Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Glob Chang Biol ; 30(1): e17068, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273559

RESUMEN

Soils in hyper-arid climates, such as the Chilean Atacama Desert, show indications of past and present forms of life despite extreme water limitations. We hypothesize that fog plays a key role in sustaining life. In particular, we assume that fog water is incorporated into soil nutrient cycles, with the inland limit of fog penetration corresponding to the threshold for biological cycling of soil phosphorus (P). We collected topsoil samples (0-10 cm) from each of 54 subsites, including sites in direct adjacency (<10 cm) and in 1 m distance to plants, along an aridity gradient across the Coastal Cordillera. Satellite-based fog detection revealed that Pacific fog penetrates up to 10 km inland, while inland sites at 10-23 km from the coast rely solely on sporadic rainfall for water supply. To assess biological P cycling we performed sequential P fractionation and determined oxygen isotope of HCl-extractable inorganic P δ 18 O HCl - P i $$ \mathrm{P}\ \left({\updelta}^{18}{\mathrm{O}}_{\mathrm{HCl}-{\mathrm{P}}_{\mathrm{i}}}\right) $$ . Total P (Pt ) concentration exponentially increased from 336 mg kg-1 to a maximum of 1021 mg kg-1 in inland areas ≥10 km. With increasing distance from the coast, soil δ 18 O HCl - P i $$ {\updelta}^{18}{\mathrm{O}}_{\mathrm{HCl}-{\mathrm{P}}_{\mathrm{i}}} $$ values declined exponentially from 16.6‰ to a constant 9.9‰ for locations ≥10 km inland. Biological cycling of HCl-Pi near the coast reached a maximum of 76%-100%, which could only be explained by the fact that fog water predominately drives biological P cycling. In inland regions, with minimal rainfall (<5 mm) as single water source, only 24 ± 14% of HCl-Pi was biologically cycled. We conclude that biological P cycling in the hyper-arid Atacama Desert is not exclusively but mainly mediated by fog, which thus controls apatite dissolution rates and related occurrence and spread of microbial life in this extreme environment.


Asunto(s)
Fósforo , Suelo , Isótopos de Oxígeno , Agua , Chile , Clima Desértico
2.
Proc Natl Acad Sci U S A ; 115(7): E1578-E1587, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29382755

RESUMEN

The emergence and ongoing spread of multidrug-resistant bacteria puts humans and other species at risk for potentially lethal infections. Thus, novel antibiotics or alternative approaches are needed to target drug-resistant bacteria, and metabolic modulation has been documented to improve antibiotic efficacy, but the relevant metabolic mechanisms require more studies. Here, we show that glutamate potentiates aminoglycoside antibiotics, resulting in improved elimination of antibiotic-resistant pathogens. When exploring the metabolic flux of glutamate, it was found that the enzymes that link the phosphoenolpyruvate (PEP)-pyruvate-AcCoA pathway to the TCA cycle were key players in this increased efficacy. Together, the PEP-pyruvate-AcCoA pathway and TCA cycle can be considered the pyruvate cycle (P cycle). Our results show that inhibition or gene depletion of the enzymes in the P cycle shut down the TCA cycle even in the presence of excess carbon sources, and that the P cycle operates routinely as a general mechanism for energy production and regulation in Escherichia coli and Edwardsiella tarda These findings address metabolic mechanisms of metabolite-induced potentiation and fundamental questions about bacterial biochemistry and energy metabolism.


Asunto(s)
Aminoglicósidos/farmacología , Antibacterianos/farmacología , Edwardsiella tarda/efectos de los fármacos , Edwardsiella tarda/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Ácido Pirúvico/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Fosfoenolpiruvato/metabolismo
3.
IUBMB Life ; 72(11): 2241-2259, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32916028

RESUMEN

This article presents a personal and critical review of the history of the malate-aspartate shuttle (MAS), starting in 1962 and ending in 2020. The MAS was initially proposed as a route for the oxidation of cytosolic NADH by the mitochondria in Ehrlich ascites cell tumor lacking other routes, and to explain the need for a mitochondrial aspartate aminotransferase (glutamate oxaloacetate transaminase 2 [GOT2]). The MAS was soon adopted in the field as a major pathway for NADH oxidation in mammalian tissues, such as liver and heart, even though the energetics of the MAS remained a mystery. Only in the 1970s, LaNoue and coworkers discovered that the efflux of aspartate from mitochondria, an essential step in the MAS, is dependent on the proton-motive force generated by the respiratory chain: for every aspartate effluxed, mitochondria take up one glutamate and one proton. This makes the MAS in practice uni-directional toward oxidation of cytosolic NADH, and explains why the free NADH/NAD ratio is much higher in the mitochondria than in the cytosol. The MAS is still a very active field of research. Most recently, the focus has been on the role of the MAS in tumors, on cells with defects in mitochondria and on inborn errors in the MAS. The year 2019 saw the discovery of two new inborn errors in the MAS, deficiencies in malate dehydrogenase 1 and in aspartate transaminase 2 (GOT2). This illustrates the vitality of ongoing MAS research.


Asunto(s)
Aspartato Aminotransferasas/deficiencia , Ácido Aspártico/metabolismo , Malato Deshidrogenasa/deficiencia , Malatos/metabolismo , Errores Innatos del Metabolismo/patología , Mitocondrias/patología , Animales , Aspartato Aminotransferasas/genética , Respiración de la Célula , Humanos , Malato Deshidrogenasa/genética , Errores Innatos del Metabolismo/etiología , Errores Innatos del Metabolismo/metabolismo , Mitocondrias/metabolismo , Mutación
4.
New Phytol ; 209(4): 1540-52, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26452175

RESUMEN

The increase in aridity predicted with climate change will have a negative impact on the multiple functions and services (multifunctionality) provided by dryland ecosystems worldwide. In these ecosystems, soil communities dominated by mosses, lichens and cyanobacteria (biocrusts) play a key role in supporting multifunctionality. However, whether biocrusts can buffer the negative impacts of aridity on important biogeochemical processes controlling carbon (C), nitrogen (N), and phosphorus (P) pools and fluxes remains largely unknown. Here, we conducted an empirical study, using samples from three continents (North America, Europe and Australia), to evaluate how the increase in aridity predicted by climate change will alter the capacity of biocrust-forming mosses to modulate multiple ecosystem processes related to C, N and P cycles. Compared with soil surfaces lacking biocrusts, biocrust-forming mosses enhanced multiple functions related to C, N and P cycling and storage in semiarid and arid, but not in humid and dry-subhumid, environments. Most importantly, we found that the relative positive effects of biocrust-forming mosses on multifunctionality compared with bare soil increased with increasing aridity. These results were mediated by plant cover and the positive effects exerted by biocrust-forming mosses on the abundance of soil bacteria and fungi. Our findings provide strong evidence that the maintenance of biocrusts is crucial to buffer negative effects of climate change on multifunctionality in global drylands.


Asunto(s)
Briófitas/fisiología , Clima Desértico , Ecosistema , Bacterias/metabolismo , Hongos/fisiología , Geografía , Modelos Biológicos , Estados Unidos
5.
Bioresour Technol ; 376: 128882, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36925077

RESUMEN

This study aimed to explore the effect of phosphate-solubilizing bacteria (PSB) Bacillus inoculation in the cooling stage on hydroxyapatite dissolution, phosphorus (P) forms transformation, and bacterial P cycling genes in food waste composting with hydroxyapatite. Results indicated that PSB inoculation promoted the dissolution of hydroxyapatite, increased P availability of compost by 8.1% and decreased the ratio of organic P to inorganic P by 10.2% based on sequential fractionation and 31P nuclear magnetic resonance spectroscopy. Illumina sequencing indicated Bacillus relative abundance after inoculation increased up to one time higher than control after the cooling stage. Network analysis and metabolic function of bacterial community analysis suggested inorganic P solubilizing genes of Bacillus and organic P mineralization genes of other genera were improved after inoculation in the core module. Therefore, bioaugmentation of PSB in the cooling stage may be a potential way to improve P bioavailability of bone and food waste in composting.


Asunto(s)
Bacillus , Compostaje , Eliminación de Residuos , Fósforo/metabolismo , Fosfatos/química , Durapatita , Alimentos , Suelo/química , Bacterias/genética , Bacterias/metabolismo , Bacillus/genética , Bacillus/metabolismo
6.
Antibiotics (Basel) ; 11(2)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35203847

RESUMEN

Microbial antibiotic resistance has become a worldwide concern, as it weakens the efficiency of the control of pathogenic microbes in both the fields of medicine and plant protection. A better understanding of antibiotic resistance mechanisms is helpful for the development of efficient approaches to settle this issue. In the present study, GC-MS-based metabolomic analysis was applied to explore the mechanisms of Zhongshengmycin (ZSM) resistance in Xanthomonas oryzae (Xoo), a bacterium that causes serious disease in rice. Our results show that the decline in the pyruvate cycle (the P cycle) was a feature for ZSM resistance in the metabolome of ZSM-resistant strain (Xoo-ZSM), which was further demonstrated as the expression level of genes involved in the P cycle and two enzyme activities were reduced. On the other hand, alanine was considered a crucial metabolite as it was significantly decreased in Xoo-ZSM. Exogenous alanine promoted the P cycle and enhanced the ZSM-mediated killing efficiency in Xoo-ZSM. Our study highlights that the depressed P cycle is a feature in Xoo-ZSM for the first time. Additionally, exogenous alanine is a candidate enhancer and can be applied with ZSM to improve the antibiotic-mediated killing efficiency in the control of infection caused by Xoo.

7.
Sci Total Environ ; 830: 154263, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35247406

RESUMEN

The importance of dust and biomass burning episodes on the atmospheric concentration of water-soluble reactive phosphate (SRP) was determined in the eastern Mediterranean. SRP was measured with a new rapid real-time automated analytical system with a time resolution of a few minutes per sample and with an extremely low detection limit. The average atmospheric concentration of SRP during the sampling campaign was estimated at 0.35 ± 0.25 (median 0.30) nmol P m-3. The maximum concentration of SRP (3.08 nmol P m-3) was recorded during an intense dust episode, and was almost ten times higher than the campaign average, confirming that Saharan dust was an important primary source of bioavailable P to the eastern Mediterranean, especially during the spring period when 60% of the events occurred. Predicted increases in the frequency and intensity of dust storms in the area will enhance the role of the atmosphere as a source of bioavailable P for the Mediterranean marine ecosystem. During the warm period, when Northerly winds prevailed, biomass burning processes contributed significantly to soluble phosphorus delivered from atmospheric sources to the eastern Mediterranean. These inputs during warm periods are especially important for the Eastern Mediterranean, where biological productivity is strongly limited by nutrient availability.


Asunto(s)
Contaminantes Atmosféricos , Polvo , Contaminantes Atmosféricos/análisis , Biomasa , Polvo/análisis , Ecosistema , Monitoreo del Ambiente , Fosfatos/análisis , Agua
8.
Sci Total Environ ; 829: 154611, 2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35307435

RESUMEN

The Phosphorus (P) cycle is a crucial biochemical process in the earth system. However, an extensive increase of P input into watersheds destroyed the ecosystem. To explore the effects of internal P loading and external P input in global watersheds, we reviewed the research progress and synthesized the isotope data of experimental results from literatures. An integrated result of the observational and experimental studies revealed that both internal P and external P largely contribute to watershed P loadings in watersheds. Internal P can be released to the overlying water during sediment resuspension process and change of redox conditions near the sediment-water interface. Growing fertilizer application on farmlands to meet food demand with population rise and diet improvement contributed to an huge increase of external P input to watersheds. Therefore, water quality cannot be improved by only reducing internal P or external P loadings. In addition, we found that phosphate oxygen isotope technology is an effectively way to trace the P biogeochemical cycle in watersheds. To better predict the dynamic of P in watersheds, future research integrating oxygen isotope fractionation mechanisms and phosphate oxygen isotope technology would be more effective.


Asunto(s)
Ecosistema , Fósforo , Monitoreo del Ambiente/métodos , Isótopos de Oxígeno , Fosfatos , Fósforo/análisis
9.
PeerJ ; 9: e11704, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34316395

RESUMEN

Phosphorus (P) participates in various assimilatory and metabolic processes in plants. Agricultural systems are facing P deficiency in many areas worldwide, while global P demand is increasing. Pioneering efforts have made us better understand the more complete use of residual P in soils and the link connecting plant P resorption to soil P deficiency, which will help to address the challenging issue of P deficiency. We summarized the state of soil "residual P" and the mechanisms of utilizing this P pool, the possible effects of planting and tillage patterns, various fertilization management practices and phosphate-solubilizing microorganisms on the release of soil residual P and the link connecting leaf P resorption to soil P deficiency and the regulatory mechanisms of leaf P resorption. The utilization of soil residual P represents a great challenge and a good chance to manage P well in agricultural systems. In production practices, the combination of "optimal fertilization and agronomic measures" can be adopted to utilize residual P in soils. Some agricultural practices, such as reduced or no tillage, crop rotation, stubble retention and utilization of biofertilizers-phosphate-solubilizing microorganisms should greatly improve the conversion of various P forms in the soil due to changes in the balance of individual nutrients in the soil or due to improvements in the phosphatase profile and activity in the soil. Leaf P resorption makes the plant less dependent on soil P availability, which can promote the use efficiency of plant P and enhance the adaptability to P-deficient environments. This idea provides new options for helping to ameliorate the global P dilemma.

10.
Sci Total Environ ; 543(Pt A): 67-74, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26580728

RESUMEN

Phosphite (H2PO3(-), HPO3(2-), +3 valence), a reduced form of phosphorus (P), has been widely detected in water environments. The role of phosphite in the P biogeochemical cycle has not been investigated systematically and quantitative results on phosphite fluxes are lacking. In this study, intact sediment core simulation was employed to measure the flux of phosphite at the sediment-water interface in northern Lake Taihu. Phosphite fluxes (µmol m(-2) d(-1)) ranged from -38.21±1.14 to 7.10±2.18, with an annual average of -4.72±10.40. On the whole, phosphite migrated from water into sediment and the sediment was primarily a sink. The highest seasonal negative phosphite fluxes (µmol m(-2) d(-1)) occurred in winter (-10.44±18.63), followed by summer (-8.04±5.61) and spring (-2.61±4.17). In autumn, phosphite flux was 2.20±4.07. Higher annual average negative fluxes of phosphite (µmol m(-2) d(-1)) appeared in site ZSB (-12.70±17.96), which contained the highest content of total soluble P. The average yearly migration of phosphite in Lake Taihu from water to sediment was estimated to be (4.04±8.88)×10(6) mol y(-1). The transfer of phosphite from water into sediment usually occurs in winter may due to the season's natural tendency to create more favorable conditions for phosphite biogeochemical reactions. Phosphite fluxes showed significant negative correlations with the original phosphite concentration in water (r=-0.840, p<0.01), as well as organic matter (r=-0.720, p<0.01) and phosphate bound to Ca (Ca-Ps) (r=-0.632, p<0.05) in sediment. These results indicate that microbiological processes and P species bound to Ca may play an important role in the P redox cycle. No significant correlations between phosphite fluxes and dissolved oxygen or oxidation-reduction potential were observed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA