Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(24): 5375-5393.e25, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37995657

RESUMEN

Itch is an unpleasant sensation that evokes a desire to scratch. The skin barrier is constantly exposed to microbes and their products. However, the role of microbes in itch generation is unknown. Here, we show that Staphylococcus aureus, a bacterial pathogen associated with itchy skin diseases, directly activates pruriceptor sensory neurons to drive itch. Epicutaneous S. aureus exposure causes robust itch and scratch-induced damage. By testing multiple isogenic bacterial mutants for virulence factors, we identify the S. aureus serine protease V8 as a critical mediator in evoking spontaneous itch and alloknesis. V8 cleaves proteinase-activated receptor 1 (PAR1) on mouse and human sensory neurons. Targeting PAR1 through genetic deficiency, small interfering RNA (siRNA) knockdown, or pharmacological blockade decreases itch and skin damage caused by V8 and S. aureus exposure. Thus, we identify a mechanism of action for a pruritogenic bacterial factor and demonstrate the potential of inhibiting V8-PAR1 signaling to treat itch.


Asunto(s)
Péptido Hidrolasas , Prurito , Receptor PAR-1 , Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Humanos , Ratones , Péptido Hidrolasas/metabolismo , Prurito/microbiología , Receptor PAR-1/metabolismo , Staphylococcus aureus/enzimología , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/fisiología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología
2.
J Biol Chem ; 299(12): 105370, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37865315

RESUMEN

G protein-coupled receptors (GPCRs) are highly druggable and implicated in numerous diseases, including vascular inflammation. GPCR signals are transduced from the plasma membrane as well as from endosomes and controlled by posttranslational modifications. The thrombin-activated GPCR protease-activated receptor-1 is modified by ubiquitin. Ubiquitination of protease-activated receptor-1 drives recruitment of transforming growth factor-ß-activated kinase-1-binding protein 2 (TAB2) and coassociation of TAB1 on endosomes, which triggers p38 mitogen-activated protein kinase-dependent inflammatory responses in endothelial cells. Other endothelial GPCRs also induce p38 activation via a noncanonical TAB1-TAB2-dependent pathway. However, the regulatory processes that control GPCR ubiquitin-driven p38 inflammatory signaling remains poorly understood. We discovered mechanisms that turn on GPCR ubiquitin-dependent p38 signaling, however, the mechanisms that turn off the pathway are not known. We hypothesize that deubiquitination is an important step in regulating ubiquitin-driven p38 signaling. To identify specific deubiquitinating enzymes (DUBs) that control GPCR-p38 mitogen-activated protein kinase signaling, we conducted a siRNA library screen targeting 96 DUBs in endothelial cells and HeLa cells. We identified nine DUBs and validated the function two DUBs including cylindromatosis and ubiquitin-specific protease-34 that specifically regulate thrombin-induced p38 phosphorylation. Depletion of cylindromatosis expression by siRNA enhanced thrombin-stimulated p38 signaling, endothelial barrier permeability, and increased interleukin-6 cytokine expression. Conversely, siRNA knockdown of ubiquitin-specific protease-34 expression decreased thrombin-promoted interleukin-6 expression and had no effect on thrombin-induced endothelial barrier permeability. These studies suggest that specific DUBs distinctly regulate GPCR-induced p38-mediated inflammatory responses.


Asunto(s)
Enzima Desubiquitinante CYLD , Enzimas Desubicuitinizantes , Células Endoteliales , Trombina , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enzima Desubiquitinante CYLD/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Células Endoteliales/metabolismo , Células HeLa , Interleucina-6/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Receptor PAR-1/metabolismo , ARN Interferente Pequeño/metabolismo , Trombina/farmacología , Trombina/metabolismo , Ubiquitina/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Línea Celular , Regulación Enzimológica de la Expresión Génica , Fosforilación/genética
3.
Glia ; 72(9): 1707-1724, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38864289

RESUMEN

Astrocytes play an essential role in regulating synaptic transmission. This study describes a novel form of modulation of excitatory synaptic transmission in the mouse hippocampus by astrocytic G-protein-coupled receptors (GPCRs). We have previously described astrocytic glutamate release via protease-activated receptor-1 (PAR1) activation, although the regulatory mechanisms for this are complex. Through electrophysiological analysis and modeling, we discovered that PAR1 activation consistently increases the concentration and duration of glutamate in the synaptic cleft. This effect was not due to changes in the presynaptic glutamate release or alteration in glutamate transporter expression. However, blocking group II metabotropic glutamate receptors (mGluR2/3) abolished PAR1-mediated regulation of synaptic glutamate concentration, suggesting a role for this GPCR in mediating the effects of PAR1 activation on glutamate release. Furthermore, activation of mGluR2/3 causes glutamate release through the TREK-1 channel in hippocampal astrocytes. These data show that astrocytic GPCRs engage in a novel regulatory mechanism to shape the time course of synaptically-released glutamate in excitatory synapses of the hippocampus.


Asunto(s)
Astrocitos , Región CA1 Hipocampal , Ácido Glutámico , Ratones Endogámicos C57BL , Receptor PAR-1 , Receptores de Glutamato Metabotrópico , Sinapsis , Animales , Receptores de Glutamato Metabotrópico/metabolismo , Astrocitos/metabolismo , Ácido Glutámico/metabolismo , Sinapsis/metabolismo , Región CA1 Hipocampal/metabolismo , Receptor PAR-1/metabolismo , Ratones , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Masculino , Transmisión Sináptica/fisiología , Transmisión Sináptica/efectos de los fármacos , Canales de Potasio de Dominio Poro en Tándem/metabolismo
4.
BMC Biotechnol ; 24(1): 55, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135175

RESUMEN

BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) is a malignant tumour. Although some standard therapies have been established to improve the cure rate, they remain ineffective for specific individuals. Therefore, it is meaningful to find more novel therapeutic approaches. Macrophage polarisation is extensively involved in the process of tumour development. Recombinant hirudin (rH) affects macrophages and has been researched frequently in clinical trials lately. Our article validated the regulatory role of rH in macrophage polarisation and the mechanism of PAR-1 by collecting clinical samples and subsequently establishing a cellular model to provide a scientifically supported perspective for discovering new therapeutic approaches. METHOD: We assessed the expression of macrophage polarisation markers, cytokines and PAR-1 in clinical samples. We established a cell model by co-culture with THP-1 and OCI-Ly10 cell. We determined the degree of cell polarisation and expression of validation cytokines by flow cytometry, ELISA, and RT-qPCR to confirm the success of the cell model. Subsequently, different doses of rH were added to discover the function of rH on cell polarisation. We confirmed the mechanism of PAR-1 in macrophage polarisation by transfecting si-PAR-1 and pcDNA3.1-PAR-1. RESULTS: We found higher expression of M2 macrophage markers (CD163 + CMAF+) and PAR-1 in 32 DLBCL samples. After inducing monocyte differentiation into M0 macrophages and co-culturing with OCI-Ly10 lymphoma cells, we found a trend of these expressions in the cell model consistent with the clinical samples. Subsequently, we discovered that rH promotes the polarisation of M1 macrophages but inhibits the polarisation of M2 macrophages. We also found that PAR-1 regulates macrophage polarisation, inhibiting cell proliferation, migration, invasion and angiogenic capacity. CONCLUSION: rH inhibits macrophage polarisation towards the M2 type and PAR-1 regulates polarisation, proliferation, migration, invasion, and angiogenesis of DLBCL-associated macrophages.


Asunto(s)
Hirudinas , Linfoma de Células B Grandes Difuso , Macrófagos , Receptor PAR-1 , Proteínas Recombinantes , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/genética , Humanos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Receptor PAR-1/metabolismo , Receptor PAR-1/genética , Hirudinas/farmacología , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Línea Celular Tumoral , Técnicas de Cocultivo , Polaridad Celular/efectos de los fármacos , Femenino , Masculino , Citocinas/metabolismo , Persona de Mediana Edad , Células THP-1 , Anciano
5.
Cytogenet Genome Res ; : 1-6, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39074465

RESUMEN

INTRODUCTION: Isodicentric Y chromosomes are relatively common structural variants of the human genome. The underlying mechanism of isodicentric Y chromosomes with short arm breakpoints [idic(Yq)] remains to be clarified. CASE PRESENTATION: We encountered a Japanese man with azoospermia and mild short stature. G-banding and array-based comparative genomic hybridization indicated that his karyotype was 45,X/46,X,idic(Y)(qter→p11.32::p11.32→qter) with a ∼1.8 Mb terminal deletion. Whole-genome sequencing suggested that the Y chromosome had four breakpoints in a ∼7 kb region of the pseudoautosomal region 1 (PAR1). CONCLUSION: This case was assumed to have an idic(Yq) resulting from multiple DNA double-strand breaks in PAR1. This rearrangement may have been facilitated by the PAR1-specific chromatin architecture. The clinical features of the patient can be ascribed to SHOX haploinsufficiency and the presence of a 45,X cell line, although copy-number gains of some Yq genes and the size reduction of PAR1 may also contribute to his spermatogenic failure.

6.
Mol Carcinog ; 63(7): 1288-1302, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38607237

RESUMEN

Baicalein has been implicated in the chemotherapy overcoming triple-negative breast cancer (TNBC). However, many unanswered questions remain regarding its role in treating TNBC. Here, we sought to demonstrate the molecular pathway mediated by baicalein in TNBC. Lysine-specific demethylase 4E (KDM4E), reduced in TNBC cells, was identified as a target protein of baicalein, and baicalein enhanced the protein expression and stability of KDM4E in TNBC cells. Knockdown of KDM4E attenuated the inhibitory effect of baicalein on TNBC cell activity, as demonstrated by intensified mobility, viability, and apoptosis resistance in TNBC cells. KDM4E activated protein bicaudal D homolog 1 (BICD1) expression by reducing the deposition of histone H3 lysine 9 trimethylation (H3K9me3) in its promoter, whereas BICD1 promoted protease-activated receptor-1 (PAR1) endocytosis and blocked PAR1 signaling through physical interaction with PAR1. Knockdown of KDM4E strengthened the PAR1-dependent activity of TNBC cells in response to thrombin activation, whereas TNBC progression activated by PAR1 signaling was blocked by combined overexpression of BICD1. Taken together, our data indicate that baicalein-promoted KDM4E enhanced the expression of BICD1 and activated the inhibitory effect of BICD1 on PAR1 signaling, thereby inhibiting TNBC progression.


Asunto(s)
Flavanonas , Transducción de Señal , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/genética , Flavanonas/farmacología , Femenino , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Animales , Receptor PAR-1/metabolismo , Receptor PAR-1/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Progresión de la Enfermedad , Ratones
7.
Curr Top Microbiol Immunol ; 444: 239-257, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38231221

RESUMEN

Helicobacter pylori CagA is the first and only bacterial oncoprotein etiologically associated with human cancer. Upon delivery into gastric epithelial cells via bacterial type IV secretion, CagA acts as a pathogenic/pro-oncogenic scaffold that interacts with and functionally perturbs multiple host proteins such as pro-oncogenic SHP2 phosphatase and polarity-regulating kinase PAR1b/MARK2. Although H. pylori infection is established during early childhood, gastric cancer generally develops in elderly individuals, indicating that oncogenic CagA activity is effectively counteracted at a younger age. Moreover, the eradication of cagA-positive H. pylori cannot cure established gastric cancer, indicating that H. pylori CagA-triggered gastric carcinogenesis proceeds via a hit-and-run mechanism. In addition to its direct oncogenic action, CagA induces BRCAness, a cellular status characterized by replication fork destabilization and loss of error-free homologous recombination-mediated DNA double-strand breaks (DSBs) by inhibiting cytoplasmic-to-nuclear localization of the BRCA1 tumor suppressor. This causes genomic instability that leads to the accumulation of excess mutations in the host cell genome, which may underlie hit-and-run gastric carcinogenesis. The close connection between CagA and BRCAness was corroborated by a recent large-scale case-control study that revealed that the risk of gastric cancer in individuals carrying pathogenic variants of genes that induce BRCAness (such as BRCA1 and BRCA2) dramatically increases upon infection with cagA-positive H. pylori. Accordingly, CagA-mediated BRCAness plays a crucial role in the development of gastric cancer in conjunction with the direct oncogenic action of CagA.


Asunto(s)
Helicobacter pylori , Neoplasias Gástricas , Preescolar , Anciano , Humanos , Neoplasias Gástricas/genética , Helicobacter pylori/genética , Estudios de Casos y Controles , Proteínas Oncogénicas , Carcinogénesis/genética
8.
Brain Behav Immun ; 116: 85-100, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38042209

RESUMEN

Acute spinal cord injury (SCI) always results in sustainable recruitment of inflammatory cells driven by sequentially generated chemokines, thereby eliciting excessive neuroinflammation. However, the underlying mechanism of temporally produced chemokines remains elusive. Reactive astrocytes are known to be the main sources of chemokines at the lesion site, which can be immediately activated by thrombin following SCI. In the present study, SCI was shown to induce a sequential production of chemokines CCL2 and CCL5 from astrocytes, which were associated with a persistent infiltration of macrophages/microglia. The rapidly induced CCL2 and later induced CCL5 from astrocytes were regulated by thrombin at the damaged tissues. Investigation of the regulatory mechanism revealed that thrombin facilitated astrocytic CCL2 production through activation of ERK/JNK/NFκB pathway, whereas promoted CCL5 production through PLCß3/NFκB and ERK/JNK/NFκB signal pathway. Inhibition of thrombin activity significantly decreased production of astrocytic CCL2 and CCL5, and reduced the accumulation of macrophages/microglia at the lesion site. Accordingly, the locomotor function of rats was remarkably improved. The present study has provided a new regulatory mechanism on thrombin-mediated sequential production of astrocytic chemokines, which might be beneficial for clinical therapy of CNS neuroinflammation.


Asunto(s)
Astrocitos , Traumatismos de la Médula Espinal , Ratas , Animales , Astrocitos/metabolismo , Trombina/farmacología , Enfermedades Neuroinflamatorias , Quimiocinas/metabolismo , Médula Espinal/metabolismo
9.
Cell Biol Int ; 48(4): 440-449, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38115179

RESUMEN

Kirsten rat sarcoma virus (KRAS) gene mutation is common in colorectal cancer (CRC) and is often predictive of treatment failure and poor prognosis. To understand the mechanism, we compared the transcriptome of CRC patients with wild-type and mutant KRAS and found that KRAS mutation is associated with the overexpression of a secreted serine protease, kallikrein-related peptidase 10 (KLK10). Moreover, using in vitro and in vivo models, we found that KLK10 overexpression favors the rapid growth and liver metastasis of KRAS mutant CRC and can also impair the efficacy of KRAS inhibitors, leading to drug resistance and poor survival. Further functional assays revealed that the oncogenic role of KLK10 is mediated by protease-activated receptor 1 (PAR1). KLK10 cleaves and activates PAR1, which further activates 3-phosphoinositide-dependent kinase 1 (PDK1)-AKT oncogenic pathway. Notably, suppressing PAR1-PDK1-AKT cascade via KLK10 knockdown can effectively inhibit CRC progression and improve the sensitivity to KRAS inhibitor, providing a promising therapeutic strategy. Taken together, our study showed that KLK10 promotes the progression of KRAS mutant CRC via activating PAR1-PDK1-AKT signaling pathway. These findings expanded our knowledge of CRC development, especially in the setting of KRAS mutation, and also provided novel targets for clinical intervention.


Asunto(s)
Neoplasias Colorrectales , Receptor PAR-1 , Humanos , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Calicreínas/genética , Calicreínas/metabolismo , Mutación/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Transducción de Señal , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo
10.
Hepatol Res ; 54(10): 942-948, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38509789

RESUMEN

AIM: Primary sclerosing cholangitis (PSC) is a rare cholestatic liver disease characterized by inflammation of the intra- and extrahepatic bile ducts. Pathogenesis of PSC is still enigmatic but is likely to be multifactorial. Recently, we identified an interleukin-6 (IL-6)-dependent signal transducer and activator of transcription 3 (STAT3) activation in CD4+ TH1 and TH17 cells in PSC. The IL-6/STAT3 pathway was shown to be regulated by protease-activated receptor 1 (PAR1) contributing to inflammation. The role of the PAR1 -506 deletion/insertion (Del/Ins) polymorphism in PSC has not yet been investigated. METHODS: Two hundred eighty four PSC patients (200 patients with inflammatory bowel diseases [IBD] and 84 without IBD) and 309 healthy controls were genotyped for PAR1 rs11267092 (-506 Del/Ins -13 bp). Results were correlated with clinical characteristics and transplant-free survival. RESULTS: The frequency of PAR1 -506 Ins allele carriers (Del/Ins and Ins/Ins) was significantly higher in PSC patients (57.0%) compared to healthy controls (39.8%). Furthermore, carriers of PAR1 -506 Ins allele were more likely to have PSC than noncarriers (odds ratio 2.01; 95% confidence interval, 1.45-2.79). Patients with PSC carrying the PAR1 -506 Ins allele showed significantly higher alanine aminotransferase serum levels (p = 0.0357) and a trend toward shorter transplant-free survival time compared to noncarriers (8.9 ± 6.6 years vs. 10.5 ± 7.1 years; p = 0.076). CONCLUSIONS: Our study shows that PAR1 -506 Ins is significantly more frequent in people with PSC. As PAR1 -506 Ins allele carriers tended to have a shorter transplant-free survival, PAR1 might play a role in the development and course of PSC.

11.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33836597

RESUMEN

Thrombomodulin (TM) is a thrombin receptor on endothelial cells that is involved in promoting activation of the anticoagulant protein C pathway during blood coagulation. TM also exerts protective anti-inflammatory properties through a poorly understood mechanism. In this study, we investigated the importance of TM signaling to cellular functions by deleting it from endothelial cells by CRISPR-Cas9 technology and analyzed the resultant phenotype of TM-deficient (TM-/- ) cells. Deficiency of TM in endothelial cells resulted in increased basal permeability and hyperpermeability when stimulated by thrombin and TNF-α. The loss of the basal barrier permeability function was accompanied by increased tyrosine phosphorylation of VE-cadherin and reduced polymerization of F-actin filaments at cellular junctions. A significant increase in basal NF-κB signaling and expression of inflammatory cell adhesion molecules was observed in TM-/- cells that resulted in enhanced adhesion of leukocytes to TM-/- cells in flow chamber experiments. There was also a marked increase in expression, storage, and release of the von Willebrand factor (VWF) and decreased storage and release of angiopoietin-2 in TM-/- cells. In a flow chamber assay, isolated platelets adhered to TM-/- cells, forming characteristic VWF-platelet strings. Increased VWF levels and inflammatory foci were also observed in the lungs of tamoxifen-treated ERcre-TMf/f mice. Reexpression of the TM construct in TM-/- cells, but not treatment with soluble TM, normalized the cellular phenotype. Based on these results, we postulate cell-bound TM endows a quiescent cellular phenotype by tightly regulating expression of procoagulant, proinflammatory, and angiogenic molecules in vascular endothelial cells.


Asunto(s)
Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Trombomodulina/metabolismo , Angiopoyetina 2/metabolismo , Animales , Plaquetas/citología , Permeabilidad Capilar , Adhesión Celular , Células Endoteliales/citología , Endotelio Vascular/citología , Humanos , Inflamación , Leucocitos/citología , Pulmón/metabolismo , Ratones , Receptor PAR-1/metabolismo , Trombina/metabolismo , Trombomodulina/deficiencia , Trombomodulina/genética , Factor de von Willebrand/metabolismo
12.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38612918

RESUMEN

Patients with first-diagnosed atrial fibrillation (FDAF) exhibit major adverse cardiovascular events (MACEs) during follow-up. Preclinical models have demonstrated that thrombo-inflammation mediates adverse cardiac remodeling and atherothrombotic events. We have hypothesized that thrombin activity (FIIa) links coagulation with inflammation and cardiac fibrosis/dysfunction. Surrogate markers of the thrombo-inflammatory response in plasma have not been characterized in FDAF. In this prospective longitudinal study, patients presenting with FDAF (n = 80), and 20 matched controls, were included. FIIa generation and activity in plasma were increased in the patients with early AF compared to the patients with chronic cardiovascular disease without AF (controls; p < 0.0001). This increase was accompanied by elevated biomarkers (ELISA) of platelet and endothelial activation in plasma. Pro-inflammatory peripheral immune cells (TNF-α+ or IL-6+) that expressed FIIa-activated protease-activated receptor 1 (PAR1) (flow cytometry) circulated more frequently in patients with FDAF compared to the controls (p < 0.0001). FIIa activity correlated with cardiac fibrosis (collagen turnover) and cardiac dysfunction (NT-pro ANP/NT-pro BNP) surrogate markers. FIIa activity in plasma was higher in patients with FDAF who experienced MACE. Signaling via FIIa might be a presumed link between the coagulation system (tissue factor-FXa/FIIa-PAR1 axis), inflammation, and pro-fibrotic pathways (thrombo-inflammation) in FDAF.


Asunto(s)
Fibrilación Atrial , Humanos , Fibrilación Atrial/diagnóstico , Estudios Longitudinales , Estudios Prospectivos , Receptor PAR-1 , Biomarcadores , Fibrosis
13.
Am J Respir Cell Mol Biol ; 68(4): 406-416, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36413750

RESUMEN

Transmembrane serine proteases are a group of enzymes that are implicated in diverse biological processes. Transmembrane serine protease 11E (TMPRSS11E) is expressed in epithelial cells. Previous studies on TMPRSS11E mainly focused on its function in tumor progression. In this study, we investigated the association of TMPRSS11E with the inflammatory response. We found that TMPRSS11E levels were upregulated in the BAL fluid of patients with acute respiratory distress syndrome and LPS-stimulated cultured epithelial cells. In an LPS-induced acute lung injury mouse model and a cercal ligation and puncture-induced sepsis model, increased expression levels of TMPRSS11E were also observed in the lung tissues. Knockdown of TMPRSS11E suppressed the proinflammatory cytokine release and alleviated lung injury. In addition, increased TMPRSS11E expression was detected in lung tissues of poly(I:C)-challenged mice, and overexpression of TMPRSS11E aggregated the lung injury. Unexpectedly, ectopic TMPRSS11E expression in macrophages was observed. Protease-activated receptor-1 was proteolytically activated by TMPRSS11E and enhanced the levels of proinflammatory cytokines. Taken together, our results indicate that TMPRSS11E can be induced during inflammatory response triggered by infection. Therefore, interventions with TMPRSS11E can aid in the treatment of pulmonary inflammation.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Animales , Ratones , Lesión Pulmonar Aguda/patología , Citocinas/metabolismo , Inflamación/patología , Lipopolisacáridos/farmacología , Pulmón/patología , Poli I-C/farmacología
14.
Kidney Int ; 104(2): 265-278, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36940798

RESUMEN

About 30% of patients who have a kidney transplant with underlying nephrotic syndrome (NS) experience rapid relapse of disease in their new graft. This is speculated to be due to a host-derived circulating factor acting on podocytes, the target cells in the kidney, leading to focal segmental glomerulosclerosis (FSGS). Our previous work suggests that podocyte membrane protease receptor 1 (PAR-1) is activated by a circulating factor in relapsing FSGS. Here, the role of PAR-1 was studied in human podocytes in vitro, and using a mouse model with developmental or inducible expression of podocyte-specific constitutively active PAR-1, and using biopsies from patients with nephrotic syndrome. In vitro podocyte PAR-1 activation caused a pro-migratory phenotype with phosphorylation of the kinase JNK, VASP protein and docking protein Paxillin. This signaling was mirrored in podocytes exposed to patient relapse-derived NS plasma and in patient disease biopsies. Both developmental and inducible activation of transgenic PAR-1 (NPHS2 Cre PAR-1Active+/-) caused early severe nephrotic syndrome, FSGS, kidney failure and, in the developmental model, premature death. We found that the non-selective cation channel protein TRPC6 could be a key modulator of PAR-1 signaling and TRPC6 knockout in our mouse model significantly improved proteinuria and extended lifespan. Thus, our work implicates podocyte PAR-1 activation as a key initiator of human NS circulating factor and that the PAR-1 signaling effects were partly modulated through TRPC6.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Síndrome Nefrótico , Podocitos , Animales , Humanos , Podocitos/patología , Síndrome Nefrótico/patología , Glomeruloesclerosis Focal y Segmentaria/patología , Canal Catiónico TRPC6/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Modelos Animales de Enfermedad , Recurrencia
15.
J Cell Sci ; 134(8)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33722977

RESUMEN

The α-arrestin domain containing protein 3 (ARRDC3) is a tumor suppressor in triple-negative breast carcinoma (TNBC), a highly metastatic subtype of breast cancer that lacks targeted therapies. Thus, understanding the mechanisms and targets of ARRDC3 in TNBC is important. ARRDC3 regulates trafficking of protease-activated receptor 1 (PAR1, also known as F2R), a G-protein-coupled receptor (GPCR) implicated in breast cancer metastasis. Loss of ARRDC3 causes overexpression of PAR1 and aberrant signaling. Moreover, dysregulation of GPCR-induced Hippo signaling is associated with breast cancer progression. However, the mechanisms responsible for Hippo dysregulation remain unknown. Here, we report that the Hippo pathway transcriptional co-activator TAZ (also known as WWTR1) is the major effector of GPCR signaling and is required for TNBC migration and invasion. Additionally, ARRDC3 suppresses PAR1-induced Hippo signaling via sequestration of TAZ, which occurs independently of ARRDC3-regulated PAR1 trafficking. The ARRDC3 C-terminal PPXY motifs and TAZ WW domain are crucial for this interaction and are required for suppression of TNBC migration and lung metastasis in vivo. These studies are the first to demonstrate a role for ARRDC3 in regulating GPCR-induced TAZ activity in TNBC and reveal multi-faceted tumor suppressor functions of ARRDC3. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Neoplasias de la Mama , Arrestinas/metabolismo , Neoplasias de la Mama/genética , Femenino , Humanos , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Transducción de Señal , Factores de Transcripción
16.
BMC Med ; 21(1): 338, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37667257

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a devastating malignancy with a 5-year survival rate of 6% following a diagnosis, and novel therapeutic modalities are needed. Protease-activated receptor 1 (PAR1) is abundantly overexpressed by both tumor cells and multiple stroma cell subsets in the tumor microenvironment (TME), thereby offering a suitable immunotherapy target. METHODS: A chimeric antigen receptor (CAR) strategy was applied to target PAR1 using a human anti-PAR1 scFv antibody fused to the transmembrane region with two co-stimulatory intracellular signaling domains of cluster of differentiation 28 (CD28) and CD137 (4-1BB), added to CD3ζ in tandem. RESULTS: The engineered PAR1CAR-T cells eliminated PAR1 overexpression and transforming growth factor (TGF)-ß-mediated PAR1-upregulated cancer cells by approximately 80% in vitro. The adoptive transfer of PAR1CAR-T cells was persistently enhanced and induced the specific regression of established MIA PaCa-2 cancer cells by > 80% in xenograft models. Accordingly, proinflammatory cytokines/chemokines increased in CAR-T-cell-treated mouse sera, whereas Ki67 expression in tumors decreased. Furthermore, the targeted elimination of PAR1-expressing tumors reduced matrix metalloproteinase 1 (MMP1) levels, suggesting that the blocking of the PAR1/MMP1 pathway constitutes a new therapeutic option for PDAC treatment. CONCLUSIONS: Third-generation PAR1CAR-T cells have antitumor activity in the TME, providing innovative CAR-T-cell immunotherapy against PDAC.


Asunto(s)
Neoplasias Pancreáticas , Receptores Quiméricos de Antígenos , Humanos , Animales , Ratones , Receptor PAR-1/genética , Metaloproteinasa 1 de la Matriz , Neoplasias Pancreáticas/terapia , Microambiente Tumoral , Neoplasias Pancreáticas
17.
Nephrol Dial Transplant ; 38(10): 2232-2247, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36914214

RESUMEN

BACKGROUND: Thromboembolic events are prevalent in chronic kidney disease (CKD) patients due to increased thrombin generation leading to a hypercoagulable state. We previously demonstrated that inhibition of protease-activated receptor-1 (PAR-1) by vorapaxar reduces kidney fibrosis. METHODS: We used an animal model of unilateral ischemia-reperfusion injury-induced CKD to explore the tubulovascular crosstalk mechanisms of PAR-1 in acute kidney injury (AKI)-to-CKD transition. RESULTS: During the early phase of AKI, PAR-1-deficient mice exhibited reduced kidney inflammation, vascular injury, and preserved endothelial integrity and capillary permeability. During the transition phase to CKD, PAR-1 deficiency preserved kidney function and diminished tubulointerstitial fibrosis via downregulated transforming growth factor-ß/Smad signaling. Maladaptive repair in the microvasculature after AKI further exacerbated focal hypoxia with capillary rarefaction, which was rescued by stabilization of hypoxia-inducible factor and increased tubular vascular endothelial growth factor A in PAR-1-deficient mice. Chronic inflammation was also prevented with reduced kidney infiltration by both M1- and M2-polarized macrophages. In thrombin-induced human dermal microvascular endothelial cells (HDMECs), PAR-1 mediated vascular injury through activation of NF-κB and ERK MAPK pathways. Gene silencing of PAR-1 exerted microvascular protection via a tubulovascular crosstalk mechanism during hypoxia in HDMECs. Finally, pharmacologic blockade of PAR-1 with vorapaxar improved kidney morphology, promoted vascular regenerative capacity, and reduced inflammation and fibrosis depending on the time of initiation. CONCLUSIONS: Our findings elucidate a detrimental role of PAR-1 in vascular dysfunction and profibrotic responses upon tissue injury during AKI-to-CKD transition and provide an attractive therapeutic strategy for post-injury repair in AKI.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Daño por Reperfusión , Lesiones del Sistema Vascular , Animales , Humanos , Ratones , Lesión Renal Aguda/etiología , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/tratamiento farmacológico , Células Endoteliales/metabolismo , Fibrosis , Hipoxia , Inflamación/patología , Riñón , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Daño por Reperfusión/complicaciones , Daño por Reperfusión/prevención & control , Daño por Reperfusión/metabolismo , Trombina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología
18.
J Pathol ; 257(4): 545-560, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35218558

RESUMEN

The epidermis is the outer stratified epithelium of the skin, forming the physical barrier that is indispensable for homeostasis. Epidermal proteolysis, mainly but not exclusively executed by kallikrein-related peptidases (KLKs), is tightly regulated to ensure maintenance of physiological skin renewal and an intact skin barrier. Perturbation of epidermal proteolytic networks is implicated in a wide array of rare and common skin pathologies of diverse genetic backgrounds. Recent studies of monogenic human skin diseases and newly developed animal models have revealed new mechanisms of regulation of proteolytic pathways in epidermal physiology and in disease states. These new data have challenged some accepted views, for example the role of matriptase in epidermal desquamation, which turned out to be restricted to mouse skin. The significance of PAR2 signaling in skin inflammation should also be reconsidered in the face of recent findings. Cumulatively, recent studies necessitate a sophisticated redefinition of the proteolytic and signaling pathways that operate in human skin. We elaborate how epidermal proteolysis is finely regulated at multiple levels, and in a spatial manner that has not been taken into consideration so far, in which specific proteases are confined to distinct epidermal sublayers. Of interest, transglutaminases have emerged as regulators of epidermal proteolysis and desquamation by spatially fixing endogenous protease inhibitors, constituting regulatory factors that were not recognized before. Furthermore, new evidence suggests a link between proteolysis and lipid metabolism. By synthesis of established notions and recent discoveries, we provide an up-to-date critical evaluation and synthesis of current knowledge and the extended complexity of proteolysis regulation and signaling pathways in skin. © 2022 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Epidermis , Proteolisis , Piel , Animales , Epidermis/metabolismo , Humanos , Calicreínas/genética , Calicreínas/metabolismo , Ratones , Piel/metabolismo , Fenómenos Fisiológicos de la Piel
19.
J Pathol ; 257(4): 379-382, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35635736

RESUMEN

The 2022 Annual Review Issue of The Journal of Pathology, Recent Advances in Pathology, contains 15 invited reviews on research areas of growing importance in pathology. This year, the articles include those that focus on digital pathology, employing modern imaging techniques and software to enable improved diagnostic and research applications to study human diseases. This subject area includes the ability to identify specific genetic alterations through the morphological changes they induce, as well as integrating digital and computational pathology with 'omics technologies. Other reviews in this issue include an updated evaluation of mutational patterns (mutation signatures) in cancer, the applications of lineage tracing in human tissues, and single cell sequencing technologies to uncover tumour evolution and tumour heterogeneity. The tissue microenvironment is covered in reviews specifically dealing with proteolytic control of epidermal differentiation, cancer-associated fibroblasts, field cancerisation, and host factors that determine tumour immunity. All of the reviews contained in this issue are the work of invited experts selected to discuss the considerable recent progress in their respective fields and are freely available online (https://onlinelibrary.wiley.com/journal/10969896). © 2022 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Neoplasias , Humanos , Mutación , Neoplasias/genética , Neoplasias/patología , Programas Informáticos , Microambiente Tumoral/genética , Reino Unido
20.
BMC Cardiovasc Disord ; 23(1): 97, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36809978

RESUMEN

BACKGROUND AND OBJECTIVE: Protease-activated receptor 1 (PAR1) is crucial in individuals with acute myocardial infarction (AMI). The continuous and prompt PAR1 activation mainly dependent on PAR1 trafficking is essential for the role of PAR1 during AMI in which cardiomyocytes are in hypoxia. However, the PAR1 trafficking in cardiomyocytes specially during the hypoxia is still unclear. METHODS AND RESULT: A rat AMI model was created. PAR1 activation with thrombin-receptor activated peptide (TRAP) had a transient effect on cardiac function in normal rats but persistent improvement in rats with AMI. Cardiomyocytes from neonatal rats were cultured in a normal CO2 incubator and a hypoxic modular incubator chamber. The cells were then subjected to western blot for the total protein expression and staining with fluorescent reagent and antibody for PAR1 localization. No change in total PAR1 expression following TRAP stimulation was observed; however, it led to increased PAR1 expression in the early endosomes in normoxic cells and decreased expression in the early endosomes in hypoxic cells. Under hypoxic conditions, TRAP restored the PAR1 expression on both cell and endosomal surfaces within an hour by decreasing Rab11A (8.5-fold; 179.93 ± 9.82% of the normoxic control group, n = 5) and increasing Rab11B (15.5-fold) expression after 4 h of hypoxia. Similarly, Rab11A knockdown upregulated PAR1 expression under normoxia, and Rab11B knockdown downregulated PAR1 expression under both normoxic and hypoxic conditions. Cardiomyocytes knocked out of both Rab11A, and Rad11B lost the TRAP-induced PAR1 expression but still exhibited the early endosomal TRAP-induced PAR1 expression under hypoxia. CONCLUSIONS: TRAP-mediated activation of PAR1 in cardiomyocytes did not alter the total PAR1 expression under normoxic conditions. Instead, it triggers a redistribution of PAR1 levels under normoxic and hypoxic conditions. TRAP reverses the hypoxia-inhibited PAR1 expression in cardiomyocytes by downregulating Rab11A expression and upregulating Rab11B expression.


Asunto(s)
Infarto del Miocardio , Receptor PAR-1 , Animales , Ratas , Hipoxia/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Péptidos/metabolismo , Péptidos/farmacología , Receptor PAR-1/metabolismo , Receptores de Trombina/metabolismo , Trombina/metabolismo , Trombina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA