Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 75(6): 1103-1116.e9, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31420216

RESUMEN

The mitochondrial pathway of apoptosis is controlled by the ratio of anti- and pro-apoptotic members of the Bcl-2 family of proteins. The molecular events underlying how a given physiological stimulus changes this ratio to trigger apoptosis remains unclear. We report here that human 17-ß-estradiol (E2) and its related steroid hormones induce apoptosis by binding directly to phosphodiesterase 3A, which in turn recruits and stabilizes an otherwise fast-turnover protein Schlafen 12 (SLFN12). The elevated SLFN12 binds to ribosomes to exclude the recruitment of signal recognition particles (SRPs), thereby blocking the continuous protein translation occurring on the endoplasmic reticulum of E2-treated cells. These proteins include Bcl-2 and Mcl-1, whose ensuing decrease triggers apoptosis. The SLFN12 protein and an apoptosis activation marker were co-localized in syncytiotrophoblast of human placentas, where levels of estrogen-related hormones are high, and dynamic cell turnover by apoptosis is critical for successful implantation and placenta development.


Asunto(s)
Apoptosis/efectos de los fármacos , Estradiol/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Trofoblastos/metabolismo , Adulto , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Femenino , Células HeLa , Humanos , Células MCF-7 , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ribosomas/metabolismo
2.
Int J Mol Sci ; 24(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37240048

RESUMEN

Biological therapies (BTs) indicated for psoriasis are highly effective; however, not all patients obtain good results, and loss of effectiveness is the main reason for switching. Genetic factors may be involved. The objective of this study was to evaluate the influence of single-nucleotide polymorphisms (SNPs) on the drug survival of tumor necrosis factor inhibitors (anti-TNF) medications and ustekinumab (UTK) in patients diagnosed with moderate-to-severe psoriasis. We conducted an ambispective observational cohort study that included 379 lines of treatment with anti-TNF (n = 247) and UTK (132) in 206 white patients from southern Spain and Italy. The genotyping of the 29 functional SNPs was carried out using real-time polymerase chain reaction (PCR) with TaqMan probes. Drug survival was evaluated with Cox regression and Kaplan-Meier curves. The multivariate analysis showed that the HLA-C rs12191877-T (hazard ratio [HR] = 0.560; 95% CI = 0.40-0.78; p = 0.0006) and TNF-1031 (rs1799964-C) (HR = 0.707; 95% CI = 0.50-0.99; p = 0.048) polymorphisms are associated with anti-TNF drug survival, while TLR5 rs5744174-G (HR = 0.589; 95% CI = 0.37-0.92; p = 0.02), CD84 rs6427528-GG (HR = 0.557; 95% CI = 0.35-0.88; p = 0.013) and PDE3A rs11045392-T together with SLCO1C1 rs3794271-T (HR = 0.508; 95% CI = 0.32-0.79; p = 0.002) are related to UTK survival. The limitations are the sample size and the clustering of anti-TNF drugs; we used a homogeneous cohort of patients from 2 hospitals only. In conclusion, SNPs in the HLA-C, TNF, TLR5, CD84, PDE3A, and SLCO1C1 genes may be useful as biomarkers of drug survival of BTs indicated for psoriasis, making it possible to implement personalized medicine that will reduce financial healthcare costs, facilitate medical decision-making and improve patient quality of life. However, further pharmacogenetic studies need to be conducted to confirm these associations.


Asunto(s)
Transportadores de Anión Orgánico , Psoriasis , Humanos , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Antígenos HLA-C , Calidad de Vida , Receptor Toll-Like 5 , Psoriasis/tratamiento farmacológico , Psoriasis/genética , Psoriasis/diagnóstico , Ustekinumab/uso terapéutico , Terapia Biológica/métodos , Adalimumab/uso terapéutico , Factor de Necrosis Tumoral alfa/uso terapéutico , Infliximab/uso terapéutico , Familia de Moléculas Señalizadoras de la Activación Linfocitaria
3.
J Clin Biochem Nutr ; 72(2): 139-146, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36936869

RESUMEN

M2-type polarization of tumor associated-macrophage (TAM) is involved in the malignancy of gastrointestinal stromal tumor (GIST) progression. ETS variant 1 (ETV1) has been previously validated to regulate GIST pathogenesis. Our study intended to explore the role and mechanism of ETV1 in mediating the M2-polarization of TAM in GIST progression. First, we analyzed the correlation between ETV1 expression and M2-polarization in GIST tissues. IL-4 was used to treat THP-1-derived TAM cells and IL-4-stimulated TAM were co-cultured with GIST-T1 cells to mimic the GIST microenvironment. A loss-of-function assay was performed to explore the role of ETV1. Results showed that ETV1 elevation was positively correlated with M2-polarization. IL-4-induced TAM promoted ETV1 expression, silencing ETV1 inhibited proliferation, invasion and KIT activation in IL-4-treated GIST cells, while cell apoptosis was enhanced. Besides, co-culture of ETV1-silenced GIST cells significantly depressed M2-polarization in TAM, presented as decreased levels of CD206, Agr-1 and cytokines, as well as the proportion of CD206-positive TAM. PDE3A was positively correlated with ETV1 and M2-polarization. Overexpressing PDE3A reversed the inhibitory effects of ETV1 silencing. Generally, ETV1 inhibition depressed M2-polarization of TAM in GIST and its promotion on pathological aggravation via down-regulating PDE3A. This evidence may provide a new target for GIST regulation.

4.
J Cell Biochem ; 123(12): 2030-2043, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36125973

RESUMEN

Cilostamide, a phosphodiesterase 3A (Pde3A) inhibitor, is known to increase intraoocyte cyclic adenosine monophosphate (cAMP) level which is involved in sustaining meiotic arrest of the oocytes. To explore the mechanisms involved in the cilostamide-mediated meiotic arrest of the oocytes, the present study describes the effects of cilostamide on cAMP level and related factors involved in maturation of the oocytes at its different meiotic stages; diplotene, metaphase I (MI) and metaphase II (MII). The oocytes from these three stages were collected from rat ovary and incubated with 10 µM cilostamide for 3 h in CO2 incubator. The levels of cAMP, cyclic guanosine monophosphate (cGMP) and the key players of maintaining meiotic arrest during oocyte maturation; Emi2, Apc, Cyclin B1, and Cdk1, were analyzed in diplotene, MI and MII stages. Pde3A was found to be expressed at all three stages but with the lowest level in MI oocyte. As compared to the control sets, the cAMP concentration was found to be highest in MII whereas cGMP was highest in the diplotene stage of cilostamide-treated group. The treated group showed declined reactive oxygen species level as compared with the control counterparts. Relatively increased levels of the Emi2, Cyclin B1, and phosphorylated thr161 of Cdk1 versus declined levels of phosphorylated thr14/tyr15 of Cdk1 in diplotene and MII stage oocytes are known to be involved in maintaining meiotic arrest and all these factors were found to undergo similar pattern of change due to the treatment with cilostamide. The findings thus suggest that cilostamide treatment promotes meiotic arrest by Pde3A inhibition led increase of both cAMP and cGMP level vis-a-vis modulation of the related regulatory factors such as Emi2, CyclinB1, and phosphorylated status of Cdk1 in diplotene and MII stage oocytes. Such a mechanism of meiotic arrest could allow the oocyte to prepare itself for meiotic maturation and thereby to improve oocyte quality.


Asunto(s)
Factor Promotor de Maduración , Inhibidores de Fosfodiesterasa , Femenino , Ratas , Animales , Ciclina B1 , Inhibidores de Fosfodiesterasa/farmacología , Meiosis , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3 , Oocitos , AMP Cíclico/farmacología , GMP Cíclico/farmacología , Adenosina Monofosfato/farmacología
5.
J Biol Chem ; 295(11): 3431-3446, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32005668

RESUMEN

Cytotoxic molecules can kill cancer cells by disrupting critical cellular processes or by inducing novel activities. 6-(4-(Diethylamino)-3-nitrophenyl)-5-methyl-4,5-dihydropyridazin-3(2H)-one (DNMDP) is a small molecule that kills cancer cells by generation of novel activity. DNMDP induces complex formation between phosphodiesterase 3A (PDE3A) and schlafen family member 12 (SLFN12) and specifically kills cancer cells expressing elevated levels of these two proteins. Here, we examined the characteristics and covariates of the cancer cell response to DNMDP. On average, the sensitivity of human cancer cell lines to DNMDP is correlated with PDE3A expression levels. However, DNMDP could also bind the related protein, PDE3B, and PDE3B supported DNMDP sensitivity in the absence of PDE3A expression. Although inhibition of PDE3A catalytic activity did not account for DNMDP sensitivity, we found that expression of the catalytic domain of PDE3A in cancer cells lacking PDE3A is sufficient to confer sensitivity to DNMDP, and substitutions in the PDE3A active site abolish compound binding. Moreover, a genome-wide CRISPR screen identified the aryl hydrocarbon receptor-interacting protein (AIP), a co-chaperone protein, as required for response to DNMDP. We determined that AIP is also required for PDE3A-SLFN12 complex formation. Our results provide mechanistic insights into how DNMDP induces PDE3A-SLFN12 complex formation, thereby killing cancer cells with high levels of PDE3A and SLFN12 expression.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias/patología , Secuencia de Bases , Biomarcadores de Tumor/metabolismo , Sistemas CRISPR-Cas/genética , Dominio Catalítico , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/química , Mutación del Sistema de Lectura/genética , Genoma , Heterocigoto , Humanos , Unión Proteica/efectos de los fármacos , Piridazinas/farmacología
6.
Ann Hum Genet ; 85(2): 80-91, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33249558

RESUMEN

Phosphodiesterase 3A (PDE3A) is an enzyme that plays an important role in the regulation of cyclic adenosine monophosphate (cAMP)-mediated intracellular signaling in cardiac myocytes and platelets. PDE3A hydrolyzes cAMP, which results in a decrease in intracellular cAMP levels and leads to platelet activation. Whole-exome sequencing of 50 DNA samples from a healthy Korean population revealed a total of 13 single nucleotide polymorphisms including five missense variants, D12N, Y497C, H504Q, C707R, and A980V. Recombinant proteins for the five variants of PDE3A (and wild-type protein) were expressed in a FreeStyle 293 expression system with site-directed mutagenesis. The expression of the recombinant PDE3A proteins was confirmed with Western blotting. Catalytic activity of the PDE3A missense variants and wild-type enzyme was measured with a PDE-based assay. Effects of the missense variants on the inhibition of PDE3A activity by cilostazol were also investigated. All variant proteins showed reduced activity (33-53%; p < .0001) compared to the wild-type protein. In addition, PDE3A activity was inhibited by cilostazol in a dose-dependent manner and was further suppressed in the missense variants. Specifically, the PDE3A Y497C showed significantly reduced activity, consistent with the predictions of in silico analyses. The present study provides evidence that individuals carrying the PDE3A Y497C variant may have lower enzyme activity for cAMP hydrolysis, which could cause interindividual variation in cAMP-mediated physiological functions.


Asunto(s)
Cilostazol/administración & dosificación , AMP Cíclico/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/genética , Activación Plaquetaria/efectos de los fármacos , Adulto , Plaquetas/efectos de los fármacos , Cilostazol/efectos adversos , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Masculino , Mutación Missense/genética , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Activación Plaquetaria/genética , Inhibidores de Agregación Plaquetaria/administración & dosificación , Inhibidores de Agregación Plaquetaria/efectos adversos , Polimorfismo Genético/genética , Transducción de Señal/efectos de los fármacos , Secuenciación del Exoma
7.
J Mol Cell Cardiol ; 132: 60-70, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31051182

RESUMEN

Phosphodiesterase type 3 (PDE3) inhibitors block the cAMP hydrolyzing activity of both PDE3 isoforms, PDE3A and PDE3B, which have distinct roles in the heart. Although PDE3 inhibitors improve cardiac function in heart disease patients, they also increase mortality. Nevertheless, PDE3 inhibitors can provide benefit to non-ischemic heart disease patients and are used extensively to treat heart failure in dogs. Since the isoform-dependence of the complex cardiac actions of PDE3 inhibition in diseased hearts remains unknown, we assessed the effects of PDE3 inhibitors as well as gene ablation of PDE3A or PDEB in mice following the induction of non-ischemic heart disease by pressure-overload with transverse-aortic constriction (TAC). As expected, after 6 weeks of TAC, mice exhibited left ventricular contractile dysfunction, dilation, hypertrophy and interstitial fibrosis, in association with increased macrophage numbers, activation of p38 MAPK and elevated PDE3 activity. Chronic PDE3 inhibition with milrinone (MIL), at doses that did not affect either cardiac contractility or arterial blood pressure, profoundly attenuated the adverse ventricular remodeling, reduced macrophage number and diminished p38-MAPK activation induced by TAC. Surprisingly, whole-body ablation of PDE3A, but not PDE3B, provided similar protection against TAC-induced adverse ventricular remodeling, and the addition of MIL to mice lacking PDE3A provided no further protection. Our results support the conclusion that PDE3A plays an important role in adverse cardiac remodeling induced by chronic pressure overload in mice, although the underlying biochemical mechanisms remain to be fully elucidated. The implications of this conclusion on the clinical use of PDE3 inhibitors are discussed.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/fisiología , Cardiopatías/patología , Estrés Mecánico , Remodelación Ventricular , Animales , Cardiopatías/etiología , Cardiopatías/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
8.
Cell Biol Int ; 42(11): 1523-1532, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30080287

RESUMEN

Although microRNA-155 (miR-155) is implicated in the pathogenesis of several fibrotic diseases, information regarding its functional role in renal fibrosis is limited. The current study aims to investigate the effects of miR-155 on renal fibrosis in unilateral ureteral occlusion (UUO) mice. MiR-155 level was significantly increased in renal tissues of UUO mice and TGF-ß1-treated HK2 cells. Masson's trichrome staining showed that delivery of adeno-associated virus encoding miR-155 inhibitor led to a decrease in renal fibrosis induced by UUO. The increased expression of plasminogen activator inhibitor type 1, collagen III and collagen IV was also inhibited after miR-155 inhibition. In addition, miR-155 knockdown also prevented TGF-ß1-induced epithelial-mesenchymal transition, concomitantly with a restoration of E-cadherin expression and a decrease of vimentin expression. Computational analysis revealed that miR-155 directly targets at 3'UTR of PDE3A. Overexpression of miR-155 suppressed the luciferase activity and protein expression of PDE3A, whereas inhibition of miR-155 increased PDE3A luciferase activity and expression. Furthermore, miR-155 inhibited TGF-ß1-induced the increase of TGF-ß1 expression and Smad-2/3 phosphorylation in HK2 cells. In contrast, knockdown of PDE3A reversed the effect of miR-155 inhibition on TGF-ß1 expression. This study demonstrates that knockdown of miR-155 attenuates renal fibrosis via inhibiting TGF-ß1/Smad signaling activation by targeting the upstream molecule PDE3A. This study suggests that miR-155 inhibition may be a novel therapeutic approach for preventing fibrotic kidney diseases.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Enfermedades Renales/genética , Enfermedades Renales/patología , Riñón/patología , MicroARNs/metabolismo , Transducción de Señal , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Secuencia de Bases , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/genética , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Fibrosis , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Reproducibilidad de los Resultados , Obstrucción Ureteral/genética , Obstrucción Ureteral/patología
9.
Exp Cell Res ; 361(2): 308-315, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29107068

RESUMEN

We and others have previously reported a correlation between high phosphodiesterase 3A (PDE3A) expression and selective sensitivity to phosphodiesterase (PDE) inhibitors. This indicates that PDE3A could serve both as a drug target and a biomarker of sensitivity to PDE3 inhibition. In this report, we explored publicly available mRNA gene expression data to identify cell lines with different PDE3A expression. Cell lines with high PDE3A expression showed marked in vitro sensitivity to PDE inhibitors zardaverine and quazinone, when compared with those having low PDE3A expression. Immunofluorescence and immunohistochemical stainings were in agreement with PDE3A mRNA expression, providing suitable alternatives for biomarker analysis of clinical tissue specimens. Moreover, we here demonstrate that tumor cells from patients with ovarian carcinoma show great variability in PDE3A protein expression and that level of PDE3A expression is correlated with sensitivity to PDE inhibition. Finally, we demonstrate that PDE3A is highly expressed in subsets of patient tumor cell samples from different solid cancer diagnoses and expressed at exceptional levels in gastrointestinal stromal tumor (GIST) specimens. Importantly, vulnerability to PDE3 inhibitors has recently been associated with co-expression of PDE3A and Schlafen family member 12 (SLFN12). We here demonstrate that high expression of PDE3A in clinical specimens, at least on the mRNA level, seems to be frequently associated with high SLFN12 expression. In conclusion, PDE3A seems to be both a promising biomarker and drug target for individualized drug treatment of various cancers.


Asunto(s)
Biomarcadores de Tumor/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/genética , Proteínas de Neoplasias/genética , Inhibidores de Fosfodiesterasa/farmacología , ARN Mensajero/genética , Adulto , Anciano , Antineoplásicos/farmacología , Biomarcadores de Tumor/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Femenino , Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Tumores del Estroma Gastrointestinal/genética , Tumores del Estroma Gastrointestinal/metabolismo , Tumores del Estroma Gastrointestinal/patología , Expresión Génica , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Persona de Mediana Edad , Terapia Molecular Dirigida , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Especificidad de Órganos , Compuestos Organoplatinos/farmacología , Oxaliplatino , Piridazinas/farmacología , Quinazolinas/farmacología , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología
10.
Tetrahedron ; 74(22): 2769-2774, 2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-30416214

RESUMEN

Two synthetic methods were developed for the synthesis of PDE3A inhibitor ORG9935. The first one proceeds in six steps and 34% overall yield and the second one in five steps and an overall yield of 69% starting from commercially available starting material 5,6-dimethoxybenzo[b]thiophene-2-carboxylic acid (6). The enantiomers of ORG9935 were separated by chiral column chromatography and the absolute stereochemistry of the (+)-enantiomer, ORG20865 was determined by X-ray crystallography to possess the (S)-configuration. The (-)-enantiomer, ORG20864, was therefore assigned the (R)-stereochemistry. The biologically less active (+)-isomer ORG20865 was converted to racemic ORG9935 under basic conditions, which then can be separated again into the enantiomers. The crystal structure of ORG20865 is notable for having the highest Z' for any known pharmaceutical substance.

11.
Bioorg Med Chem ; 25(20): 5531-5536, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28838830

RESUMEN

A series of 40 7-(O-substituted)-2-morpholino-8-aryl-4H-benzo[e][1,3]oxazin-4-one derivatives was synthesized. They were prepared via synthesis of a key precursor, 8-bromo-7-hydroxy-2-morpholino-4H-benzo[e][1,3]oxazin-4-one 13 which was amenable to ether synthesis at the 7-position and Suzuki coupling at the 8-position. The 2 protons of 7-OCH2 in compounds 18g, 18h, 18i, 18l and 18m prove to be magnetically non-equivalent, atropisomerism (axial chirality), as result of sterically hindered rotation of the bulky 8-aryl-substituent. The products were evaluated for their activities against PI3K isoforms, DNA-PK and PDE3. The results showed that this substitution pattern has a deleterious effect on PI3K activities, which may arise from steric hindrance in the active site. PI3Kδ was somewhat more tolerant of this substitution particularly where 8-(4-methoxylphenyl) substituents were present (IC50s∼2-3µM). Good activities against PDE3 were also obtained for compounds, with particular members of the 7-(2-pyridinyl) methoxy series 19 showing good inhibition (IC50s∼2-3µM), comparable to previously described analogues. A piperazinyl derivative 26a effectively inhibited ADP-induced platelet aggregation with an IC50 of 8µM.


Asunto(s)
Benzoxazinas/farmacología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Benzoxazinas/síntesis química , Benzoxazinas/química , Proteína Quinasa Activada por ADN/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Fosfatidilinositol 3-Quinasas/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/síntesis química , Inhibidores de Agregación Plaquetaria/química , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad
12.
Chem Pharm Bull (Tokyo) ; 65(5): 442-454, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28458366

RESUMEN

Two series of novel alkoxylated 2-oxo(imino)-3-pyridinecarbonitriles (structurally-relevant to some reported anticancer pyridines with phosphodiesterase 3A (PDE3A) inhibitory activity) were synthesized and evaluated for their in vitro differential tumor cell growth inhibitory potential against the breast MCF7, hepatocellular Hep-G2, colon CACO-2 cell lines, and a normal human foreskin fibroblast Hs27 cell line. Compounds 8, 16 and 19 displayed recognizable growth inhibitory ability and selectivity towards the breast MCF7 (LC50 19.15, 17.34 and 14.70 µM, respectively) as compared with doxorubicin (LC50 3.94 µM). Meanwhile, compounds 8, 15, 16, and 19 revealed a marginal inhibitory effect on the growth of the normal human foreskin fibroblast Hs27 cell line, beside a distinctive antioxidant potential in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. These four compounds were further assessed for their in vitro inhibition of PDE3A (a current antitumor therapeutic target), where 16 and 19 showed moderate to weak PDE3A inhibitory as compared with milrinone, the positive control. No clear straightforward liaison between the anticancer potential and PDE3A inhibitory activity could be deduced. Computations of the predicted pharmacokinetic properties, toxicity effects (ADME-T), drug-likeness and drug scores for the newly developed compounds showed non-violations of Lipinski's RO5 and Veber's criteria for good bioavailability, with a predicted high safety profile.


Asunto(s)
Antineoplásicos/farmacología , Antioxidantes/farmacología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Inhibidores de Fosfodiesterasa/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antioxidantes/síntesis química , Antioxidantes/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Inhibidores de Fosfodiesterasa/síntesis química , Inhibidores de Fosfodiesterasa/química , Relación Estructura-Actividad
13.
J Biol Chem ; 290(11): 6763-76, 2015 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-25593322

RESUMEN

Cyclic nucleotide phosphodiesterase 3A (PDE3) regulates cAMP-mediated signaling in the heart, and PDE3 inhibitors augment contractility in patients with heart failure. Studies in mice showed that PDE3A, not PDE3B, is the subfamily responsible for these inotropic effects and that murine PDE3A1 associates with sarcoplasmic reticulum Ca(2+) ATPase 2 (SERCA2), phospholamban (PLB), and AKAP18 in a multiprotein signalosome in human sarcoplasmic reticulum (SR). Immunohistochemical staining demonstrated that PDE3A co-localizes in Z-bands of human cardiac myocytes with desmin, SERCA2, PLB, and AKAP18. In human SR fractions, cAMP increased PLB phosphorylation and SERCA2 activity; this was potentiated by PDE3 inhibition but not by PDE4 inhibition. During gel filtration chromatography of solubilized SR membranes, PDE3 activity was recovered in distinct high molecular weight (HMW) and low molecular weight (LMW) peaks. HMW peaks contained PDE3A1 and PDE3A2, whereas LMW peaks contained PDE3A1, PDE3A2, and PDE3A3. Western blotting showed that endogenous HMW PDE3A1 was the principal PKA-phosphorylated isoform. Phosphorylation of endogenous PDE3A by rPKAc increased cAMP-hydrolytic activity, correlated with shift of PDE3A from LMW to HMW peaks, and increased co-immunoprecipitation of SERCA2, cav3, PKA regulatory subunit (PKARII), PP2A, and AKAP18 with PDE3A. In experiments with recombinant proteins, phosphorylation of recombinant human PDE3A isoforms by recombinant PKA catalytic subunit increased co-immunoprecipitation with rSERCA2 and rat rAKAP18 (recombinant AKAP18). Deletion of the recombinant human PDE3A1/PDE3A2 N terminus blocked interactions with recombinant SERCA2. Serine-to-alanine substitutions identified Ser-292/Ser-293, a site unique to human PDE3A1, as the principal site regulating its interaction with SERCA2. These results indicate that phosphorylation of human PDE3A1 at a PKA site in its unique N-terminal extension promotes its incorporation into SERCA2/AKAP18 signalosomes, where it regulates a discrete cAMP pool that controls contractility by modulating phosphorylation-dependent protein-protein interactions, PLB phosphorylation, and SERCA2 activity.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Miocardio/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Proteínas de Anclaje a la Quinasa A/análisis , Proteínas de Anclaje a la Quinasa A/metabolismo , Calcio/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/análisis , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/análisis , Humanos , Miocardio/citología , Miocardio/enzimología , Miocardio/ultraestructura , Fosforilación , Mapas de Interacción de Proteínas , Isoformas de Proteínas/análisis , Isoformas de Proteínas/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/análisis
14.
Bioorg Med Chem Lett ; 26(22): 5534-5538, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27765510

RESUMEN

To continue our study of 2-morpholino-benzoxazine based compounds, which show useful activity against PI3K family enzymes or antiplatelet activity, we designed and synthesized a series of linear 6.7-fused, 5,6-angular fused and 7,8-angular fused-aryl-morpholino-naphth-oxazines. The compounds were prepared from substituted 2-hydroxynaphthoic acid to give the corresponding thioxo analogues 8, 9, 15 and 19. The thioxo products were then converted to the morpholino substituted analogue. The aryl group was introduced by Suzuki coupling of bromo precursors. The products were evaluated for activity at PI3K family enzymes and as platelet aggregation inhibitors and compared to reported unsubstituted analogues. The linear 6.7-fused product 13a and 13b were moderated potent but selective PI3Kδ isoform inhibitors (IC50=7.7 and 5.61µM). Good antiplatelet activity was noticed for the angular 7,8-fused compounds 22a, b, k and l with IC50=3.0,14.0, 2.0 and 5.0µM respectively. The antiplatelet activity is independent of PDE3.


Asunto(s)
Benzoxazinas/farmacología , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Morfolinos/farmacología , Inhibidores de Fosfodiesterasa 3/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Benzoxazinas/química , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Proteína Quinasa Activada por ADN/metabolismo , Humanos , Morfolinos/química , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Fosfodiesterasa 3/química , Agregación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/química , Inhibidores de Proteínas Quinasas/química
15.
J Mol Cell Cardiol ; 64: 11-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23988739

RESUMEN

Phosphodiesterase 3A (PDE3A) is a major regulator of cAMP in cardiomyocytes. PDE3 inhibitors are used for acute treatment of congestive heart failure, but are associated with increased incidence of arrhythmias and sudden death with long-term use. We previously reported that chronic PDE3A downregulation or inhibition induced myocyte apoptosis in vitro. However, the cardiac protective effect of PDE3A has not been demonstrated in vivo in disease models. In this study, we examined the role of PDE3A in regulating myocardial function and survival in vivo using genetically engineered transgenic mice with myocardial overexpression of the PDE3A1 isozyme (TG). TG mice have reduced cardiac function characterized by reduced heart rate and ejection fraction (52.5±7.8% vs. 83.9±4.7%) as well as compensatory expansion of left ventricular diameter (4.19±0.19mm vs. 3.10±0.18mm). However, there was no maladaptive increase of fibrosis and apoptosis in TG hearts compared to wild type (WT) hearts, and the survival rates also remained the same. The diminution of cardiac contractile function is very likely attributed to a decrease in beta-adrenergic receptor (ß-AR) response in TG mice. Importantly, the myocardial infarct size (4.0±1.8% vs. 24.6±3.8%) and apoptotic cell number (1.3±1.0% vs. 5.6±1.5%) induced by ischemia/reperfusion (I/R) injury were significantly attenuated in TG mice. This was associated with decreased expression of inducible cAMP early repressor (ICER) and increased expression of anti-apoptotic protein BCL-2. To further verify the anti-apoptotic effects of PDE3A1, we performed in vitro apoptosis study in isolated adult TG and WT cardiomyocytes. We found that the apoptotic rates stimulated by hypoxia/reoxygenation or H2O2 were indeed significantly reduced in TG myocytes, and the differences between TG and WT myocytes were completely reversed in the presence of the PDE3 inhibitor milrinone. These together indicate that PDE3A1 negatively regulates ß-AR signaling and protects against I/R injury by inhibiting cardiomyocyte apoptosis.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/genética , Animales , Apoptosis/genética , Modelos Animales de Enfermedad , Expresión Génica , Hemodinámica , Ratones , Ratones Transgénicos , Contracción Miocárdica/genética , Daño por Reperfusión Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/metabolismo , Especificidad de Órganos , Receptores Adrenérgicos beta/metabolismo , Transducción de Señal
16.
Cancers (Basel) ; 15(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38001568

RESUMEN

Liposarcomas (LPSs) are a heterogeneous group of malignancies that arise from adipose tissue. Although LPSs are among the most common soft-tissue sarcoma subtypes, precision medicine treatments are not currently available. To discover LPS-subtype-specific therapy targets, we investigated RNA sequenced transcriptomes of 131 clinical LPS tissue samples and compared the data with a transcriptome database that contained 20,218 samples from 95 healthy tissues and 106 cancerous tissue types. The identified genes were referred to the NCATS BioPlanet library with Enrichr to analyze upregulated signaling pathways. PDE3A protein expression was investigated with immunohistochemistry in 181 LPS samples, and PDE3A and SLFN12 mRNA expression with RT-qPCR were investigated in 63 LPS samples. Immunoblotting and cell viability assays were used to study LPS cell lines and their sensitivity to PDE3A modulators. We identified 97, 247, and 37 subtype-specific, highly expressed genes in dedifferentiated, myxoid, and pleomorphic LPS subtypes, respectively. Signaling pathway analysis revealed a highly activated hedgehog signaling pathway in dedifferentiated LPS, phospholipase c mediated cascade and insulin signaling in myxoid LPS, and pathways associated with cell proliferation in pleomorphic LPS. We discovered a strong association between high PDE3A expression and myxoid LPS, particularly in high-grade tumors. Moreover, myxoid LPS samples showed elevated expression levels of SLFN12 mRNA. In addition, PDE3A- and SLFN12-coexpressing LPS cell lines SA4 and GOT3 were sensitive to PDE3A modulators. Our results indicate that PDE3A modulators are promising drugs to treat myxoid LPS. Further studies are required to develop these drugs for clinical use.

17.
Cell Chem Biol ; 29(6): 958-969.e5, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35104454

RESUMEN

The canonical function of phosphodiesterase 3A (PDE3A) is to hydrolyze the phosphodiester bonds in second messenger molecules, such as cyclic AMP (cAMP) and cyclic guanosine monophosphate (cGMP). Recently, a phosphodiesterase-activity-independent role for PDE3A was reported. In this noncanonical function, PDE3A physically interacts with Schlafen 12 (SLFN12) upon treatment of cells with cytotoxic PDE3A modulators. Here, we confirmed that the cytotoxic PDE3A modulators act as molecular glues to initiate the association of PDE3A and SLFN12. The PDE3A-SLFN12 interaction increases the protein stability of SLFN12 located in the cytoplasm, while at the same time also inducing SLFN12 dephosphorylation (including serines 368 and 573). Mutational analysis demonstrates that dephosphorylation is required for cell death induced by cytotoxic PDE3A modulators. Finally, we found that dephosphorylation promoted the rRNA RNase activity of SLFN12 and show that this nucleolytic activity is essential for SLFN12's cell-death-inducing function. Thus, our study deepens the understanding of the biochemical mechanisms underlying SLFN12-mediated cell death.


Asunto(s)
Antineoplásicos , AMP Cíclico , Antineoplásicos/farmacología , Muerte Celular , AMP Cíclico/metabolismo , GMP Cíclico , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo
18.
Front Pharmacol ; 12: 749930, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34658890

RESUMEN

Carbamazepine is extensively used worldwide to treat a wide range of disorders such as epilepsy, peripheral neuralgia and bipolar disorder. Thrombocytopenia and hemorrhage have been identified in multiple carbamazepine-treated patients. However, the underlying mechanism remains poorly understood. Here, we show that platelets undergo apoptosis after carbamazepine treatment. The apoptotic platelets induced by carbamazepine are rapidly removed in vivo, which accounts for thrombocytopenia. We found that carbamazepine treatment attenuates the phosphorylation level of bcl-xl/bcl-2-associated death promoter (BAD), vasodilator-associated stimulated phosphoprotein (VASP) and GPIbß in platelets, indicating an inhibition effect on protein kinase A (PKA). We further demonstrated that carbamazepine reduced PKA activity through PI3K/Akt/PDE3A signaling pathway. Pharmacological activation of PKA or inhibition of PI3K/Akt/PDE3A protects platelets from apoptosis induced by carbamazepine. Importantly, PDE3A inhibitors or PKA activator ameliorates carbamazepine-mediated thrombocytopenia in vivo. These findings shed light on a possible mechanism of carbamazepine-induced thrombocytopenia, designating PDE3A/PKA as a potential therapeutic target in the treatment of carbamazepine-induced thrombocytopenia.

19.
Environ Pollut ; 270: 116088, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33234378

RESUMEN

It is known that Di (2-ethylhexyl) phthalate (DEHP) may impact mammalian reproduction and that in females one target of the drug's action is follicle assembly. Here we revisited the phthalate's action on the ovary and from bioinformatics analyses of the transcriptome performed on newborn mouse ovaries exposed in vitro to DEHP, up-regulation of PDE3A, as one of the most important alterations caused by DEHP on early folliculogenesis, was identified. We obtained some evidence suggesting that the decrease of cAMP level in oocytes and the parallel decrease of PKA expression, consequent on the PDE3A increase, were a major cause of the reduction of follicle assembly in the DEHP-exposed ovaries. In fact, Pde3a RNAi on cultured ovaries reducing cAMP and PKA decrease counteracted the primordial follicle assembly impairment caused by the compound. Moreover, RNAi normalized the level of Kit, Nobox, Figla mRNA and GDF9, BMP15, CX37, γH2AX proteins in oocytes, and KitL transcripts in granulosa cells as well as their proliferation rate altered by DEHP exposure. Taken together, these results identify PDE3A as a new critical target of the deleterious effects of DEHP on early oogenesis in mammals and highlight cAMP-dependent pathways as major regulators of oocyte and granulosa cell activities crucial for follicle assembly. Moreover, we suggest that the level of intracellular cAMP in the oocytes may be an important determinant for their capability to repair DNA lesions caused by DNA damaging compounds including DEHP.


Asunto(s)
Dietilhexil Ftalato , Ácidos Ftálicos , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3 , Dietilhexil Ftalato/toxicidad , Femenino , Ratones , Oocitos , Folículo Ovárico
20.
Front Aging Neurosci ; 13: 699763, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34456709

RESUMEN

Background: Postoperative delirium (POD) is an acute altered mental state commonly encountered after cardiac surgery. The pathophysiological mechanisms underlying POD remain unclear. We aimed to identify circulating proteins significantly altered after major cardiac surgery with cardiopulmonary bypass (CPB). We also aimed to enable inferences on associations with POD. Methods: Serum and whole blood samples were collected before CPB (n = 16 patients; n = 8 with POD) and again from the same patients on postoperative day 1. All patients were clinically evaluated for POD on postoperative days 1-3. An aptamer-based proteomics platform (SOMAscan) was used to quantify serum protein abundance in patients with POD compared with non-POD controls. We also performed a lipopolysaccharide (LPS)-based in vitro functional analysis (TruCulture) on whole blood samples from patients with POD and non-POD controls to approximate surgical stress. Cytokine levels were determined using a Luminex immunoassay. Results: Cardiac surgery with CPB resulted in a significant (padj < 0.01) change in 48.8% (637 out of 1,305) of proteins detected by SOMAscan. Gene set enrichment showed that the most impacted biological processes involved myeloid cell activation. Specifically, activation and degranulation of neutrophils were the top five highest-scoring processes. Pathway analyses with the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that metabolic enzymes, particularly those of glycolysis, were elevated in serum concentration after surgery. Several proteins were significantly increased postoperatively in patients diagnosed with POD relative to the non-POD controls, with interleukin-6 (IL-6) showing the greatest fold-change. LPS stimulation of whole blood samples confirmed these findings. Linear regression analysis showed a highly significant correlation between Confusion Assessment Method (CAM) scores and CPB-mediated changes in cGMP-inhibited 3',5'-cyclic phosphodiesterase A (PDE3A). Conclusions: Cardiac surgery with CPB resulted in inflammasome changes accompanied by unexpected increases in metabolic pathways. In exploratory analyses, we found that POD was associated with changes in the expression level of various proteins, most notably IL-6 and PDE3A. This study and ongoing protein biomarker studies will likely help quantify risk or confirm the diagnosis for POD and increase understanding of its pathophysiological mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA