RESUMEN
Mitochondrial ribosomes translate membrane integral core subunits of the oxidative phosphorylation system encoded by mtDNA. These translation products associate with nuclear-encoded, imported proteins to form enzyme complexes that produce ATP. Here, we show that human mitochondrial ribosomes display translational plasticity to cope with the supply of imported nuclear-encoded subunits. Ribosomes expressing mitochondrial-encoded COX1 mRNA selectively engage with cytochrome c oxidase assembly factors in the inner membrane. Assembly defects of the cytochrome c oxidase arrest mitochondrial translation in a ribosome nascent chain complex with a partially membrane-inserted COX1 translation product. This complex represents a primed state of the translation product that can be retrieved for assembly. These findings establish a mammalian translational plasticity pathway in mitochondria that enables adaptation of mitochondrial protein synthesis to the influx of nuclear-encoded subunits.
Asunto(s)
Ciclooxigenasa 1/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Transporte Activo de Núcleo Celular , Línea Celular Tumoral , Ciclooxigenasa 1/biosíntesis , Ciclooxigenasa 1/genética , ADN Mitocondrial/genética , Complejo IV de Transporte de Electrones/biosíntesis , Complejo IV de Transporte de Electrones/genética , Células HEK293 , Humanos , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/genética , Fosforilación Oxidativa , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Mitocondrial , Ribosomas/metabolismoRESUMEN
The molybdenum cofactor (Moco) is a 520-Da prosthetic group that is synthesized in all domains of life. In animals, four oxidases (among them sulfite oxidase) use Moco as a prosthetic group. Moco is essential in animals; humans with mutations in genes that encode Moco biosynthetic enzymes display lethal neurological and developmental defects. Moco supplementation seems a logical therapy; however, the instability of Moco has precluded biochemical and cell biological studies of Moco transport and bioavailability. The nematode Caenorhabditis elegans can take up Moco from its bacterial diet and transport it to cells and tissues that express Moco-requiring enzymes, suggesting a system for Moco uptake and distribution. Here we show that protein-bound Moco is the stable, bioavailable species of Moco taken up by C. elegans from its diet and is an effective dietary supplement, rescuing a Celegans model of Moco deficiency. We demonstrate that diverse Moco:protein complexes are stable and bioavailable, suggesting a new strategy for the production and delivery of therapeutically active Moco to treat human Moco deficiency.
Asunto(s)
Caenorhabditis elegans/metabolismo , Coenzimas/administración & dosificación , Errores Innatos del Metabolismo de los Metales/terapia , Metaloproteínas/administración & dosificación , Pteridinas/administración & dosificación , Animales , Bacterias/metabolismo , Transporte Biológico , Coenzimas/deficiencia , Coenzimas/farmacocinética , Humanos , Metaloproteínas/deficiencia , Metaloproteínas/farmacocinética , Cofactores de Molibdeno , Unión Proteica , Pteridinas/farmacocinéticaRESUMEN
Molybdenum cofactor (Moco) is synthesized endogenously in humans and is essential for human development. Supplementation of Moco or its precursors has been explored as a therapy to treat Moco-deficient patients but with significant limitations. By using the nematode C. elegans as a model, Warnhoff and colleagues (pp. 212-217) describe the beneficial impact of protein-bound Moco supplementation to treat Moco deficiency. If such an effect is conserved, this advance from basic research in worms may have significant clinical implications as a novel therapy for molybdenum cofactor deficiency.
Asunto(s)
Caenorhabditis elegans , Pteridinas , Animales , Coenzimas , Humanos , Errores Innatos del Metabolismo de los Metales , Metaloproteínas , Cofactores de MolibdenoRESUMEN
In eukaryotic cells, oxidative protein folding occurs in the lumen of the endoplasmic reticulum (ER), catalyzed by ER sulfhydryl oxidase 1 (Ero1) and protein disulfide isomerase (PDI). The efficiency and fidelity of oxidative protein folding are vital for the function of secretory cells. Here, we summarize oxidative protein folding in yeast, plants, and mammals, and discuss how the conformation and activity of human Ero1-PDI machinery is regulated through various post-translational modifications (PTMs). We propose that oxidative protein folding fidelity and ER redox homeostasis are maintained by both the precise control of Ero1 oxidase activity and the division of labor between PDI family members. We also discuss how deregulated Ero1-PDI functions contribute to human diseases and can be leveraged for therapeutic interventions.
Asunto(s)
Proteína Disulfuro Isomerasas , Pliegue de Proteína , Animales , Humanos , Proteína Disulfuro Isomerasas/metabolismo , Oxidación-Reducción , Saccharomyces cerevisiae/metabolismo , Retículo Endoplásmico/metabolismo , Estrés Oxidativo , MamíferosRESUMEN
Mucus is made of enormous mucin glycoproteins that polymerize by disulfide crosslinking in the Golgi apparatus. QSOX1 is a catalyst of disulfide bond formation localized to the Golgi. Both QSOX1 and mucins are highly expressed in goblet cells of mucosal tissues, leading to the hypothesis that QSOX1 catalyzes disulfide-mediated mucin polymerization. We found that knockout mice lacking QSOX1 had impaired mucus barrier function due to production of defective mucus. However, an investigation on the molecular level revealed normal disulfide-mediated polymerization of mucins and related glycoproteins. Instead, we detected a drastic decrease in sialic acid in the gut mucus glycome of the QSOX1 knockout mice, leading to the discovery that QSOX1 forms regulatory disulfides in Golgi glycosyltransferases. Sialylation defects in the colon are known to cause colitis in humans. Here we show that QSOX1 redox control of sialylation is essential for maintaining mucosal function.
Asunto(s)
Glicosiltransferasas , Aparato de Golgi , Mucosa Intestinal , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Animales , Ratones , Colon/metabolismo , Disulfuros/metabolismo , Glicoproteínas , Glicosiltransferasas/metabolismo , Aparato de Golgi/metabolismo , Mucinas/química , Mucinas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Mucosa Intestinal/metabolismoRESUMEN
Naked mole-rats (NMRs) have exceptional longevity and are resistant to age-related physiological decline and diseases. Given the role of cellular senescence in aging, we postulated that NMRs possess unidentified species-specific mechanisms to prevent senescent cell accumulation. Here, we show that upon induction of cellular senescence, NMR fibroblasts underwent delayed and progressive cell death that required activation of the INK4a-retinoblastoma protein (RB) pathway (termed "INK4a-RB cell death"), a phenomenon not observed in mouse fibroblasts. Naked mole-rat fibroblasts uniquely accumulated serotonin and were inherently vulnerable to hydrogen peroxide (H2 O2 ). After activation of the INK4a-RB pathway, NMR fibroblasts increased monoamine oxidase levels, leading to serotonin oxidization and H2 O2 production, which resulted in increased intracellular oxidative damage and cell death activation. In the NMR lung, induction of cellular senescence caused delayed, progressive cell death mediated by monoamine oxidase activation, thereby preventing senescent cell accumulation, consistent with in vitro results. The present findings indicate that INK4a-RB cell death likely functions as a natural senolytic mechanism in NMRs, providing an evolutionary rationale for senescent cell removal as a strategy to resist aging.
Asunto(s)
Senescencia Celular , Serotonina , Animales , Ratones , Serotonina/metabolismo , Senescencia Celular/fisiología , Envejecimiento/metabolismo , Muerte Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Ratas Topo/metabolismoRESUMEN
A growing wealth of data suggest that reactive oxygen species (ROS) signalling might be crucial in conferring embryonic or adult stem cells their specific properties. However, how stem cells control ROS production and scavenging, and how ROS in turn contribute to stemness, remain poorly understood. Using the Xenopus retina as a model system, we first investigated the redox status of retinal stem cells (RSCs). We discovered that they exhibit higher ROS levels compared with progenitors and retinal neurons, and express a set of specific redox genes. We next addressed the question of ROS functional involvement in these cells. Using pharmacological or genetic tools, we demonstrate that inhibition of NADPH oxidase-dependent ROS production increases the proportion of quiescent RSCs. Surprisingly, this is accompanied by an apparent acceleration of the mean division speed within the remaining proliferating pool. Our data further unveil that such impact on RSC cell cycling is achieved by modulation of the Wnt/Hedgehog signalling balance. Altogether, we highlight that RSCs exhibit distinctive redox characteristics and exploit NADPH oxidase signalling to limit quiescence and fine-tune their proliferation rate.
Asunto(s)
Células Madre Adultas , Células-Madre Neurales , Animales , Xenopus laevis/metabolismo , Especies Reactivas de Oxígeno , Proliferación Celular , Proteínas Hedgehog , Retina/metabolismo , Células Madre Adultas/metabolismo , NADPH Oxidasas/genética , Vía de Señalización WntRESUMEN
Fusarium, Aspergillus and Candida are important fungal pathogens that cause visual impairment and blindness in the USA and worldwide. This review will summarize the epidemiology and clinical features of corneal infections and discuss the immune and inflammatory responses that play an important role in clinical disease. In addition, we describe fungal virulence factors that are required for survival in infected corneas, and the activities of neutrophils in fungal killing, tissue damage and cytokine production.
Asunto(s)
Fusarium , Queratitis , Humanos , Hongos , Córnea/microbiología , Córnea/patología , Queratitis/microbiología , Queratitis/patología , Fusarium/fisiología , NeutrófilosRESUMEN
Essential for reactive oxygen species (EROS) protein is a recently identified molecular chaperone of NOX2 (gp91phox), the catalytic subunit of phagocyte NADPH oxidase. Deficiency in EROS is a recently identified cause for chronic granulomatous disease, a genetic disorder with recurrent bacterial and fungal infections. Here, we report a cryo-EM structure of the EROS-NOX2-p22phox heterotrimeric complex at an overall resolution of 3.56Å. EROS and p22phox are situated on the opposite sides of NOX2, and there is no direct contact between them. EROS associates with NOX2 through two antiparallel transmembrane (TM) α-helices and multiple ß-strands that form hydrogen bonds with the cytoplasmic domain of NOX2. EROS binding induces a 79° upward bend of TM2 and a 48° backward rotation of the lower part of TM6 in NOX2, resulting in an increase in the distance between the two hemes and a shift of the binding site for flavin adenine dinucleotide (FAD). These conformational changes are expected to compromise superoxide production by NOX2, suggesting that the EROS-bound NOX2 is in a protected state against activation. Phorbol myristate acetate, an activator of NOX2 in vitro, is able to induce dissociation of NOX2 from EROS with concurrent increase in FAD binding and superoxide production in a transfected COS-7 model. In differentiated neutrophil-like HL-60, the majority of NOX2 on the cell surface is dissociated with EROS. Further studies are required to delineate how EROS dissociates from NOX2 during its transport to cell surface, which may be a potential mechanism for regulation of NOX2 activation.
Asunto(s)
Microscopía por Crioelectrón , NADPH Oxidasa 2 , NADPH Oxidasas , Fagocitos , Humanos , NADPH Oxidasa 2/metabolismo , NADPH Oxidasa 2/genética , NADPH Oxidasa 2/química , Fagocitos/metabolismo , NADPH Oxidasas/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/química , Unión Proteica , Sitios de Unión , Enfermedad Granulomatosa Crónica/metabolismo , Enfermedad Granulomatosa Crónica/genética , Modelos Moleculares , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Loss of mitochondrial electron transport complex (ETC) function in the retinal pigment epithelium (RPE) in vivo results in RPE dedifferentiation and progressive photoreceptor degeneration, and has been implicated in the pathogenesis of age-related macular degeneration. Xenogenic expression of alternative oxidases in mammalian cells and tissues mitigates phenotypes arising from some mitochondrial electron transport defects, but can exacerbate others. We expressed an alternative oxidase from Ciona intestinalis (AOX) in ETC-deficient murine RPE in vivo to assess the retinal consequences of stimulating coenzyme Q oxidation and respiration without ATP generation. RPE-restricted expression of AOX in this context is surprisingly beneficial. This focused intervention mitigates RPE mTORC1 activation, dedifferentiation, hypertrophy, stress marker expression, pseudohypoxia, and aerobic glycolysis. These RPE cell autonomous changes are accompanied by increased glucose delivery to photoreceptors with attendant improvements in photoreceptor structure and function. RPE-restricted AOX expression normalizes accumulated levels of succinate and 2-hydroxyglutarate in ETC-deficient RPE, and counteracts deficiencies in numerous neural retinal metabolites. These features can be attributed to the activation of mitochondrial inner membrane flavoproteins such as succinate dehydrogenase and proline dehydrogenase, and alleviation of inhibition of 2-oxyglutarate-dependent dioxygenases such as prolyl hydroxylases and epigenetic modifiers. Our work underscores the importance to outer retinal health of coenzyme Q oxidation in the RPE and identifies a metabolic network critical for photoreceptor survival in the context of RPE mitochondrial dysfunction.
Asunto(s)
Mitocondrias , Oxidorreductasas , Proteínas de Plantas , Epitelio Pigmentado de la Retina , Animales , Mitocondrias/metabolismo , Ratones , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Ciona intestinalis/metabolismo , Ubiquinona/metabolismo , Ubiquinona/análogos & derivados , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Degeneración Retiniana/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologíaRESUMEN
Copper homeostasis mechanisms are critical for bacterial resistance to copper-induced stress. The Escherichia coli multicopper oxidase copper efflux oxidase (CueO) is part of the copper detoxification system in aerobic conditions. CueO contains a methionine-rich (Met-rich) domain believed to interact with copper, but its exact function and the importance of related copper-binding sites remain unclear. This study investigates these open questions by employing a multimodal and multiscale approach. Through the design of various E. coli CueO (EcCueO) variants with altered copper-coordinating residues and domain deletions, we employ biological, biochemical, and physico-chemical approaches to unravel in vitro CueO catalytic properties and in vivo copper resistance. Strong correlation between the different methods enables evaluation of EcCueO variants' activity as a function of Cu+ availability. Our findings demonstrate the Met-rich domain is not essential for cuprous oxidation, but it facilitates Cu+ recruitment from strongly chelated forms, acting as transient copper binding domain thanks to multiple methionines. They also indicate that the Cu6/7 copper-binding sites previously observed within the Met-rich domain play a negligible role. Meanwhile, Cu5, located at the interface with the Met-rich domain, emerges as the primary and sole substrate-binding active site for cuprous oxidation. The Cu5 coordination sphere strongly affects the enzyme activity and the in vivo copper resistance. This study provides insights into the nuanced role of CueO Met-rich domain, enabling the functions of copper-binding sites and the entire domain itself to be decoupled. This paves the way for a deeper understanding of Met-rich domains in the context of bacterial copper homeostasis.
Asunto(s)
Cobre , Proteínas de Escherichia coli , Escherichia coli , Metionina , Cobre/metabolismo , Cobre/química , Metionina/metabolismo , Metionina/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Sitios de Unión , Oxidorreductasas/metabolismo , Oxidorreductasas/química , Oxidorreductasas/genética , Oxidación-Reducción , Dominios ProteicosRESUMEN
Enhancing protein thermal stability is important for biomedical and industrial applications as well as in the research laboratory. Here, we describe a simple machine-learning method which identifies amino acid substitutions that contribute to thermal stability based on comparison of the amino acid sequences of homologous proteins derived from bacteria that grow at different temperatures. A key feature of the method is that it compares the sequences based not simply on the amino acid identity, but rather on the structural and physicochemical properties of the side chain. The method accurately identified stabilizing substitutions in three well-studied systems and was validated prospectively by experimentally testing predicted stabilizing substitutions in a polyamine oxidase. In each case, the method outperformed the widely used bioinformatic consensus approach. The method can also provide insight into fundamental aspects of protein structure, for example, by identifying how many sequence positions in a given protein are relevant to temperature adaptation.
Asunto(s)
Aprendizaje Automático , Proteínas , Estabilidad Proteica , Secuencia de Aminoácidos , Mutación , Proteínas/genética , Estabilidad de EnzimasRESUMEN
Mammals exhibit systemic homochirality of amino acids in L-configurations. While ribosomal protein synthesis requires rigorous chiral selection for L-amino acids, both endogenous and microbial enzymes convert diverse L-amino acids to D-configurations in mammals. However, it is not clear how mammals manage such diverse D-enantiomers. Here, we show that mammals sustain systemic stereo dominance of L-amino acids through both enzymatic degradation and excretion of D-amino acids. Multidimensional high performance liquidchromatography analyses revealed that in blood, humans and mice maintain D-amino acids at less than several percent of the corresponding L-enantiomers, while D-amino acids comprise ten to fifty percent of the L-enantiomers in urine and feces. Germ-free experiments showed that vast majority of D-amino acids, except for D-serine, detected in mice are of microbial origin. Experiments involving mice that lack enzymatic activity to catabolize D-amino acids showed that catabolism is central to the elimination of diverse microbial D-amino acids, whereas excretion into urine is of minor importance under physiological conditions. Such active regulation of amino acid homochirality depends on maternal catabolism during the prenatal period, which switches developmentally to juvenile catabolism along with the growth of symbiotic microbes after birth. Thus, microbial symbiosis largely disturbs homochirality of amino acids in mice, whereas active host catabolism of microbial D-amino acids maintains systemic predominance of L-amino acids. Our findings provide fundamental insight into how the chiral balance of amino acids is governed in mammals and further expand the understanding of interdomain molecular homeostasis in host-microbial symbiosis.
Asunto(s)
Aminoácidos , Simbiosis , Humanos , Animales , Ratones , Aminoácidos/química , Serina , Biosíntesis de Proteínas , Estereoisomerismo , MamíferosRESUMEN
Recent studies have uncovered the therapeutic potential of elesclomol (ES), a copper-ionophore, for copper deficiency disorders. However, we currently do not understand the mechanism by which copper brought into cells as ES-Cu(II) is released and delivered to cuproenzymes present in different subcellular compartments. Here, we have utilized a combination of genetic, biochemical, and cell-biological approaches to demonstrate that intracellular release of copper from ES occurs inside and outside of mitochondria. The mitochondrial matrix reductase, FDX1, catalyzes the reduction of ES-Cu(II) to Cu(I), releasing it into mitochondria where it is bioavailable for the metalation of mitochondrial cuproenzyme- cytochrome c oxidase. Consistently, ES fails to rescue cytochrome c oxidase abundance and activity in copper-deficient cells lacking FDX1. In the absence of FDX1, the ES-dependent increase in cellular copper is attenuated but not abolished. Thus, ES-mediated copper delivery to nonmitochondrial cuproproteins continues even in the absence of FDX1, suggesting alternate mechanism(s) of copper release. Importantly, we demonstrate that this mechanism of copper transport by ES is distinct from other clinically used copper-transporting drugs. Our study uncovers a unique mode of intracellular copper delivery by ES and may further aid in repurposing this anticancer drug for copper deficiency disorders.
Asunto(s)
Cobre , Complejo IV de Transporte de Electrones , Hidrazinas , Ionóforos , Ferredoxinas/metabolismoRESUMEN
Monocytes play a key role in innate immunity by eliminating pathogens, releasing high levels of cytokines, and differentiating into several cell types, including macrophages and dendritic cells. Similar to other phagocytes, monocytes produce superoxide anions through the NADPH oxidase complex, which is composed of two membrane proteins (p22phox and gp91phox/NOX2) and four cytosolic proteins (p47phox, p67phox, p40phox and Rac1). The pathways involved in NADPH oxidase activation in monocytes are less known than those in neutrophils. Here, we show that p22phox is associated with Rho-associated coiled-coil kinase 2 (ROCK2) in human monocytes but not neutrophils. This interaction occurs between the cytosolic region of p22phox (amino acids 132 to 195) and the coiled-coil region of ROCK2 (amino acids 400 to 967). Interestingly, ROCK2 does not phosphorylate p22phox, p40phox, p67phox, or gp91phox in vitro but phosphorylates p47phox on Ser304, Ser315, Ser320 and Ser328. Furthermore, KD025, a selective inhibitor of ROCK2, inhibited reactive oxygen species (ROS) production and p47phox phosphorylation in monocytes. Specific inhibition of ROCK2 expression in THP1-monocytic cell line by siRNA inhibited ROS production. These data show that ROCK2 interacts with p22phox and phosphorylates p47phox, and suggest that p22phox could be a shuttle for ROCK2 to allow p47phox phosphorylation and NADPH oxidase activation in human monocytes.
Asunto(s)
Monocitos , NADPH Oxidasas , Quinasas Asociadas a rho , Humanos , Aminoácidos , Monocitos/metabolismo , NADPH Oxidasas/metabolismo , Fosfoproteínas/metabolismo , Especies Reactivas de Oxígeno , Quinasas Asociadas a rho/metabolismoRESUMEN
The respiratory chain in aerobic organisms is composed of a number of membrane-bound protein complexes that link electron transfer to proton translocation across the membrane. In mitochondria, the final electron acceptor, complex IV (CIV), receives electrons from dimeric complex III (CIII2), via a mobile electron carrier, cytochrome c. In the present study, we isolated the CIII2CIV supercomplex from the fission yeast Schizosaccharomyces pombe and determined its structure with bound cyt. c using single-particle electron cryomicroscopy. A respiratory supercomplex factor 2 was found to be bound at CIV distally positioned in the supercomplex. In addition to the redox-active metal sites, we found a metal ion, presumably Zn2+, coordinated in the CIII subunit Cor1, which is encoded by the same gene (qcr1) as the mitochondrial-processing peptidase subunit ß. Our data show that the isolated CIII2CIV supercomplex displays proteolytic activity suggesting a dual role of CIII2 in S. pombe. As in the supercomplex from S. cerevisiae, subunit Cox5 of CIV faces towards one CIII monomer, but in S. pombe, the two complexes are rotated relative to each other by ~45°. This orientation yields equal distances between the cyt. c binding sites at CIV and at each of the two CIII monomers. The structure shows cyt. c bound at four positions, but only along one of the two symmetrical branches. Overall, this combined structural and functional study reveals the integration of peptidase activity with the CIII2 respiratory system and indicates a two-dimensional cyt. c diffusion mechanism within the CIII2-CIV supercomplex.
Asunto(s)
Schizosaccharomyces , Schizosaccharomyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Citocromos c/metabolismo , Mitocondrias/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Transporte de Electrón , Péptido Hidrolasas/metabolismo , Complejo III de Transporte de Electrones/metabolismoRESUMEN
Pyranose oxidases are valuable biocatalysts, yet only a handful of bacterial pyranose oxidases are known. These bacterial enzymes exhibit noteworthy distinctions from their extensively characterized fungal counterparts, encompassing variations in substrate specificity and structural attributes. Herein a bacterial pyranose oxidase from Oscillatoria princeps (OPOx) was biochemically characterized in detail. In contrast to the fungal pyranose oxidases, OPOx could be well expressed in Escherichia coli as soluble, fully flavinylated and active oxidase. It was found to be highly thermostable (melting temperature >90 °C) and showed activity on glucose, exhibiting an exceptionally low KM value (48 µM). Elucidation of its crystal structure revealed similarities with fungal pyranose oxidases, such as being a tetramer with a large central void leading to a narrow substrate access tunnel. In the active site, the FAD cofactor is covalently bound to a histidine. OPOx displays a relatively narrow pH optimum for activity with a sharp decline at relatively basic pH values which is accompanied with a drastic change in its flavin absorbance spectrum. The pH-dependent switch in flavin absorbance features and oxidase activity was shown to be fully reversible. It is hypothesized that a glutamic acid helps to stabilize the protonated form of the histidine that is tethered to the FAD. OPOx presents itself as a valuable biocatalyst as it is highly robust, well-expressed in E. coli, shows low KM values for monosaccharides and has a peculiar pH dependent "on-off switch".
RESUMEN
With the increasing use of vaping devices that deliver high levels of nicotine (NIC) to the lungs, sporadic lung injury has been observed. Commercial vaping solutions can contain high NIC concentrations of 150 mM or more. With high NIC levels, its metabolic products may induce toxicity. NIC is primarily metabolized to form NIC iminium (NICI) which is further metabolized by aldehyde oxidase (AOX) to cotinine. We determine that NICI in the presence of AOX is a potent trigger of superoxide generation. NICI stimulated superoxide generation from AOX with Km = 2.7 µM and Vmax = 794 nmol/min/mg measured by cytochrome-c reduction. EPR spin-trapping confirmed that NICI in the presence of AOX is a potent source of superoxide. AOX is expressed in the lungs and chronic e-cigarette exposure in mice greatly increased AOX expression. NICI or NIC stimulated superoxide production in the lungs of control mice with an even greater increase after chronic e-cigarette exposure. This superoxide production was quenched by AOX inhibition. Furthermore, e-cigarette-mediated NIC delivery triggered oxidative lung damage that was blocked by AOX inhibition. Thus, NIC metabolism triggers AOX-mediated superoxide generation that can cause lung injury. Therefore, high uncontrolled levels of NIC inhalation, as occur with e-cigarette use, can induce oxidative lung damage.
Asunto(s)
Aldehído Oxidasa , Lesión Pulmonar , Nicotina , Superóxidos , Animales , Humanos , Masculino , Ratones , Administración por Inhalación , Aldehído Oxidasa/metabolismo , Sistemas Electrónicos de Liberación de Nicotina , Pulmón/metabolismo , Pulmón/patología , Pulmón/efectos de los fármacos , Lesión Pulmonar/metabolismo , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/patología , Ratones Endogámicos C57BL , Nicotina/efectos adversos , Nicotina/metabolismo , Estrés Oxidativo/efectos de los fármacos , Superóxidos/metabolismoRESUMEN
The actin cytoskeleton and reactive oxygen species (ROS) both play crucial roles in various cellular processes. Previous research indicated a direct interaction between two key components of these systems: the WAVE1 subunit of the WAVE regulatory complex (WRC), which promotes actin polymerization and the p47phox subunit of the NADPH oxidase 2 complex (NOX2), which produces ROS. Here, using carefully characterized recombinant proteins, we find that activated p47phox uses its dual Src homology 3 domains to bind to multiple regions within the WAVE1 and Abi2 subunits of the WRC, without altering WRC's activity in promoting Arp2/3-mediated actin polymerization. Notably, contrary to previous findings, p47phox uses the same binding pocket to interact with both the WRC and the p22phox subunit of NOX2, albeit in a mutually exclusive manner. This observation suggests that when activated, p47phox may separately participate in two distinct processes: assembling into NOX2 to promote ROS production and engaging with WRC to regulate the actin cytoskeleton.
Asunto(s)
NADPH Oxidasa 2 , Familia de Proteínas del Síndrome de Wiskott-Aldrich , Humanos , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , NADPH Oxidasa 2/metabolismo , NADPH Oxidasa 2/genética , NADPH Oxidasas/metabolismo , NADPH Oxidasas/genética , Unión Proteica , Especies Reactivas de Oxígeno/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Sitios de UniónRESUMEN
The phagocyte NADPH oxidase (NOX2) is an enzyme, crucial for innate immune defense, producing reactive oxygen species necessary for pathogen destruction. Its activation requires the assembly of soluble proteins (p47phox, p40phox, p67phox, and Rac) with the membrane-bound flavocytochrome b558 (cytb558). We combined circular-dichroism analyses, with decades of experimental data, to filter structural models of the NADPH oxidase complex generated by the artificial intelligence program AlphaFold2 (AF2). The predicted patterns tend to closely resemble the active states of the proteins, as shown by the compact structure of the cytb558, whose dehydrogenase domain is stabilized closer to the membrane. The modeling of the interaction of p47phox with cytb558, which is the initial assembly and activation steps of the NADPH oxidase, enables us to describe how the C-terminus of p47phox interacts with the cytb558. Combining the AF2 cytb558 -p47phox model and its classical molecular dynamics simulations, we highlighted new hydrophobic lipid insertions of p47phox, particularly at residues Trp80-Phe81 of its PX domain. The AF2 models also revealed the implications of intrinsically disordered regions, such as the fragment between the PX domain and the SH3 regions of p47phox, in ensuring distant protein-protein and membrane-protein interactions. Finally, the AF2 prediction of the cytb558-Trimera model highlighted the importance of leaving Rac1 as a separate protein to reach an active state of the NADPH oxidase complex. Altogether, our step-by-step approach provides a structural model of the active complex showing how disordered regions and specific lipid and protein interactions can enable and stabilize the multi-subunit assembly.