Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(10): e2310841121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38412134

RESUMEN

Connectomics research has made it more feasible to explore how neural circuits can generate multiple outputs. Female sexual drive provides a good model for understanding reversible, long-term functional changes in motivational circuits. After emerging, female flies avoid male courtship, but they become sexually receptive over 2 d. Mating causes females to reject further mating for several days. Here, we report that pC1 neurons, which process male courtship and regulate copulation behavior, exhibit increased CREB (cAMP response element binding protein) activity during sexual maturation and decreased CREB activity after mating. This increased CREB activity requires the neuropeptide Dh44 (Diuretic hormone 44) and its receptors. A subset of the pC1 neurons secretes Dh44, which stimulates CREB activity and increases expression of the TRP channel Pyrexia (Pyx) in more pC1 neurons. This, in turn, increases pC1 excitability and sexual drive. Mating suppresses pyx expression and pC1 excitability. Dh44 is orthologous to the conserved corticotrophin-releasing hormone family, suggesting similar roles in other species.


Asunto(s)
Proteínas de Drosophila , Neuropéptidos , Animales , Masculino , Femenino , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Neuropéptidos/metabolismo , Copulación/fisiología , Cortejo , Hormonas , Conducta Sexual Animal/fisiología
2.
J Biol Chem ; 299(9): 105158, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37579949

RESUMEN

Mutations in the gene encoding polycystin-1 (PC1) are the most common cause of autosomal dominant polycystic kidney disease (ADPKD). Cysts in ADPKD exhibit a Warburg-like metabolism characterized by dysfunctional mitochondria and aerobic glycolysis. PC1 is an integral membrane protein with a large extracellular domain, a short C-terminal cytoplasmic tail and shares structural and functional similarities with G protein-coupled receptors. Its exact function remains unclear. The C-terminal cytoplasmic tail of PC1 undergoes proteolytic cleavage, generating soluble fragments that are overexpressed in ADPKD kidneys. The regulation, localization, and function of these fragments is poorly understood. Here, we show that a ∼30 kDa cleavage fragment (PC1-p30), comprising the entire C-terminal tail, undergoes rapid proteasomal degradation by a mechanism involving the von Hippel-Lindau tumor suppressor protein. PC1-p30 is stabilized by reactive oxygen species, and the subcellular localization is regulated by reactive oxygen species in a dose-dependent manner. We found that a second, ∼15 kDa fragment (PC1-p15), is generated by caspase cleavage at a conserved site (Asp-4195) on the PC1 C-terminal tail. PC1-p15 is not subject to degradation and constitutively localizes to the mitochondrial matrix. Both cleavage fragments induce mitochondrial fragmentation, and PC1-p15 expression causes impaired fatty acid oxidation and increased lactate production, indicative of a Warburg-like phenotype. Endogenous PC1 tail fragments accumulate in renal cyst-lining cells in a mouse model of PKD. Collectively, these results identify novel mechanisms regarding the regulation and function of PC1 and suggest that C-terminal PC1 fragments may be involved in the mitochondrial and metabolic abnormalities observed in ADPKD.


Asunto(s)
Enfermedades Mitocondriales , Riñón Poliquístico Autosómico Dominante , Canales Catiónicos TRPP , Animales , Ratones , Estrés Oxidativo , Riñón Poliquístico Autosómico Dominante/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo
3.
Int J Mol Sci ; 25(17)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39273149

RESUMEN

Furin, a serine protease enzyme located in the Golgi apparatus of animal cells, plays a crucial role in cleaving precursor proteins into their mature, active forms. It is ubiquitously expressed across various tissues, including the brain, lungs, gastrointestinal tract, liver, pancreas, and reproductive organs. Since its discovery in 1990, furin has been recognized as a significant therapeutic target, leading to the active development of furin inhibitors for potential use in antiviral, antibacterial, anticancer, and other therapeutic applications. This review provides a comprehensive overview of the progress in the development and characterization of furin inhibitors, encompassing peptides, linear and macrocyclic peptidomimetics, and non-peptide compounds, highlighting their potential in the treatment of both infectious and non-infectious diseases.


Asunto(s)
Furina , Furina/antagonistas & inhibidores , Furina/metabolismo , Humanos , Animales , Peptidomiméticos/farmacología , Peptidomiméticos/química , Peptidomiméticos/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Antivirales/química , Péptidos/uso terapéutico , Péptidos/química , Péptidos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/química , Desarrollo de Medicamentos
4.
Dev Dyn ; 251(2): 336-349, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34174014

RESUMEN

BACKGROUND: Lymphatic vascular development is regulated by well-characterized signaling and transcriptional pathways. These pathways regulate lymphatic endothelial cell (LEC) migration, motility, polarity, and morphogenesis. Canonical and non-canonical WNT signaling pathways are known to control LEC polarity and development of lymphatic vessels and valves. PKD1, encoding Polycystin-1, is the most commonly mutated gene in polycystic kidney disease but has also been shown to be essential in lymphatic vascular morphogenesis. The mechanism by which Pkd1 acts during lymphangiogenesis remains unclear. RESULTS: Here we find that loss of non-canonical WNT signaling components Wnt5a and Ryk phenocopy lymphatic defects seen in Pkd1 knockout mice. To investigate genetic interaction, we generated Pkd1;Wnt5a double knockout mice. Loss of Wnt5a suppressed phenotypes seen in the lymphatic vasculature of Pkd1-/- mice and Pkd1 deletion suppressed phenotypes observed in Wnt5a-/- mice. Thus, we report mutually suppressive roles for Pkd1 and Wnt5a, with developing lymphatic networks restored to a more wild type state in double mutant mice. This genetic interaction between Pkd1 and the non-canonical WNT signaling pathway ultimately controls LEC polarity and the morphogenesis of developing vessel networks. CONCLUSION: Our work suggests that Pkd1 acts at least in part by regulating non-canonical WNT signaling during the formation of lymphatic vascular networks.


Asunto(s)
Vasos Linfáticos , Enfermedades Renales Poliquísticas , Animales , Vasos Linfáticos/metabolismo , Ratones , Ratones Noqueados , Morfogénesis/genética , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/metabolismo , Proteína Quinasa C , Proteínas Tirosina Quinasas Receptoras/metabolismo , Vía de Señalización Wnt/genética , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
5.
Anal Biochem ; 655: 114836, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35964735

RESUMEN

Proprotein convertases (PCs) are involved in the pathogenesis of various diseases, making them promising drug targets. Most assays for PCs have been performed with few standard substrates, regardless of differences in cleavage efficiencies. Derived from studies on substrate-analogue inhibitors, 11 novel substrates were synthesized and characterized with five PCs. H-Arg-Arg-Tle-Lys-Arg-AMC is the most efficiently cleaved furin substrate based on its kcat/KM value. Due to its higher kcat value, acetyl-Arg-Arg-Tle-Arg-Arg-AMC was selected for further measurements to demonstrate the benefit of this improved substrate. Compared to our standard conditions, its use allowed a 10-fold reduction of the furin concentration, which enabled Ki value determinations of previously described tight-binding inhibitors under classical conditions. Under these circumstances, a slow-binding behavior was observed for the first time with inhibitor MI-1148. In addition to furin, four additional PCs were used to characterize these substrates. The most efficiently cleaved PC1/3 substrate was acetyl-Arg-Arg-Arg-Tle-Lys-Arg-AMC. The highest kcat/KM values for PC2 and PC7 were found for the N-terminally unprotected analogue of this substrate, although other substrates possess higher kcat values. The highest efficiency for PC5/6A was observed for the substrate acetyl-Arg-Arg-Tle-Lys-Arg-AMC. In summary, we have identified new substrates for furin, PC1/3, PC2, and PC7 suitable for improved enzyme-kinetic measurements.


Asunto(s)
Furina , Proproteína Convertasas , Secuencia de Aminoácidos , Carbamatos , Colorantes Fluorescentes , Oligopéptidos , Proteínas , Subtilisinas/metabolismo
6.
J Cell Mol Med ; 25(7): 3216-3225, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33656806

RESUMEN

Craniosynostosis refers to the premature fusion of one or more cranial sutures leading to skull shape deformities and brain growth restriction. Among the many factors that contribute to abnormal suture fusion, mechanical forces seem to play a major role. Nevertheless, the underlying mechanobiology-related mechanisms of craniosynostosis still remain unknown. Understanding how aberrant mechanosensation and mechanotransduction drive premature suture fusion will offer important insights into the pathophysiology of craniosynostosis and result in the development of new therapies, which can be used to intervene at an early stage and prevent premature suture fusion. Herein, we provide evidence for the first time on the role of polycystin-1 (PC1), a key protein in cellular mechanosensitivity, in craniosynostosis, using primary cranial suture cells isolated from patients with trigonocephaly and dolichocephaly, two common types of craniosynostosis. Initially, we showed that PC1 is expressed at the mRNA and protein level in both trigonocephaly and dolichocephaly cranial suture cells. Followingly, by utilizing an antibody against the mechanosensing extracellular N-terminal domain of PC1, we demonstrated that PC1 regulates runt-related transcription factor 2 (RUNX2) activation and osteocalcin gene expression via extracellular signal-regulated kinase (ERK) signalling in our human craniosynostosis cell model. Altogether, our study reveals a novel mechanotransduction signalling axis, PC1-ERK-RUNX2, which affects osteoblastic differentiation in cranial suture cells from trigonocephaly and dolichocephaly patients.


Asunto(s)
Craneosinostosis/metabolismo , Canales Catiónicos TRPP/metabolismo , Células Cultivadas , Niño , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Mecanotransducción Celular , Osteoblastos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Canales Catiónicos TRPP/genética
7.
Mol Phylogenet Evol ; 162: 107114, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33744402

RESUMEN

Based on Single moleculereal time(SMRT)sequencing technology, the high-quality whole genome sequence of Pectobacterium carotovorum (PC1) was obtained by the PacBio RS II sequencer. The genome is a single circular chromosome of 5.3 Mb in size, containing three kinds of m6A methylation modification by SMRT Portal analysis. Genome annotation showed that 575 virulence factor genes, 304 drug resistance genes, 774 pathogen genes, 7 secretory systems and 22 pairs of two-component regulatory system could be relevant to bacterial pathogenicity. In addition, the average nucleotide identities (ANI) analysisshowed that the PC1 exhibited the highest homology with the Pectobacteriumcarotovorumsubsp.carotovorumstrain BP201601.1 (NZ_CP034236). There are 28 unique gene families to PC1 using cluster analysis of gene families. According to the analysis of key pathogenic genes, we have obtained three kinds of highly conserved genes related to cell wall degrading enzymes, including 19 pectinase genes, 25 cellulase genes and 22 protease genes. Our studies have provided a theoretical basis for investigation of bacterial soft rot and biological specific bactercides of PC1.


Asunto(s)
Genes Bacterianos , Genómica , Pectobacterium carotovorum/genética , Pectobacterium carotovorum/patogenicidad , Virulencia/genética , Secuenciación Completa del Genoma , Enfermedades de las Plantas/microbiología
8.
Virus Genes ; 57(1): 117-120, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33146853

RESUMEN

Virus encoded deubiquitinating enzyme (DUB) plays important roles in viral replication and the regulation of host innate immunity. Bioinformatics-based analysis revealed the presence of an ovarian tumor (OTU) protease domain in the N terminus of rice stripe tenuivirus (RSV) Pc1. Many viral OTU domains have been reported to possess DUB activity, which suggests that RSV OTU probably also have DUB activity. To confirm this prediction, we first expressed and purified RSV OTU domain (the N-terminal 200 amino acids of Pc1) and its three mutants (D42A, C45A and H148A) from Escherichia coli and analyzed its DUB activity in vitro. The purified RSV OTU hydrolyzed both K48-linked and K63-linked polyubiquitin chains, indicating RSV OTU domain has DUB enzyme activity in vitro. The mutations of the predicted catalytic sites (Asp42, Cys45 and His148) resulted in the loss of DUB activity, demonstrating these three residues were required for enzyme activity. Then, RSV OTU and its mutants were expressed in insect cells and assayed their DUB activities in vivo by co-transfection with HA-tagged ubiquitin. RSV OTU dramatically reduced ubiquitin-conjugated cellular proteins compared to control and the mutants, showing that RSV OTU also displays DUB activity in vivo. Characterization of RSV OTU DUB enzyme activity and its key catalytic residues will facilitate the development of novel antiviral reagents against RSV.


Asunto(s)
Enzimas Desubicuitinizantes/metabolismo , Tenuivirus/enzimología , Proteínas Virales/metabolismo , Replicación Viral
9.
Int J Mol Sci ; 22(21)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34769347

RESUMEN

Chemotherapy-induced neuropathy (CIN) is a major adverse effect associated with many chemotherapeutics, including bortezomib (BTZ). Several mechanisms are involved in CIN, and recently a role has been proposed for prokineticins (PKs), a chemokine family that induces proinflammatory/pro-algogen mediator release and drives the epigenetic control of genes involved in cellular differentiation. The present study evaluated the relationships between epigenetic mechanisms and PKs in a mice model of BTZ-induced painful neuropathy. To this end, spinal cord alterations of histone demethylase KDM6A, nuclear receptors PPARα/PPARγ, PK2, and pro-inflammatory cytokines IL-6 and IL-1ß were assessed in neuropathic mice treated with the PK receptors (PKRs) antagonist PC1. BTZ treatment promoted a precocious upregulation of KDM6A, PPARs, and IL-6, and a delayed increase of PK2 and IL-1ß. PC1 counteracted allodynia and prevented the increase of PK2 and of IL-1ß in BTZ neuropathic mice. The blockade of PKRs signaling also opposed to KDM6A increase and induced an upregulation of PPAR gene transcription. These data showed the involvement of epigenetic modulatory enzymes in spinal tissue phenomena associated with BTZ painful neuropathy and underline a role of PKs in sustaining the increase of proinflammatory cytokines and in exerting an inhibitory control on the expression of PPARs through the regulation of KDM6A gene expression in the spinal cord.


Asunto(s)
Bortezomib/toxicidad , Hormonas Gastrointestinales/metabolismo , Histona Demetilasas/metabolismo , Hiperalgesia/patología , Neuropéptidos/metabolismo , Dolor/patología , Enfermedades del Sistema Nervioso Periférico/patología , Médula Espinal/patología , Animales , Antineoplásicos/toxicidad , Citocinas/metabolismo , Hormonas Gastrointestinales/genética , Histona Demetilasas/genética , Hiperalgesia/inducido químicamente , Hiperalgesia/genética , Hiperalgesia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuropéptidos/genética , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Dolor/inducido químicamente , Dolor/genética , Dolor/metabolismo , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/metabolismo , Médula Espinal/metabolismo
10.
Traffic ; 19(12): 933-945, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30125442

RESUMEN

Mutations in the genes encoding polycystin-1 (PC1) and polycystin 2 (PC2) cause autosomal dominant polycystic kidney disease. These transmembrane proteins colocalize in the primary cilia of renal epithelial cells, where they may participate in sensory processes. PC1 is also found in the apical membrane when expressed in cultured epithelial cells. PC1 undergoes autocatalytic cleavage, producing an extracellular N-terminal fragment that remains noncovalently attached to the transmembrane C-terminus. Exposing cells to alkaline solutions elutes the N-terminal fragment while the C-terminal fragment is retained in the cell membrane. Utilizing this observation, we developed a "strip-recovery" synchronization protocol to study PC1 trafficking in polarized LLC-PK1 renal epithelial cells. Following alkaline strip, a new cohort of PC1 repopulates the cilia within 30 minutes, while apical delivery of PC1 was not detectable until 3 hours. Brefeldin A (BFA) blocked apical PC1 delivery, while ciliary delivery of PC1 was BFA insensitive. Incubating cells at 20°C to block trafficking out of the trans-Golgi network also inhibits apical but not ciliary delivery. These results suggest that newly synthesized PC1 takes distinct pathways to the ciliary and apical membranes. Ciliary PC1 appears to by-pass BFA sensitive Golgi compartments, while apical delivery of PC1 traverses these compartments.


Asunto(s)
Membrana Celular/metabolismo , Canales Catiónicos TRPP/metabolismo , Animales , Línea Celular , Polaridad Celular , Retículo Endoplásmico/metabolismo , Células Epiteliales/metabolismo , Riñón/citología , Señales de Clasificación de Proteína , Transporte de Proteínas , Porcinos , Canales Catiónicos TRPP/química
11.
Mamm Genome ; 31(1-2): 17-29, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31974728

RESUMEN

The proprotein convertase subtilisin/Kexin type 1 (PCSK1/PC1) protein processes inactive pro-hormone precursors into biologically active hormones in a number of neuroendocrine and endocrine cell types. Patients with recessive mutations in PCSK1 exhibit a complex spectrum of traits including obesity, diarrhoea and endocrine disorders. We describe here a new mouse model with a point mutation in the Pcsk1 gene that exhibits obesity, hyperphagia, transient diarrhoea and hyperproinsulinaemia, phenotypes consistent with human patient traits. The mutation results in a pV96L amino acid substitution and changes the first nucleotide of mouse exon 3 leading to skipping of that exon and in homozygotes very little full-length transcript. Overexpression of the exon 3 deleted protein or the 96L protein results in ER retention in Neuro2a cells. This is the second Pcsk1 mouse model to display obesity phenotypes, contrasting knockout mouse alleles. This model will be useful in investigating the basis of endocrine disease resulting from prohormone processing defects.


Asunto(s)
Diabetes Mellitus/genética , Obesidad/genética , Proproteína Convertasa 1/genética , Alelos , Animales , Línea Celular , Diarrea/genética , Retículo Endoplásmico/metabolismo , Exones , Femenino , Intolerancia a la Glucosa/genética , Homocigoto , Hiperfagia/genética , Masculino , Ratones , Mutación , Proproteína Convertasa 1/metabolismo , Empalme del ARN
12.
J Cell Mol Med ; 23(9): 6215-6227, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31251475

RESUMEN

Polycystic Kidney Disease (PKD), which is attributable to mutations in the PKD1 and PKD2 genes encoding polycystin-1 (PC1) and polycystin-2 (PC2) respectively, shares common cellular defects with cancer, such as uncontrolled cell proliferation, abnormal differentiation and increased apoptosis. Interestingly, PC1 regulates many signalling pathways including Jak/STAT, mTOR, Wnt, AP-1 and calcineurin-NFAT which are also used by cancer cells for sending signals that will allow them to acquire and maintain malignant phenotypes. Nevertheless, the molecular relationship between polycystins and cancer is unknown. In this study, we investigated the role of PC1 in cancer biology using glioblastoma (GOS3), prostate (PC3), breast (MCF7), lung (A549) and colorectal (HT29) cancer cell lines. Our in vitro results propose that PC1 promotes cell migration in GOS3 cells and suppresses cell migration in A549 cells. In addition, PC1 enhances cell proliferation in GOS3 cells but inhibits it in MCF7, A549 and HT29 cells. We also found that PC1 up-regulates mTOR signalling and down-regulates Jak signalling in GOS3 cells, while it up-regulates mTOR signalling in PC3 and HT29 cells. Together, our study suggests that PC1 modulates cell proliferation and migration and interacts with mTOR and Jak signalling pathways in different cancer cell lines. Understanding the molecular details of how polycystins are associated with cancer may lead to the identification of new players in this devastating disease.


Asunto(s)
Neoplasias/genética , Enfermedades Renales Poliquísticas/genética , Serina-Treonina Quinasas TOR/genética , Canales Catiónicos TRPP/genética , Células A549 , Apoptosis/genética , Diferenciación Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Células HT29 , Humanos , Quinasas Janus/genética , Células MCF-7 , Neoplasias/clasificación , Neoplasias/patología , Enfermedades Renales Poliquísticas/patología , Transducción de Señal/genética
13.
Am J Physiol Renal Physiol ; 315(3): F537-F546, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29767557

RESUMEN

The PKD1 gene encodes polycystin-1 (PC1), a mechanosensor triggering intracellular responses upon urinary flow sensing in kidney tubular cells. Mutations in PKD1 lead to autosomal dominant polycystic kidney disease (ADPKD). The involvement of PC1 in renal electrolyte handling remains unknown since renal electrolyte physiology in ADPKD patients has only been characterized in cystic ADPKD. We thus studied the renal electrolyte handling in inducible kidney-specific Pkd1 knockout (iKsp- Pkd1-/-) mice manifesting a precystic phenotype. Serum and urinary electrolyte determinations indicated that iKsp- Pkd1-/- mice display reduced serum levels of magnesium (Mg2+), calcium (Ca2+), sodium (Na+), and phosphate (Pi) compared with control ( Pkd1+/+) mice and renal Mg2+, Ca2+, and Pi wasting. In agreement with these electrolyte disturbances, downregulation of key genes for electrolyte reabsorption in the thick ascending limb of Henle's loop (TA;, Cldn16, Kcnj1, and Slc12a1), distal convoluted tubule (DCT; Trpm6 and Slc12a3) and connecting tubule (CNT; Calb1, Slc8a1, and Atp2b4) was observed in kidneys of iKsp- Pkd1-/- mice compared with controls. Similarly, decreased renal gene expression of markers for TAL ( Umod) and DCT ( Pvalb) was observed in iKsp- Pkd1-/- mice. Conversely, mRNA expression levels in kidney of genes encoding solute and water transporters in the proximal tubule ( Abcg2 and Slc34a1) and collecting duct ( Aqp2, Scnn1a, and Scnn1b) remained comparable between control and iKsp- Pkd1-/- mice, although a water reabsorption defect was observed in iKsp- Pkd1-/- mice. In conclusion, our data indicate that PC1 is involved in renal Mg2+, Ca2+, and water handling and its dysfunction, resulting in a systemic electrolyte imbalance characterized by low serum electrolyte concentrations.


Asunto(s)
Agua Corporal/metabolismo , Electrólitos/metabolismo , Riñón/metabolismo , Riñón Poliquístico Autosómico Dominante/metabolismo , Canales Catiónicos TRPP/deficiencia , Equilibrio Hidroelectrolítico , Animales , Calcio/metabolismo , Modelos Animales de Enfermedad , Electrólitos/sangre , Electrólitos/orina , Regulación de la Expresión Génica , Absorción Intestinal , Riñón/fisiopatología , Magnesio/metabolismo , Masculino , Ratones Noqueados , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/fisiopatología , Reabsorción Renal , Canales Catiónicos TRPP/genética , Equilibrio Hidroelectrolítico/genética
14.
J Endocrinol Invest ; 40(4): 367-376, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27785750

RESUMEN

PURPOSE: Polycystic ovary syndrome (PCOS) was associated with a number of polymorphisms of genes involved in insulin signaling. So far, they have been studied separately. The aim of this study was to verify the impact of the coexistence of two polymorphisms of insulin signaling. METHODS: One hundred consecutive PCOS women (diagnosed by Rotterdam criteria) and 45 age-matched healthy women were genotyped for two polymorphisms: Gly972Arg of IRS-1 and Lys121Gln of PC-1. Also, they underwent clinical evaluation, blood sampling for measurement of metabolic and hormonal indices, and a 75-g oral glucose tolerance test (OGTT). RESULTS: Comparing PCOS women with controls, the rate of homo-/heterozygosity was significantly greater (50 vs. 24.5%, P = 0.004) for IRS-1 polymorphism, but insignificantly greater (20 vs. 13.3%, P = 0.33) for PC-1 polymorphism. In PCOS women, compared with controls, the genotypes IRS-1 hetero/PC-1 wild type (WT) (36 vs. 17.8%, P = 0.03) and IRS-1 hetero/PC-1 hetero (14 vs. 6.7%, P = 0.20) were overrepresented at the expense of IRS-1 WT/PC-1 WT (44 vs. 68.8%, P = 0.005), while IRS-1 WT/PC-1 hetero was similarly represented (6 vs. 6.7%). Based on genotype, metabolic and hormonal indices changed significantly. For instance, six indices (HOMA-IR, fasting insulin, insulin area under the curve at OGTT, triglycerides, total and calculated free testosterone) were the highest in IRS-1 hetero/PC-1 WT women. CONCLUSIONS: Genetic variations in insulin signaling contribute to the extent and the variability of metabolic and hormonal derangement.


Asunto(s)
Proteínas Sustrato del Receptor de Insulina/genética , Resistencia a la Insulina/genética , Síndrome del Ovario Poliquístico/genética , Polimorfismo Genético/genética , Canales Catiónicos TRPP/genética , Adolescente , Adulto , Estudios de Casos y Controles , Femenino , Genotipo , Prueba de Tolerancia a la Glucosa , Heterocigoto , Humanos , Insulina/metabolismo , Síndrome del Ovario Poliquístico/patología , Adulto Joven
15.
Am J Physiol Renal Physiol ; 310(11): F1284-94, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26984954

RESUMEN

Inhibition of the overactivated alternative complement pathway in autosomal dominant polycystic kidney disease (ADPKD) retards disease progression in animal models; however, it remains unknown how complement factor B (CFB) is upregulated in ADPKD. Here, we showed that the overexpression of CFB in cystic kidneys is associated with increased JAK2/STAT1 activity and enhanced expression of the polycystin-1 C-terminal tail (PC1-CTT). Overexpression or blockage of STAT1 increased or decreased CFB expression and CFB promoter activity. Moreover, overexpression of PC1-CTT induced JAK2/STAT1 activation and CFB upregulation in renal tubular epithelial cells. Furthermore, PC1-CTT overexpression increased human CFB promoter activity, whereas dominant negative STAT1 plasmids or mutation of putative STAT1 responsive elements decreased PC1-CTT-induced CFB promoter activity. The effect of CFB on macrophage differentiation was tested on a mouse macrophage cell line. Bioactive CFB dose dependently promoted macrophage M2 phenotype conversion. In addition, conditioned media from renal epithelial cells promoted macrophage M2 phenotype conversion which was blocked by STAT1 inhibition in a dose-dependent manner. Conditioned media from PC1-CTT-transfected renal epithelial cells further promoted macrophage M2 phenotype conversion, which was suppressed by fludarabine or a CFB antibody. In addition, we show that NF-κB acts downstream of PC1-CTT and may partly mediate PC1-CTT-induced CFB expression. In conclusion, our study reveals possible mechanisms of CFB upregulation in ADPKD and a novel role of PC1-CTT in ADPKD-associated inflammation. Furthermore, our study suggests that targeting STAT1 may be a new strategy to prevent inflammation in the kidney of patients with ADPKD.


Asunto(s)
Factor B del Complemento/metabolismo , Riñón/metabolismo , Riñón Poliquístico Autosómico Dominante/metabolismo , Factor de Transcripción STAT1/metabolismo , Canales Catiónicos TRPP/metabolismo , Animales , Línea Celular , Células Cultivadas , Factor B del Complemento/genética , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Humanos , Janus Quinasa 2/metabolismo , Riñón Poliquístico Autosómico Dominante/genética , Ratas , Factor de Transcripción STAT1/genética , Canales Catiónicos TRPP/genética
16.
Tumour Biol ; 37(8): 10435-46, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26846108

RESUMEN

The tumour protein D52 isoform 1 (PC-1), a member of the tumour protein D52 (TPD52) protein family, is androgen-regulated and prostate-specific expressed. Previous studies confirmed that PC-1 contributes to malignant progression in prostate cancer with an important role in castration-resistant stage. In the present work, we identified its impact in mechanisms leading to neuroendocrine (NE) transdifferentiation. We established for long-term PC-1 overexpression an inducible expression system derived from the prostate carcinoma cell line LNCaP. We observed that PC-1 overexpression itself initiates characteristics of neuroendocrine cells, but the effect was much more pronounced in the presence of the cytokine interleukin-6 (IL-6). Moreover, to our knowledge, this is the first report that treatment with IL-6 leads to a significant upregulation of PC-1 in LNCaP cells. Other TPD52 isoforms were not affected. Proceeding from this result, we conclude that PC-1 overexpression enhances the IL-6-mediated differentiation of LNCaP cells into a NE-like phenotype, noticeable by morphological changes and increased expression of typical NE markers, like chromogranin A, synaptophysin or beta-3 tubulin. Immunofluorescent staining of IL-6-treated PC-1-overexpressing LNCaP cells indicates a considerable PC-1 accumulation at the end of the long-branched neuron-like cell processes, which are typically formed by NE cells. Additionally, the experimentally initiated NE transdifferentiation correlates with the androgen receptor status, which was upregulated additively. In summary, our data provide evidence for an involvement of PC-1 in NE transdifferentiation, frequently associated with castration resistance, which is a major therapeutic challenge in the treatment of advanced prostate cancer.


Asunto(s)
Adenocarcinoma/patología , Antagonistas de Andrógenos/uso terapéutico , Andrógenos , Antineoplásicos Hormonales/uso terapéutico , Transdiferenciación Celular/fisiología , Interleucina-6/farmacología , Proteínas de Neoplasias/fisiología , Neoplasias Hormono-Dependientes/patología , Células Neuroendocrinas/patología , Neoplasias de la Próstata/patología , Biomarcadores , Línea Celular Tumoral , Transdiferenciación Celular/efectos de los fármacos , Humanos , Interleucina-6/uso terapéutico , Masculino , Proteínas de Neoplasias/análisis , Proteínas de Neoplasias/genética , Neoplasias Hormono-Dependientes/tratamiento farmacológico , Células Neuroendocrinas/química , Neoplasias de la Próstata/tratamiento farmacológico , Dominios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Receptores Androgénicos/biosíntesis , Proteínas Recombinantes de Fusión/metabolismo , Transfección
17.
Bioorg Med Chem ; 24(14): 3157-65, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27265686

RESUMEN

Ecto-nucleotide pyrophosphatase/phosphodiesterase1 (NPP1) is the most important member of the NPP family, which consists of seven closely related proteins (NPP1-NPP7). This glycoprotein is a membrane-associated or secreted enzyme, which catalyzes the hydrolysis of a wide range of phosphodiester bonds, e.g., in nucleoside triphosphates, dinucleotides and nucleotide sugars. NPP1 plays a crucial role in various physiological functions including bone mineralization, soft-tissue calcification, and insulin receptor signaling. Recently, an upregulated expression of NPP1 has been observed in astrocytic brain cancers. Therefore, NPP1 has been proposed as a novel drug target for the treatment of glioblastoma. Despite their therapeutic potential, only few NPP1 inhibitors have been reported to date, which are in most cases non- or only moderately selective. The best investigated NPP1 inhibitors so far are nucleotide derivatives and analogs, however they are not orally bioavailable due to their high polarity. We identified thiazolo[3,2-a]benzimidazol-3(2H)-one derivatives as a new class of NPP1 inhibitors with drug-like properties. Among the 25 derivatives investigated in the present study, 2-[(5-iodo-2-furanyl)methylene]thiazolo[3,2-a]benzimidazol-3(2H)-one (17) was found to be the most potent NPP1 inhibitor with a Ki value of 467nM versus ATP as a substrate and an un-competitive mechanism of inhibition. Compound 17 did not inhibit other human ecto-nucleotidases, including NTPDase1 (CD39), NTPDases2-3, NPP2, NPP3, tissue-nonspecific alkaline phosphatase (TNAP), and ecto-5'-nucleotidase (eN, CD73), and is thus highly selective for NPP1.


Asunto(s)
Bencimidazoles/farmacología , Inhibidores de Fosfodiesterasa/farmacología , Pirofosfatasas/antagonistas & inhibidores , Animales , Bencimidazoles/química , Línea Celular Tumoral , Humanos , Inhibidores de Fosfodiesterasa/química , Ratas , Relación Estructura-Actividad
18.
Biochim Biophys Acta ; 1838(1 Pt B): 173-84, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24060562

RESUMEN

Common hop (Humulus lupulus) constitutes a source of numerous prenylated chalcones such as xanthohumol (XH) and flavanones such as 8-prenylnaringenin (8-PN) and isoxanthohumol (IXH). Range of their biological activities includes estrogenic, anti-inflammatory, anti-infective, anti-cancer, and antioxidant activities. The aim of the present work was to characterize the influence of prenylated polyphenols on model 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membranes by means of differential scanning calorimetry (DSC), fluorescence and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopies. All studied compounds intercalated into DPPC bilayers and decreased its melting temperature as recorded by DSC, Laurdan and Prodan fluorescence, and ATR-FTIR. Polyphenols interacted mainly with glycerol backbone and acyl chain region of membrane. Magnitude of the induced effect correlated both with lipophilicity and molecular shape of the studied compounds. Elbow-shaped 8-PN and IXH were locked at polar-apolar region with their prenyl chains penetrating into hydrophobic part of the bilayer, while relatively planar XH molecule adopted linear shape that resulted in its deeper insertion into hydrophobic region. Additionally, by means of DSC and Laurdan fluorescence IXH was demonstrated to induce lateral phase separation in DPPC bilayers in gel-like state. It was assumed that IXH-rich and IXH-poor microdomains appeared within membrane. Present work constitutes the first experimental report describing interactions of prenylated hop polyphenols with phospholipid model membranes.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/análogos & derivados , Flavanonas/química , Flavonoides/química , Humulus/química , Membrana Dobles de Lípidos/química , Propiofenonas/química , Xantonas/química , 1,2-Dipalmitoilfosfatidilcolina/química , 2-Naftilamina/análogos & derivados , Rastreo Diferencial de Calorimetría , Colorantes Fluorescentes , Interacciones Hidrofóbicas e Hidrofílicas , Lauratos , Estructura Molecular , Espectrometría de Fluorescencia , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica
19.
J Exp Clin Cancer Res ; 43(1): 240, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169412

RESUMEN

Circulating Tumor Cells (CTCs) may serve as a non-invasive source of tumor material to investigate an individual's disease in real-time. The Parsortix® PC1 System, the first FDA-cleared medical device for the capture and harvest of CTCs from peripheral blood of metastatic breast cancer (MBC) patients for use in subsequent user-validated downstream analyses, enables the epitope-independent capture of CTCs with diverse phenotypes based on cell size and deformability. The aim of this study was to determine the proportion of MBC patients and self-declared female healthy volunteers (HVs) that had CTCs identified using immunofluorescence (IF) or Wright-Giemsa (WG) staining. Peripheral blood from 76 HVs and 76 MBC patients was processed on Parsortix® PC1 Systems. Harvested cells were cytospun onto a charged slide and immunofluorescently stained for identification of CTCs expressing epithelial markers. The IF slides were subsequently WG-stained and analyzed for CTC identification based on morphological features of malignant cells. All testing was performed by operators blinded to the clinical status of each subject. CTCs were identified on the IF slides in 45.3% (≥ 1) / 24.0% (≥ 5) of the MBC patients (range = 0 - 125, mean = 7) and in 6.9% (≥ 1) / 2.8% (≥ 5) of the HVs (range = 0 - 28, mean = 1). Among the MBC patients with ≥ 1 CTC, 70.6% had only CK + /EpCAM- CTCs, with none having EpCAM + /CK- CTCs. CTC clusters were identified in 56.0% of the CTC-positive patients. On the WG-stained slides, CTCs were identified in 42.9% (≥ 1) / 21.4% (≥ 5) of the MBC patients (range = 0 - 41, mean = 4) and 4.3% (≥ 1) / 2.9% (≥ 5) of the HVs (range = 0 - 14, mean = 0). This study demonstrated the ability of the Parsortix® PC1 System to capture and harvest CTCs from a significantly larger proportion of MBC patients compared to HVs when coupled with both IF and WG cytomorphological assessment. The presence of epithelial cells in subjects without diagnosed disease has been previously described, with their significance being unclear. Interestingly, a high proportion of the identified CTCs did not express EpCAM, highlighting the limitations of using EpCAM-based approaches.


Asunto(s)
Neoplasias de la Mama , Técnica del Anticuerpo Fluorescente , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patología , Células Neoplásicas Circulantes/metabolismo , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/sangre , Persona de Mediana Edad , Adulto , Metástasis de la Neoplasia , United States Food and Drug Administration , Anciano , Estados Unidos , Biomarcadores de Tumor/sangre , Separación Celular/métodos , Anciano de 80 o más Años
20.
Elife ; 132024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255004

RESUMEN

In birds and insects, the female uptakes sperm for a specific duration post-copulation known as the ejaculate holding period (EHP) before expelling unused sperm and the mating plug through sperm ejection. In this study, we found that Drosophila melanogaster females shortens the EHP when incubated with males or mated females shortly after the first mating. This phenomenon, which we termed male-induced EHP shortening (MIES), requires Or47b+ olfactory and ppk23+ gustatory neurons, activated by 2-methyltetracosane and 7-tricosene, respectively. These odorants raise cAMP levels in pC1 neurons, responsible for processing male courtship cues and regulating female mating receptivity. Elevated cAMP levels in pC1 neurons reduce EHP and reinstate their responsiveness to male courtship cues, promoting re-mating with faster sperm ejection. This study established MIES as a genetically tractable model of sexual plasticity with a conserved neural mechanism.


Asunto(s)
Drosophila melanogaster , Feromonas , Conducta Sexual Animal , Animales , Femenino , Masculino , Drosophila melanogaster/fisiología , Conducta Sexual Animal/fisiología , Feromonas/metabolismo , Neuronas/fisiología , Neuronas/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , AMP Cíclico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA