Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396732

RESUMEN

Phosphoenolpyruvate carboxylase (PEPC) gene family plays a crucial role in both plant growth and response to abiotic stress. Approximately half of the Orchidaceae species are estimated to perform CAM pathway, and the availability of sequenced orchid genomes makes them ideal subjects for investigating the PEPC gene family in CAM plants. In this study, a total of 33 PEPC genes were identified across 15 orchids. Specifically, one PEPC gene was found in Cymbidium goeringii and Platanthera guangdongensis; two in Apostasia shenzhenica, Dendrobium chrysotoxum, D. huoshanense, Gastrodia elata, G. menghaiensis, Phalaenopsis aphrodite, Ph. equestris, and Pl. zijinensis; three in C. ensifolium, C. sinense, D. catenatum, D. nobile, and Vanilla planifolia. These PEPC genes were categorized into four subgroups, namely PEPC-i, PEPC-ii, and PEPC-iii (PTPC), and PEPC-iv (BTPC), supported by the comprehensive analyses of their physicochemical properties, motif, and gene structures. Remarkably, PEPC-iv contained a heretofore unreported orchid PEPC gene, identified as VpPEPC4. Differences in the number of PEPC homolog genes among these species were attributed to segmental duplication, whole-genome duplication (WGD), or gene loss events. Cis-elements identified in promoter regions were predominantly associated with light responsiveness, and circadian-related elements were observed in each PEPC-i and PEPC-ii gene. The expression levels of recruited BTPC, VpPEPC4, exhibited a lower expression level than other VpPEPCs in the tested tissues. The expression analyses and RT-qPCR results revealed diverse expression patterns in orchid PEPC genes. Duplicated genes exhibited distinct expression patterns, suggesting functional divergence. This study offered a comprehensive analysis to unveil the evolution and function of PEPC genes in Orchidaceae.


Asunto(s)
Orchidaceae , Fosfoenolpiruvato Carboxilasa , Humanos , Fosfoenolpiruvato Carboxilasa/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Orchidaceae/genética , Orchidaceae/metabolismo , Plantas/metabolismo , Secuencia de Bases , Filogenia
2.
New Phytol ; 236(4): 1281-1295, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35959528

RESUMEN

Mesophyll CO2 conductance (gm ) in C3 species responds to short-term (minutes) changes in environment potentially due to changes in leaf anatomical and biochemical properties and measurement artefacts. Compared with C3 species, there is less information on gm responses to short-term changes in environmental conditions such as partial pressure of CO2 (pCO2 ) across diverse C4 species and the potential determinants of these responses. Using 16 C4 grasses we investigated the response of gm to short-term changes in pCO2 and its relationship with leaf anatomy and biochemistry. In general, gm increased as pCO2 decreased (statistically significant increase in 12 species), with percentage increases in gm ranging from +13% to +250%. Greater increase in gm at low pCO2 was observed in species exhibiting relatively thinner mesophyll cell walls along with greater mesophyll surface area exposed to intercellular air spaces, leaf N, photosynthetic capacity and activities of phosphoenolpyruvate carboxylase and Rubisco. Species with greater CO2 responses of gm were also able to maintain their leaf water-use efficiencies (TEi ) under low CO2 . Our study advances understanding of CO2 response of gm in diverse C4 species, identifies the key leaf traits related to this response and has implications for improving C4 photosynthetic models and TEi through modification of gm .


Asunto(s)
Células del Mesófilo , Poaceae , Células del Mesófilo/metabolismo , Poaceae/fisiología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Fosfoenolpiruvato Carboxilasa/metabolismo , Dióxido de Carbono/metabolismo , Hojas de la Planta/fisiología , Fotosíntesis , Agua/metabolismo
3.
New Phytol ; 235(4): 1379-1393, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35596716

RESUMEN

Photosynthetic carbon fixation is often limited by CO2 availability, which led to the evolution of CO2 concentrating mechanisms (CCMs). Some diatoms possess CCMs that employ biochemical fixation of bicarbonate, similar to C4 plants, but whether biochemical CCMs are commonly found in diatoms is a subject of debate. In the diatom Phaeodactylum tricornutum, phosphoenolpyruvate carboxylase (PEPC) is present in two isoforms, PEPC1 in the plastids and PEPC2 in the mitochondria. We used real-time quantitative polymerase chain reaction, Western blots, and enzymatic assays to examine PEPC expression and PEPC activity, under low and high concentrations of dissolved inorganic carbon (DIC). We generated and analyzed individual knockout cell lines of PEPC1 and PEPC2, as well as a PEPC1/2 double-knockout strain. While we could not detect an altered phenotype in the PEPC1 knockout strains at ambient, low or high DIC concentrations, PEPC2 and the double-knockout strains grown under ambient air or lower DIC availability conditions showed reduced growth and photosynthetic affinity for DIC while behaving similarly to wild-type (WT) cells at high DIC concentrations. These mutants furthermore exhibited significantly lower 13 C/12 C ratios compared to the WT. Our data imply that in P. tricornutum at least parts of the CCM rely on biochemical bicarbonate fixation catalyzed by the mitochondrial PEPC2.


Asunto(s)
Diatomeas , Bicarbonatos/metabolismo , Carbono/metabolismo , Ciclo del Carbono , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacología , Diatomeas/metabolismo , Mitocondrias/metabolismo , Fosfoenolpiruvato Carboxilasa/genética , Fosfoenolpiruvato Carboxilasa/metabolismo , Fotosíntesis
4.
Eur J Clin Microbiol Infect Dis ; 41(3): 387-393, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34806121

RESUMEN

This retrospective case-control study assesses the sensitivity, specificity, and area under the curve of the ZEUS Borrelia VlsE1/pepC10 assay in comparison with the C6-ELISA in European patients with Lyme borreliosis, healthy blood donors, and potentially cross-reactive controls. We included a convenience series of 161 sera from patients with physician-confirmed early localized or disseminated Lyme borreliosis (n = 143), 400 sera from healthy blood donors and 44 sera with potentially cross-reactive antibodies, on which we performed the aforementioned serological assays and the recomLine immunoblot. Diagnostic parameters were compared in various single-tier and two-tier algorithms. The specificities of the C6-ELISA and the ZEUS Borrelia VlsE1/pepC10 were comparable in healthy blood donors (e.g., single-tier permissive: C6: 362/400, 90.5% [87.2-93.2]; VlsE1/pepC10: 361/400, 90.3% [86.9-93.0]). The C6-ELISA had an apparently higher sensitivity in EM sera (e.g., both time points combined: C6: 61/76, 80.3% [69.5-88.5]; VlsE1/pepC10: 54/76, 71.1% [59.5-80.9]), but these differences were all not-significant. Interestingly, the VlsE1/pepC10 assay had a significantly higher specificity in sera with potentially cross-reactive antibodies (e.g., single-tier permissive: C6: 34/44, 77.3% [62.2-88.5]; VlsE1/pepC10: 40/44, 90.9% [78.3-97.5]; p = 0.031). While the areas under the curve for both assays were excellent, that of the C6-ELISA exceeded that of the VlsE1/pepC10 (C6: AUC = 0.925; VlsE1/pepC10: AUC = 0.878; p = 0.003). The novel ZEUS Borrelia VlsE1/pepC10 assay has generally comparable diagnostic parameters to the C6-ELISA with potentially improved specificity in cross-reactive sera. Thus, it is a useful tool for the serodiagnosis of Lyme borreliosis in Europe.


Asunto(s)
Borrelia burgdorferi , Borrelia , Enfermedad de Lyme , Anticuerpos Antibacterianos , Estudios de Casos y Controles , Ensayo de Inmunoadsorción Enzimática , Humanos , Enfermedad de Lyme/diagnóstico , Estudios Retrospectivos , Sensibilidad y Especificidad , Pruebas Serológicas
5.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36293547

RESUMEN

Proteins are modular functionalities regulating multiple cellular activities in prokaryotes and eukaryotes. As a consequence of higher plants adapting to arid and thermal conditions, C4 photosynthesis is the carbon fixation process involving multi-enzymes working in a coordinated fashion. However, how these enzymes interact with each other and whether they co-evolve in parallel to maintain interactions in different plants remain elusive to date. Here, we report our findings on the global protein co-evolution relationship and local dynamics of co-varying site shifts in key C4 photosynthetic enzymes. We found that in most of the selected key C4 photosynthetic enzymes, global pairwise co-evolution events exist to form functional couplings. Besides, protein-protein interactions between these enzymes may suggest their unknown functionalities in the carbon delivery process. For PEPC and PPCK regulation pairs, pocket formation at the interactive interface are not necessary for their function. This feature is distinct from another well-known regulation pair in C4 photosynthesis, namely, PPDK and PPDK-RP, where the pockets are necessary. Our findings facilitate the discovery of novel protein regulation types and contribute to expanding our knowledge about C4 photosynthesis.


Asunto(s)
Carbono , Fotosíntesis , Carbono/metabolismo , Fotosíntesis/fisiología , Plantas/metabolismo , Ciclo del Carbono
6.
Mol Microbiol ; 114(2): 292-307, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32274833

RESUMEN

Phosphoenolpyruvate carboxylase (PEPC) is the second major carbon-fixing enzyme in photoautotrophic organisms. PEPC is required for the synthesis of amino acids of the glutamate and aspartate family by replenishing the TCA cycle. Furthermore, in cyanobacteria, PEPC, together with malate dehydrogenase and malic enzyme, forms a metabolic shunt for the synthesis of pyruvate from PEP. During this process, CO2 is first fixed and later released again. Due to its central metabolic position, it is crucial to fully understand the regulation of PEPC. Here, we identify PEPC from the cyanobacterium Synechocystis sp. PCC 6803 (PEPC) as a novel interaction partner for the global signal transduction protein PII . In addition to an extensive characterization of PEPC, we demonstrate specific PII -PEPC complex formation and its enzymatic consequences. PEPC activity is tuned by the metabolite-sensing properties of PII : Whereas in the absence of PII, PEPC is subjected to ATP inhibition, it is activated beyond its basal activity in the presence of PII . Furthermore, PII -PEPC complex formation is inhibited by ADP and PEPC activation by PII -ATP is mitigated in the presence of 2-OG, linking PEPC regulation to the cell's global carbon/nitrogen status. Finally, physiological relevance of the in vitro measurements was proven by metabolomic analyses of Synechocystis wild-type and PII -deficient cells.


Asunto(s)
Proteínas PII Reguladoras del Nitrógeno/metabolismo , Fosfoenolpiruvato Carboxilasa/metabolismo , Synechocystis/metabolismo , Carbono/metabolismo , Cianobacterias/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Nitrógeno/metabolismo , Proteínas PII Reguladoras del Nitrógeno/fisiología , Fosfoenolpiruvato Carboxilasa/fisiología , Fosforilación , Transducción de Señal/fisiología , Synechocystis/fisiología
7.
BMC Plant Biol ; 21(1): 287, 2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34167489

RESUMEN

BACKGROUND: Phosphoenolpyruvate carboxylase (PEPC) plays an important role in the primary metabolism of higher plants. Several studies have revealed the critical importance of PEPC in the interaction of carbon and nitrogen metabolism. However, the function mechanism of PEPC in nitrogen metabolism is unclear and needs further investigation. RESULTS: This study indicates that transgenic rice expressing the sugarcane C4-PEPC gene displayed shorter primary roots and fewer crown roots at the seedling stage. However, total nitrogen content was significantly higher in transgenic rice than in wild type (WT) plants. Proteomic analysis revealed that there were more differentially expressed proteins (DEPs) responding to nitrogen changes in transgenic rice. In particular, the most enriched pathway "glutathione (GSH) metabolism", which mainly contains GSH S-transferase (GST), was identified in transgenic rice. The expression of endogenous PEPC, GST and several genes involved in the TCA cycle, glycolysis and nitrogen assimilation changed in transgenic rice. Correspondingly, the activity of enzymes including GST, citrate synthase, 6-phosphofructokinase, pyruvate kinase and ferredoxin-dependent glutamate synthase significantly changed. In addition, the levels of organic acids in the TCA cycle and carbohydrates including sucrose, starch and soluble sugar altered in transgenic rice under different nitrogen source concentrations. GSH that the substrate of GST and its components including glutamic acid, cysteine and glycine accumulated in transgenic rice. Moreover, the levels of phytohormones including indoleacetic acid (IAA), zeatin (ZT) and isopentenyladenosine (2ip) were lower in the roots of transgenic rice under total nutrients. Taken together, the phenotype, physiological and biochemical characteristics of transgenic rice expressing C4-PEPC were different from WT under different nitrogen levels. CONCLUSIONS: Our results revealed the possibility that PEPC affects nitrogen metabolism through regulating GST, which provide a new direction and concepts for the further study of the PEPC functional mechanism in nitrogen metabolism.


Asunto(s)
Glutatión Transferasa/metabolismo , Nitrógeno/metabolismo , Oryza/enzimología , Fosfoenolpiruvato Carboxilasa/metabolismo , Saccharum/enzimología , Carbono/metabolismo , Oryza/genética , Oryza/metabolismo , Fosfoenolpiruvato Carboxilasa/genética , Plantas Modificadas Genéticamente , Proteómica , Saccharum/genética , Transcriptoma
8.
New Phytol ; 229(6): 3116-3124, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33159327

RESUMEN

Opening of stomata in plants with crassulacean acid metabolism (CAM) is mainly shifted to the night period when atmospheric CO2 is fixed by phosphoenolpyruvate carboxylase and stored as malic acid in the vacuole. As such, CAM plants ameliorate transpirational water losses and display substantially higher water-use efficiency compared with C3 and C4 plants. In the past decade significant technical advances have allowed an unprecedented exploration of genomes, transcriptomes, proteomes and metabolomes of CAM plants and efforts are ongoing to engineer the CAM pathway in C3 plants. Whilst research efforts have traditionally focused on nocturnal carboxylation, less information is known regarding the drivers behind diurnal malate remobilisation from the vacuole that liberates CO2 to be fixed by RuBisCo behind closed stomata. To shed more light on this process, we provide a stoichiometric analysis to identify potentially rate-limiting steps underpinning diurnal malate mobilisation and help direct future research efforts. Within this remit we address three key questions: Q1 Does light-dependent assimilation of CO2 via RuBisCo dictate the rate of malate mobilisation? Q2: Do the enzymes responsible for malate decarboxylation limit daytime mobilisation from the vacuole? Q3: Does malate efflux from the vacuole set the pace of decarboxylation?


Asunto(s)
Metabolismo Ácido de las Crasuláceas , Malatos , Dióxido de Carbono , Vacuolas
9.
Plant Cell Environ ; 44(3): 762-774, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33244775

RESUMEN

The regulation of photosynthesis and carbon gain of crassulacean acid metabolism (CAM) plants has not yet been disclosed to the extent of C3-plants. In this study, the tropical epiphyte Phalaenopsis cv. "Sacramento" was subjected to different lighting regimes. Photosynthesis and biochemical measuring techniques were used to address four specific questions: (1) the response of malate decarboxylation to light intensity, (2) the malate carboxylation pathway in phase IV, (3) the response of diel carbon gain to the light integral and (4) the response of diel carbon gain to CO2 . The four CAM-phases were clearly discernable. The length of phase III and the malate decarboxylation rate responded directly to light intensity. In phase IV, CO2 was initially mainly carboxylated via Rubisco. However, at daylength of 16 h, specifically beyond ±12 h, it was mainly phosphoenolpyruvate carboxylase (PEP-C) carboxylating CO2 . Diel carbon gain appeared to be controlled by the light integral during phase III rather than the total daily light integral. Elevated CO2 further enhanced carbon gain both in phase IV and phase I. This establishes that neither malate storage capacity, nor availability of PEP as substrate for nocturnal CO2 carboxylation were limiting factors for carbon gain enhancement. These results advance our understanding of CAM-plants and are also of practical importance for growers.


Asunto(s)
Metabolismo Ácido de las Crasuláceas/efectos de la radiación , Orchidaceae/efectos de la radiación , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Ácido Cítrico/metabolismo , Luz , Malatos/metabolismo , Orchidaceae/metabolismo , Orchidaceae/fisiología , Fotosíntesis/efectos de la radiación , Ribulosa-Bifosfato Carboxilasa/metabolismo
10.
Plant Cell Environ ; 44(8): 2522-2535, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34096615

RESUMEN

Little is known about the sources and age of C respired by tree roots. Previous research in stems identified two functional pools of non-structural carbohydrates (NSC): an "active" pool supplied directly from canopy photo-assimilates supporting metabolism and a "stored" pool used when fresh C supplies are limited. We compared the C isotope composition of water-soluble NSC and respired CO2 for aspen roots (Populus tremula hybrids) cut off from fresh C supply after stem-girdling or prolonged incubation of excised roots. We used bomb radiocarbon to estimate the time elapsed since C fixation for respired CO2 , water-soluble NSC and structural α-cellulose. While freshly excised roots (mostly <2.9 mm in diameter) respired CO2 fixed <1 year previously, the age increased to 1.6-2.9 year within a week after root excision. Freshly excised roots from trees girdled ~3 months ago had respiration rates and NSC stocks similar to un-girdled trees but respired older C (~1.2 year). We estimate that over 3 months NSC in girdled roots must be replaced 5-7 times by reserves remobilized from root-external sources. Using a mixing model and observed correlations between Δ14 C of water-soluble C and α-cellulose, we estimate ~30% of C is "active" (~5 mg C g-1 ).


Asunto(s)
Carbono/metabolismo , Raíces de Plantas/metabolismo , Populus/metabolismo , Árboles/metabolismo , Metabolismo de los Hidratos de Carbono , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análisis , Radioisótopos de Carbono/análisis , Celulosa/metabolismo , Bosques , Alemania
11.
Genome ; 64(10): 901-913, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33596125

RESUMEN

Thinopyrum elongatum is an important gene pool for wheat genetic improvement. However, the origins of the Thinopyrum genomes and the nature of the genus' intraspecific relationships are still controversial. In this study, we used single-copy nuclear genes and non-denaturing fluorescence in situ hybridization (ND-FISH) to characterize genome constitution and chromosome differentiation in Th. elongatum. According to phylogenetic analyses based on PepC and Pgk1 genes, there was an E genome with three versions (Ee, Eb, Ex) and St genomes in the polyploid Th. elongatum. The ND-FISH results of pSc119.2 and pAs1 revealed that the karyotypes of diploid Th. elongatum and Th. bessarabicum were different, and the chromosome differentiation occurred among accessions of the diploid Th. elongatum. In addition, the tetraploid Th. elongatum has two groups of ND-FISH karyotype, indicating that the tetraploid Th. elongatum might be a segmental allotetraploid. In summary, our results suggested that the diploid Th. elongatum, Th. Bessarabicum, and Pseudoroegneria were the donors of the Ee, Eb, and St genomes to the polyploid Th. elongatum, respectively.


Asunto(s)
Cromosomas de las Plantas , Poaceae , Tetraploidía , Cromosomas de las Plantas/genética , Genoma de Planta , Hibridación Fluorescente in Situ , Filogenia , Poaceae/genética
12.
Int J Mol Sci ; 22(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071242

RESUMEN

Organic acids are key components that determine the taste and flavor of fruits and play a vital role in maintaining fruit quality and nutritive value. In this study, the fruits of two cultivars of passion fruit Yellow (Passiflora edulis f. flavicarpa) and purple (Passiflora edulis f. edulis) were harvested at five different developmental stages (i.e., fruitlet, green, veraison, near-mature and mature stage) from an orchard located in subtropical region of Fujian Province, China. The contents of six organic acids were quantified using ultra-performance liquid chromatography (UPLC), activities of citric acid related enzymes were determined, and expression levels of genes involved in citric acid metabolism were measured by quantitative real-time PCR (qRT-PCR). The results revealed that citric acid was the predominant organic acid in both cultivars during fruit development. The highest citric acid contents were observed in both cultivars at green stage, which were reduced with fruit maturity. Correlation analysis showed that citrate synthase (CS), cytosolic aconitase (Cyt-ACO) and cytosolic isocitrate dehydrogenase (Cyt-IDH) may be involved in regulating citric acid biosynthesis. Meanwhile, the PeCS2, PeACO4, PeACO5 and PeIDH1 genes may play an important role in regulating the accumulation of citric acid. This study provides new insights for future elucidation of key mechanisms regulating organic acid biosynthesis in passion fruit.


Asunto(s)
Ácido Cítrico/análisis , Frutas/química , Frutas/genética , Compuestos Orgánicos/análisis , Passiflora/química , Passiflora/genética , China , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Isocitrato Deshidrogenasa , Valor Nutritivo , Passiflora/crecimiento & desarrollo , Extractos Vegetales
13.
J Exp Bot ; 71(14): 4093-4108, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32206789

RESUMEN

Phosphoenolpyruvate carboxylase (PEPC) plays a pivotal role in the photosynthetic CO2 fixation of C4 plants. However, the functions of PEPCs in C3 plants are less well characterized, particularly in relation to low atmospheric CO2 levels. Of the four genes encoding PEPC in Arabidopsis, PPC2 is considered as the major leaf PEPC gene. Here we show that the ppc2 mutants suffered a growth arrest when transferred to low atmospheric CO2 conditions, together with decreases in the maximum efficiency of PSII (Fv/Fm) and lower levels of leaf abscisic acid (ABA) and carbohydrates. The application of sucrose, malate, or ABA greatly rescued the growth of ppc2 lines under low CO2 conditions. Metabolite profiling analysis revealed that the levels of glycine and serine were increased in ppc2 leaves, while the abundance of photosynthetic metabolites was decreased under these conditions. The transcript levels of encoding enzymes involved in glycine or serine metabolism was decreased in ppc2 in an ABI5-dependent manner. Like the ppc2 mutants, abi5-1 mutants had lower photosynthetic rates and Fv/Fm compared with the wild type under photorespiratory conditions (i.e. low CO2 availability). However, the growth of these mutants was similar to that of the wild type under non-photorespiratory (low O2) conditions. The constitutive expression of ABI5 prevented the growth arrest of ppc2 lines under low CO2 conditions. These findings demonstrate that PPC2 plays an important role in the acclimation of Arabidopsis plants to low CO2 availability by linking photorespiratory metabolism to primary metabolism, and that this is mediated, at least in part, through ABA- and ABI5-dependent processes.


Asunto(s)
Ácido Abscísico , Dióxido de Carbono , Aclimatación , Fosfoenolpiruvato Carboxilasa/genética , Fosfoenolpiruvato Carboxilasa/metabolismo , Fotosíntesis , Proteínas de Plantas
14.
J Exp Bot ; 71(18): 5302-5312, 2020 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-32728715

RESUMEN

Rubisco is central to carbon assimilation, and efforts to improve the efficiency and sustainability of crop production have spurred interest in phenotyping Rubisco activity. We tested the hypothesis that microtiter plate-based methods provide comparable results to those obtained with the radiometric assay that measures the incorporation of 14CO2 into 3-phosphoglycerate (3-PGA). Three NADH-linked assays were tested that use alternative coupling enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glycerolphosphate dehydrogenase (GlyPDH); phosphoenolpyruvate carboxylase (PEPC) and malate dehydrogenase (MDH); and pyruvate kinase (PK) and lactate dehydrogenase (LDH). To date there has been no thorough evaluation of their reliability by comparison with the 14C-based method. The three NADH-linked assays were used in parallel to estimate (i) the 3-PGA concentration-response curve of NADH oxidation, (ii) the Michaelis-Menten constant for ribulose-1,5-bisphosphate, (iii) fully active and inhibited Rubisco activities, and (iv) Rubisco initial and total activities in fully illuminated and shaded leaves. All three methods correlated strongly with the 14C-based method, and the PK-LDH method showed a strong correlation and was the cheapest method. PEPC-MDH would be a suitable option for situations in which ADP/ATP might interfere with the assay. GAPDH-GlyPDH proved more laborious than the other methods. Thus, we recommend the PK-LDH method as a reliable, cheaper, and higher throughput method to phenotype Rubisco activity for crop improvement efforts.


Asunto(s)
NAD , Ribulosa-Bifosfato Carboxilasa , Radioisótopos de Carbono , Reproducibilidad de los Resultados
15.
Int J Mol Sci ; 21(7)2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32276381

RESUMEN

Narrow-leafed lupin (Lupinus angustifolius L.) has recently been supplied with advanced genomic resources and, as such, has become a well-known model for molecular evolutionary studies within the legume family-a group of plants able to fix nitrogen from the atmosphere. The phylogenetic position of lupins in Papilionoideae and their evolutionary distance to other higher plants facilitates the use of this model species to improve our knowledge on genes involved in nitrogen assimilation and primary metabolism, providing novel contributions to our understanding of the evolutionary history of legumes. In this study, we present a complex characterization of two narrow-leafed lupin gene families-glutamine synthetase (GS) and phosphoenolpyruvate carboxylase (PEPC). We combine a comparative analysis of gene structures and a synteny-based approach with phylogenetic reconstruction and reconciliation of the gene family and species history in order to examine events underlying the extant diversity of both families. Employing the available evidence, we show the impact of duplications on the initial complement of the analyzed gene families within the genistoid clade and posit that the function of duplicates has been largely retained. In terms of a broader perspective, our results concerning GS and PEPC gene families corroborate earlier findings pointing to key whole genome duplication/triplication event(s) affecting the genistoid lineage.


Asunto(s)
Genoma de Planta , Glutamato-Amoníaco Ligasa/genética , Lupinus/genética , Fosfoenolpiruvato Carboxilasa/genética , Duplicaciones Segmentarias en el Genoma , Evolución Molecular , Lupinus/metabolismo , Nitrógeno/metabolismo , Análisis de Secuencia de ADN , Sintenía
16.
J Biol Chem ; 293(26): 9945-9957, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29743237

RESUMEN

The isozymes of photosynthetic phosphoenolpyruvate carboxylase from C4 plants (PEPC-C4) play a critical role in their atmospheric CO2 assimilation and productivity. They are allosterically activated by phosphorylated trioses or hexoses, such as d-glucose 6-phosphate, and inhibited by l-malate or l-aspartate. Additionally, PEPC-C4 isozymes from grasses are activated by glycine, serine, or alanine, but the allosteric site for these compounds remains unknown. Here, we report a new crystal structure of the isozyme from Zea mays (ZmPEPC-C4) with glycine bound at the monomer-monomer interfaces of the two dimers of the tetramer, making interactions with residues of both monomers. This binding site is close to, but different from, the one proposed to bind glucose 6-phosphate. Docking experiments indicated that d/l-serine or d/l-alanine could also bind to this site, which does not exist in the PEPC-C4 isozyme from the eudicot plant Flaveria, mainly because of a lysyl residue at the equivalent position of Ser-100 in ZmPEPC-C4 Accordingly, the ZmPEPC-C4 S100K mutant is not activated by glycine, serine, or alanine. Amino acid sequence alignments showed that PEPC-C4 isozymes from the monocot family Poaceae have either serine or glycine at this position, whereas those from Cyperaceae and eudicot families have lysine. The size and charge of the residue equivalent to Ser-100 are not only crucial for the activation of PEPC-C4 isozymes by neutral amino acids but also affect their affinity for the substrate phosphoenolpyruvate and their allosteric regulation by glucose 6-phosphate and malate, accounting for the reported kinetic differences between PEPC-C4 isozymes from monocot and eudicot plants.


Asunto(s)
Sitio Alostérico , Aminoácidos Neutros/metabolismo , Fosfoenolpiruvato Carboxilasa/química , Fosfoenolpiruvato Carboxilasa/metabolismo , Serina/metabolismo , Zea mays/enzimología , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato
17.
New Phytol ; 221(4): 1843-1852, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30267568

RESUMEN

Phosphenolpyruvate carboxylase (PEPC)-catalysed fixation of bicarbonate to C4 acids is commonly believed to represent a rather small flux in illuminated leaves. In addition, its potential variation with O2 and CO2 is not documented and thus is usually neglected in gas-exchange studies. Here, we used quantitative NMR analysis of sunflower leaves labelled with 13 CO2 (99% 13 C) under controlled conditions and measured the amount of 13 C found in the four C-atom positions in malate, the major product of PEPC activity. We found that amongst malate 13 C-isotopomers present after labelling, most molecules were labelled at both C-1 and C-4, showing the incorporation of 13 C at C-4 by PEPC fixation and subsequent redistribution to C-1 by fumarase (malate-fumarate equilibrium). In addition, absolute quantification of 13 C content showed that PEPC fixation increased at low CO2 or high O2 , and represented up to 1.8 µmol m-2  s-1 , that is, 40% of net assimilation measured by gas exchange under high O2 /CO2 conditions. Our results show that PEPC fixation represents a quantitatively important CO2 -fixing activity that varies with O2 and/or CO2 mole fraction and this challenges the common interpretation of net assimilation in C3 plants, where PEPC activity is often disregarded or considered to be constant at a very low rate.


Asunto(s)
Dióxido de Carbono/metabolismo , Helianthus/metabolismo , Oxígeno/metabolismo , Fosfoenolpiruvato Carboxilasa/metabolismo , Proteínas de Plantas/metabolismo , Isótopos de Carbono/análisis , Helianthus/fisiología , Espectroscopía de Resonancia Magnética , Malatos/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo
18.
Photosynth Res ; 141(2): 195-207, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30756292

RESUMEN

Crassulacean acid metabolism (CAM) is a specialized photosynthetic pathway present in a variety of genera including many epiphytic orchids. CAM is under circadian control and can be subdivided into four discrete phases during a diel cycle. Inherent to this specific mode of metabolism, carbohydrate availability is a limiting factor for nocturnal CO2 uptake and biomass production. To evaluate the effects of light quality on the photosynthetic performance and diel changes in carbohydrates during the CAM cycle. Phalaenopsis plants were grown under four different light qualities (red, blue, red + blue and full spectrum white light) at a fluence of 100 µmol m-2 s-1 and a photoperiod of 12 h for 8 weeks. In contrast to monochromatic blue light, plants grown under monochromatic red light showed already a significant decline of the quantum efficiency (ΦPSII) after 5 days and of the maximum quantum yield (Fv/Fm) after 10 days under this treatment. This was also reflected in a compromised chlorophyll and carotenoid content and total diel CO2 uptake under red light in comparison with monochromatic blue and full spectrum white light. In particular, CO2 uptake during nocturnal phase I was affected under red illumination resulting in a reduced amount of vacuolar malate. In addition, red light caused the rate of decarboxylation of malate during the day to be consistently lower and malic acid breakdown persisted until 4 h after dusk. Because the intrinsic activity of PEPC was not affected, the restricted availability of storage carbohydrates such as starch was likely to cause these adverse effects under red light. Addition of blue to the red light spectrum restored the diel fluxes of carbohydrates and malate and resulted in a significant enhancement of the daily CO2 uptake, pigment concentration and biomass formation.


Asunto(s)
Dióxido de Carbono/metabolismo , Secuestro de Carbono/efectos de la radiación , Orchidaceae/fisiología , Fotosíntesis/efectos de la radiación , Biomasa , Clorofila/metabolismo , Luz , Malatos/metabolismo , Orchidaceae/crecimiento & desarrollo , Orchidaceae/efectos de la radiación , Fotoperiodo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Almidón/metabolismo
19.
Photosynth Res ; 142(2): 153-167, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31325077

RESUMEN

The engineering process of C4 photosynthesis into C3 plants requires an increased activity of phosphoenolpyruvate carboxylase (PEPC) in the cytosol of leaf mesophyll cells. The literature varies on the physiological effect of transgenic maize (Zea mays) PEPC (ZmPEPC) leaf expression in Oryza sativa (rice). Therefore, to address this issue, leaf-atmosphere CO2 and 13CO2 exchanges were measured, both in the light (at atmospheric O2 partial pressure of 1.84 kPa and at different CO2 levels) and in the dark, in transgenic rice expressing ZmPEPC and wild-type (WT) plants. The in vitro PEPC activity was 25 times higher in the PEPC overexpressing (PEPC-OE) plants (~20% of maize) compared to the negligible activity in WT. In the PEPC-OE plants, the estimated fraction of carboxylation by PEPC (ß) was ~6% and leaf net biochemical discrimination against 13CO2[Formula: see text] was ~ 2‰ lower than in WT. However, there were no differences in leaf net CO2 assimilation rates (A) between genotypes, while the leaf dark respiration rates (Rd) over three hours after light-dark transition were enhanced (~ 30%) and with a higher 13C composition [Formula: see text] in the PEPC-OE plants compared to WT. These data indicate that ZmPEPC in the PEPC-OE rice plants contributes to leaf carbon metabolism in both the light and in the dark. However, there are some factors, potentially posttranslational regulation and PEP availability, which reduce ZmPEPC activity in vivo.


Asunto(s)
Atmósfera/química , Dióxido de Carbono/metabolismo , Isótopos de Carbono/química , Oryza/metabolismo , Fosfoenolpiruvato Carboxilasa/metabolismo , Hojas de la Planta/metabolismo , Zea mays/enzimología , Zea mays/genética , Respiración de la Célula , Malatos/metabolismo , Células del Mesófilo/metabolismo , Fotosíntesis , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente
20.
J Exp Bot ; 70(5): 1553-1565, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30689935

RESUMEN

Sesuvium sesuvioides (Sesuvioideae, Aizoaceae) is a perennial, salt-tolerant herb distributed in flats, depressions, or disturbed habitats of southern Africa and the Cape Verdes. Based on carbon isotope values, it is considered a C4 species, despite a relatively high ratio of mesophyll to bundle sheath cells (2.7:1) in the portulacelloid leaf anatomy. Using leaf anatomy, immunocytochemistry, gas exchange measurements, and enzyme activity assays, we sought to identify the biochemical subtype of C4 photosynthesis used by S. sesuvioides and to explore the anatomical, physiological, and biochemical traits of young, mature, and senescing leaves, with the aim to elucidate the plasticity and possible limitations of the photosynthetic efficiency in this species. Assays indicated that S. sesuvioides employs the NADP-malic enzyme as the major decarboxylating enzyme. The activity of C4 enzymes, however, declined as leaves aged, and the proportion of water storage tissue increased while air space decreased. These changes suggest a functional shift from photosynthesis to water storage in older leaves. Interestingly, S. sesuvioides demonstrated CO2 compensation points ranging between C4 and C3-C4 intermediate values, and immunocytochemistry revealed labeling of the Rubisco large subunit in mesophyll cells. We hypothesize that S. sesuvioides represents a young C4 lineage with C4-like photosynthesis in which C3 and C4 cycles are running simultaneously in the mesophyll.


Asunto(s)
Aizoaceae/fisiología , Carbono/metabolismo , Fotosíntesis , Hojas de la Planta/fisiología , Ciclo del Carbono , Células del Mesófilo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA