloft sample compared to the ground level, emphasizing potential oligomer formation at higher altitudes. Overall, this study highlights the importance of considering vertically resolved organic molecular composition (particularly for organonitrates) and hypothesizes that aqueous phase transformations and vertical wind variance may be key variables affecting the molecular composition of aloft organic aerosol.


Asunto(s)
Espectrometría de Masas , Monitoreo del Ambiente , Atmósfera/química , Aerosoles , Contaminantes Atmosféricos/análisis
8.
Environ Sci Technol ; 58(26): 11363-11375, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38900148

RESUMEN

Surface-active organics lower the aerosol surface tension (σs/a), leading to enhanced cloud condensation nuclei (CCN) activity and potentially exerting impacts on the climate. Quantification of σs/a is mainly limited to laboratory or modeling work for particles with selected sizes and known chemical compositions. Inferred values from ambient aerosol populations are deficient. In this study, we propose a new method to derive σs/a by combining field measurements made at an urban site in northern China with the κ-Köhler theory. The results present new evidence that organics remarkably lower the surface tension of aerosols in a polluted atmosphere. Particles sized around 40 nm have an averaged σs/a of 53.8 mN m-1, while particles sized up to 100 nm show σs/a values approaching that of pure water. The dependence curve of σs/a with the organic mass resembles the behavior of dicarboxylic acids, suggesting their critical role in reducing the surface tension. The study further reveals that neglecting the σs/a lowering effect would result in lowered ultrafine CCN (diameter <100 nm) concentrations by 6.8-42.1% at a typical range of supersaturations in clouds, demonstrating the significant impact of surface tension on the CCN concentrations of urban aerosols.


Asunto(s)
Aerosoles , Atmósfera , Tamaño de la Partícula , Tensión Superficial , Atmósfera/química , Contaminantes Atmosféricos/análisis , China
9.
Environ Sci Technol ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221859

RESUMEN

Molecular characterization of organic aerosol (OA) is crucial for understanding its sources and atmospheric processes. However, the chemical components of OA remain not well constrained. This study used gas chromatography-Orbitrap mass spectrometry (GC-Orbitrap MS) and GC-Quadrupole MS (GC-qMS) to investigate the organic composition in PM2.5 from Xi'an, Northwest China. GC-Orbitrap MS identified 335 organic tracers, including overlooked isomers and low-concentration molecules, approximately 1.6 times more than GC-qMS. The "molecular corridor" assessment shows the superior capability of GC-Orbitrap MS in identifying an expansive range of compounds with higher volatility and oxidation states, such as furanoses/pyranoses, di/hydroxy/ketonic acids, di/poly alcohols, aldehydes/ketones, and amines/amides. Seasonal variations in OA composition reflect diverse sources: increased di/poly alcohols in winter are derived from indoor emissions, furanoses/pyranoses and heterocyclics in spring and summer might be from biogenic emissions and secondary formation, and amides in autumn are probably from biomass burning. Integrating partial least squares discriminant analysis (PLS-DA) and potential source contribution function (PSCF) models, the source similarities and differences are further elucidated, highlighting the role of local emissions and transport from southern cities. This study offers new insights into the OA composition aided by the high mass resolution and sensitivity of GC-Orbitrap MS.

10.
Environ Sci Technol ; 58(20): 8857-8866, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38718183

RESUMEN

Comprehensive identification of aerosol sources and their constituent organic compounds requires aerosol-phase molecular-level characterization with a high time resolution. While real-time chemical characterization of aerosols is becoming increasingly common, information about functionalization and structure is typically obtained from offline methods. This study presents a method for determining the presence of carboxylic acid functional groups in real time using extractive electrospray ionization mass spectrometry based on measurements of [M - H + 2Na]+ adducts. The method is validated and characterized using standard compounds. A proof-of-concept application to α-pinene secondary organic aerosol (SOA) shows the ability to identify carboxylic acids even in complex mixtures. The real-time capability of the method allows for the observation of the production of carboxylic acids, likely formed in the particle phase on short time scales (<120 min). Our research explains previous findings of carboxylic acids being a significant component of SOA and a quick decrease in peroxide functionalization following SOA formation. We show that the formation of these acids is commensurate with the increase of dimers in the particle phase. Our results imply that SOA is in constant evolution through condensed-phase processes, which lower the volatility of the aerosol components and increase the available condensed mass for SOA growth and, therefore, aerosol mass loading in the atmosphere. Further work could aim to quantify the effect of particle-phase acid formation on the aerosol volatility distributions.


Asunto(s)
Aerosoles , Ácidos Carboxílicos , Espectrometría de Masa por Ionización de Electrospray
11.
Environ Sci Technol ; 58(19): 8194-8206, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38683689

RESUMEN

Phenolic compounds are largely emitted from biomass burning (BB) and have a significant potential to form SOA (Phc-SOA). However, the toxicological properties of Phc-SOA remain unclear. In this study, phenol and guaiacol were chosen as two representative phenolic gases in BB plumes, and the toxicological properties of water-soluble components of their SOA generated under different photochemical ages and NOx levels were investigated. Phenolic compounds contribute greatly to the oxidative potential (OP) of biomass-burning SOA. OH-adducts of guaiacol (e.g., 2-methoxyhydroquinone) were identified as components of guaiacol SOA (GSOA) with high OP. The addition of nitro groups to 2,5-dimethyl-1,4-benzoquinone, a surrogate quinone compound in Phc-SOA, increased its OP. The toxicity of both phenol SOA (PSOA) and GSOA in vitro in human alveolar epithelial cells decreased with aging in terms of both cell death and cellular reactive oxygen species (ROS), possibly due to more ring-opening products with relatively low toxicity. The influence of NOx was consistent between cell death and cellular ROS for GSOA but not for PSOA, indicating that cellular ROS production does not necessarily represent all processes contributing to cell death caused by PSOA. Combining different acellular and cellular assays can provide a comprehensive understanding of aerosol toxicological properties.


Asunto(s)
Aerosoles , Biomasa , Fenoles , Especies Reactivas de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Fenoles/toxicidad , Humanos , Oxidación-Reducción , Contaminantes Atmosféricos/toxicidad
12.
Environ Sci Technol ; 58(24): 10652-10663, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38829825

RESUMEN

Secondary organic aerosol (SOA) formation from gasoline vehicles spanning a wide range of emission types was investigated using an oxidation flow reactor (OFR) by conducting chassis dynamometer tests. Aided by advanced mass spectrometric techniques, SOA precursors, including volatile organic compounds (VOCs) and intermediate/semivolatile organic compounds (I/SVOCs), were comprehensively characterized. The reconstructed SOA produced from the speciated VOCs and I/SVOCs can explain 69% of the SOA measured downstream of an OFR upon 0.5-3 days' OH exposure. While VOCs can only explain 10% of total SOA production, the contribution from I/SVOCs is 59%, with oxygenated I/SVOCs (O-I/SVOCs) taking up 20% of that contribution. O-I/SVOCs (e.g., benzylic or aliphatic aldehydes and ketones), as an obscured source, account for 16% of total nonmethane organic gas (NMOG) emission. More importantly, with the improvement in emission standards, the NMOG is effectively mitigated by 35% from China 4 to China 6, which is predominantly attributed to the decrease of VOCs. Real-time measurements of different NMOG components as well as SOA production further reveal that the current emission control measures, such as advances in engine and three-way catalytic converter (TWC) techniques, are effective in reducing the "light" SOA precursors (i.e., single-ring aromatics) but not for the I/SVOC emissions. Our results also highlight greater effects of O-I/SVOCs to SOA formation than previously observed and the urgent need for further investigation into their origins, i.e., incomplete combustion, lubricating oil, etc., which requires improvements in real-time molecular-level characterization of I/SVOC molecules and in turn will benefit the future design of control measures.


Asunto(s)
Aerosoles , Gasolina , Emisiones de Vehículos , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/química , Compuestos Orgánicos/química
13.
Environ Sci Technol ; 58(27): 12051-12061, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38922431

RESUMEN

Germicidal ultraviolet light (GUV) systems are designed to control airborne pathogen transmission in buildings. However, it is important to acknowledge that certain conditions and system configurations may lead GUV systems to produce air contaminants including oxidants and secondary organic aerosols (SOA). In this study, we modeled the formation and dispersion of oxidants and secondary contaminants generated by the operation of GUV systems employing ultraviolet C 254 and 222 nm. Using a three-dimensional computational fluid dynamics model, we examined the breathing zone concentrations of chemical species in an occupied classroom. Our findings indicate that operating GUV 222 leads to an approximate increase of 10 ppb in O3 concentration and 5.2 µg·m-3 in SOA concentration compared to a condition without GUV operation, while GUV 254 increases the SOA concentration by about 1.2 µg·m-3, with a minimal impact on the O3 concentration. Furthermore, increasing the UV fluence rate of GUV 222 from 1 to 5 µW·cm-2 results in up to 80% increase in the oxidants and SOA concentrations. For GUV 254, elevating the UV fluence rate from 30 to 50 µW·cm-2 or doubling the radiating volume results in up to 50% increase in the SOA concentration. Note that indoor airflow patterns, particularly buoyancy-driven airflow (or displacement ventilation), lead to 15-45% lower SOA concentrations in the breathing zone compared to well-mixed airflow. The results also reveal that when the ventilation rate is below 2 h-1, operating GUV 254 has a smaller impact on human exposure to secondary contaminants than GUV 222. However, GUV 254 may generate more contaminants than GUV 222 when operating at high indoor O3 levels (>15 ppb). These results suggest that the design of GUV systems should consider indoor O3 levels and room ventilation conditions.


Asunto(s)
Rayos Ultravioleta , Contaminación del Aire Interior , Aerosoles , Contaminantes Atmosféricos , Ozono , Humanos
14.
Environ Sci Technol ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39364784

RESUMEN

Biomass burning organic aerosol (BBOA), containing brown carbon chromophores, plays a critical role in atmospheric chemistry and climate forcing. However, the effects of evaporation on BBOA volatility and viscosity under different environmental conditions remain poorly understood. This study focuses on the molecular characterization of laboratory-generated BBOA proxies from wood pyrolysis emissions. The initial mixture, "pyrolysis oil (PO1)", was progressively evaporated to produce more concentrated mixtures (PO1.33, PO2, and PO3) with volume reduction factors of 1.33, 2, and 3, respectively. Chemical speciation and volatility were investigated using temperature-programmed desorption combined with direct analysis in real-time ionization and high-resolution mass spectrometry (TPD-DART-HRMS). This novel approach quantified saturation vapor pressures and enthalpies of individual species, enabling the construction of volatility basis set distributions and the quantification of gas-particle partitioning. Viscosity estimates, validated by poke-flow experiments, showed a significant increase with evaporation, slowing particle-phase diffusion and extending equilibration times. These findings suggest that highly viscous tar ball particles in aged biomass burning emissions form as semivolatile components evaporate. The study highlights the importance of evaporation processes in shaping BBOA properties, underscoring the need to incorporate these factors into atmospheric models for better predictions of BBOA aging and its environmental impact.

15.
Environ Sci Technol ; 58(18): 7924-7936, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38652049

RESUMEN

Aromatic carbonyls have been mainly probed as photosensitizers for aqueous secondary organic aerosol (aqSOA) and light-absorbing organic aerosol (i.e., brown carbon or BrC) formation, but due to their organic nature, they can also undergo oxidation to form aqSOA and BrC. However, photochemical transformations of aromatic carbonyl photosensitizers, particularly in multicomponent systems, are understudied. This study explored aqSOA formation from the irradiation of aromatic carbonyl photosensitizers in mixed and single systems under cloud/fog conditions. Mixed systems consisting of phenolic carbonyls only (VL + ActSyr + SyrAld: vanillin [VL] + acetosyringone [ActSyr] + syringaldehyde [SyrAld]) and another composed of both nonphenolic and phenolic carbonyls (DMB + ActSyr + SyrAld: 3,4-dimethoxybenzaldehyde [DMB], a nonphenolic carbonyl, + ActSyr + SyrAld) were compared to single systems of VL (VL*) and DMB (DMB*), respectively. In mixed systems, the shorter lifetimes of VL and DMB indicate their diminished capacity to trigger the oxidation of other organic compounds (e.g., guaiacol [GUA], a noncarbonyl phenol). In contrast to the slow decay and minimal photoenhancement for DMB*, the rapid photodegradation and significant photoenhancement for VL* indicate efficient direct photosensitized oxidation (i.e., self-photosensitization). Relative to single systems, the increased oxidant availability promoted functionalization in VL + ActSyr + SyrAld and accelerated the conversion of early generation aqSOA in DMB + ActSyr + SyrAld. Moreover, the increased availability of oxidizable substrates countered by stronger oxidative capacity limited the contribution of mixed systems to aqSOA light absorption. This suggests a weaker radiative effect of BrC from mixed photosensitizer systems than BrC from single photosensitizer systems. Furthermore, more oxygenated and oxidized aqSOA was observed with increasing complexity of the reaction systems (e.g., VL* < VL + ActSyr + SyrAld < VL + ActSyr + SyrAld + GUA). This work offers new insights into aqSOA formation by emphasizing the dual role of organic photosensitizers as oxidant sources and oxidizable substrates.


Asunto(s)
Aerosoles , Oxidación-Reducción , Fármacos Fotosensibilizantes , Fármacos Fotosensibilizantes/química , Luz
16.
Environ Sci Technol ; 58(18): 7947-7957, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38676647

RESUMEN

Volatility of organic aerosols (OAs) significantly influences new particle formation and the occurrence of particulate air pollution. However, the relationship between the volatility of OA and the level of particulate air pollution (i.e., particulate matter concentration) is not well understood. In this study, we compared the chemical composition (identified by an ultrahigh-resolution Orbitrap mass spectrometer) and volatility (estimated based on a predeveloped parametrization method) of OAs in urban PM2.5 (particulate matter with aerodynamic diameter ≤ 2.5 µm) samples from seven German and Chinese cities, where the PM2.5 concentration ranged from a light (14 µg m-3) to heavy (319 µg m-3) pollution level. A large fraction (71-98%) of compounds in PM2.5 samples were attributable to intermediate-volatility organic compounds (IVOCs) and semivolatile organic compounds (SVOCs). The fraction of low-volatility organic compounds (LVOCs) and extremely low-volatility organic compounds (ELVOCs) decreased from clean (28%) to heavily polluted urban regions (2%), while that of IVOCs increased from 34 to 62%. We found that the average peak area-weighted volatility of organic compounds in different cities showed a logarithmic correlation with the average PM2.5 concentration, indicating that the volatility of urban OAs increases with the increase of air pollution level. Our results provide new insights into the relationship between OA volatility and PM pollution levels and deepen the understanding of urban air pollutant evolution.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Contaminación del Aire , Espectrometría de Masas , Material Particulado , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Volatilización , Compuestos Orgánicos/análisis , China , Compuestos Orgánicos Volátiles/análisis
17.
Environ Sci Technol ; 58(19): 8380-8392, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38691504

RESUMEN

A comprehensive understanding of the full volatility spectrum of organic oxidation products from the benzene series precursors is important to quantify the air quality and climate effects of secondary organic aerosol (SOA) and new particle formation (NPF). However, current models fail to capture the full volatility spectrum due to the absence of important reaction pathways. Here, we develop a novel unified model framework, the integrated two-dimensional volatility basis set (I2D-VBS), to simulate the full volatility spectrum of products from benzene series precursors by simultaneously representing first-generational oxidation, multigenerational aging, autoxidation, dimerization, nitrate formation, etc. The model successfully reproduces the volatility and O/C distributions of oxygenated organic molecules (OOMs) as well as the concentrations and the O/C of SOA over wide-ranging experimental conditions. In typical urban environments, autoxidation and multigenerational oxidation are the two main pathways for the formation of OOMs and SOA with similar contributions, but autoxidation contributes more to low-volatility products. NOx can reduce about two-thirds of OOMs and SOA, and most of the extremely low-volatility products compared to clean conditions, by suppressing dimerization and autoxidation. The I2D-VBS facilitates a holistic understanding of full volatility product formation, which helps fill the large gap in the predictions of organic NPF, particle growth, and SOA formation.


Asunto(s)
Benceno , Benceno/química , Compuestos Orgánicos/química , Oxidación-Reducción , Aerosoles , Volatilización , Contaminantes Atmosféricos , Modelos Teóricos
18.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33593919

RESUMEN

Secondary organic aerosol (SOA) produced by atmospheric oxidation of primary emitted precursors is a major contributor to fine particulate matter (PM2.5) air pollution worldwide. Observations during winter haze pollution episodes in urban China show that most of this SOA originates from fossil-fuel combustion but the chemical mechanisms involved are unclear. Here we report field observations in a Beijing winter haze event that reveal fast aqueous-phase conversion of fossil-fuel primary organic aerosol (POA) to SOA at high relative humidity. Analyses of aerosol mass spectra and elemental ratios indicate that ring-breaking oxidation of POA aromatic species, leading to functionalization as carbonyls and carboxylic acids, may serve as the dominant mechanism for this SOA formation. A POA origin for SOA could explain why SOA has been decreasing over the 2013-2018 period in response to POA emission controls even as emissions of volatile organic compounds (VOCs) have remained flat.

19.
Environ Sci Technol ; 57(38): 14150-14161, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37699525

RESUMEN

Exposure to ambient fine particulate matter (PM2.5) is associated with millions of premature deaths annually. Oxidative stress through overproduction of reactive oxygen species (ROS) is a possible mechanism for PM2.5-induced health effects. Organic aerosol (OA) is a dominant component of PM2.5 worldwide, yet its role in PM2.5 toxicity is poorly understood due to its chemical complexity. Here, through integrated cellular ROS measurements and detailed multi-instrument chemical characterization of PM in urban southeastern United States, we show that oxygenated OA (OOA), especially more-oxidized OOA, is the main OA type associated with cellular ROS production. We further reveal that highly unsaturated species containing carbon-oxygen double bonds and aromatic rings in OOA are major contributors to cellular ROS production. These results highlight the key chemical features of ambient OA driving its toxicity. As more-oxidized OOA is ubiquitous and abundant in the atmosphere, this emphasizes the need to understand its sources and chemical processing when formulating effective strategies to mitigate PM2.5 health impacts.


Asunto(s)
Estrés Oxidativo , Oxígeno , Especies Reactivas de Oxígeno , Aerosoles , Sudeste de Estados Unidos
20.
Environ Sci Technol ; 57(44): 17011-17021, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37874964

RESUMEN

Biomass burning particulate matter (BBPM) affects regional air quality and global climate, with impacts expected to continue to grow over the coming years. We show that studies of North American fires have a systematic altitude dependence in measured BBPM normalized excess mixing ratio (NEMR; ΔPM/ΔCO), with airborne and high-altitude studies showing a factor of 2 higher NEMR than ground-based measurements. We report direct airborne measurements of BBPM volatility that partially explain the difference in the BBPM NEMR observed across platforms. We find that when heated to 40-45 °C in an airborne thermal denuder, 19% of lofted smoke PM1 evaporates. Thermal denuder measurements are consistent with evaporation observed when a single smoke plume was sampled across a range of temperatures as the plume descended from 4 to 2 km altitude. We also demonstrate that chemical aging of smoke and differences in PM emission factors can not fully explain the platform-dependent differences. When the measured PM volatility is applied to output from the High Resolution Rapid Refresh Smoke regional model, we predict a lower PM NEMR at the surface compared to the lofted smoke measured by aircraft. These results emphasize the significant role that gas-particle partitioning plays in determining the air quality impacts of wildfire smoke.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Incendios , Humo/análisis , Contaminantes Atmosféricos/análisis , Biomasa , Contaminación del Aire/análisis , Material Particulado/análisis , Aerosoles/análisis , Monitoreo del Ambiente/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA