Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 943
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38826136

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a family of "forever chemicals" including PFOS (perfluorooctane sulfonate). These toxic chemicals do not break down in the environment nor in our bodies. In the human body, PFOS and PFOA (perfluoroctanoic acid) have a half-life (T1/2) of about 4-5 years so low daily consumption of these chemicals can accumulate in the human body to a harmful level over a long period. Although the use of PFOS in consumer products was banned in the U.S. in 2022/2023, this forever chemical remains detectable in our tap water and food products. Every American tested has a high level of PFAS in their blood (https://cleanwater.org/pfas-forever-chemicals). In this report, we used a Sertoli cell blood-testis barrier (BTB) model with primary Sertoli cells cultured in vitro with an established functional tight junction (TJ)-permeability barrier that mimicked the BTB in vivo. Treatment of Sertoli cells with PFOS was found to perturb the TJ-barrier, which was the result of cytoskeletal disruption across the cell cytoplasm, disrupting actin and microtubule polymerization. These changes thus affected the proper localization of BTB-associated proteins at the BTB. Using RNA-Seq transcriptome profiling, bioinformatics analysis, and pertinent biochemical and cell biology techniques, it was discovered that PFOS-induced Sertoli cell toxicity through the c-Jun N-terminal kinase (JNK; also known as stress-activated protein kinase, SAPK) and its phosphorylated/active form p-JNK signaling pathway. More importantly, KB-R7943 mesylate (KB), a JNK/p-JNK activator, was capable of blocking PFOS-induced Sertoli cell injury, supporting the notion that PFOS-induced cell injury can possibly be therapeutically managed.

2.
Int J Cancer ; 154(6): 979-991, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37902275

RESUMEN

Human exposure to per- and polyfluoroalkyl substances (PFAS) occurs globally through contaminated food, dust, and drinking water. Studies of PFAS and thyroid cancer have been limited. We conducted a nested case-control study of prediagnostic serum levels of 19 PFAS and papillary thyroid cancer (400 cases, 400 controls) in the Finnish Maternity Cohort (pregnancies 1986-2010; follow-up through 2016), individually matched on sample year and age. We used conditional logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI) for log2 transformed and categorical exposures, overall and stratified by calendar period, birth cohort, and median age at diagnosis. We adjusted for other PFAS with Spearman correlation rho = 0.3-0.6. Seven PFAS, including perfluoroctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), N-ethyl-perfluorooctane sulfonamidoacetic acid (EtFOSAA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluorohexane sulfonic acid (PFHxS) were detected in >50% of women. These PFAS were not associated with risk of thyroid cancer, except for PFHxS, which was inversely associated (OR log2 = 0.82, 95% CI: 0.70-0.97). We observed suggestive but imprecise increased risks associated with PFOA, PFOS, and EtFOSAA for those diagnosed at ages <40 years, whereas associations were null or inverse among those diagnosed at 40+ years (P-interaction: .02, .08, .13, respectively). There was little evidence of other interactions. These results show no clear association between PFAS and papillary thyroid cancer risk. Future work would benefit from evaluation of these relationships among those with higher exposure levels and during periods of early development when the thyroid gland may be more susceptible to environmental harms.


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Fluorocarburos , Ácidos Sulfónicos , Neoplasias de la Tiroides , Humanos , Femenino , Embarazo , Cáncer Papilar Tiroideo/epidemiología , Estudios de Casos y Controles , Finlandia/epidemiología , Fluorocarburos/efectos adversos , Neoplasias de la Tiroides/epidemiología , Neoplasias de la Tiroides/etiología
3.
Neurochem Res ; 49(5): 1226-1238, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38393622

RESUMEN

Both epidemiological investigation and animal experiments demonstrated that pre-/postnatal exposure to perfluorooctane sulfonic acid (PFOS) could induce neurodevelopmental disorders. Previous studies showed that astrocyte was involved in PFOS-induced neurotoxicity, while little information is available. In the present study, the role of astrocyte-derived calmodulin-dependent protein kinase II (CaMKII)-phosphorylated discs large homolog 1 (DLG1) signaling in PFOS eliciting cytotoxicity in neuron was explored with primary cultured hippocampal astrocyte and neuron. The application of PFOS showed a decreased cell viability, synapse length and glutamate transporter 1 (GLT-1) expression, but an increased CaMKII, DLG1 and cyclic AMP response element binding protein (CREB) expression in primary cultured astrocyte. With 2-(2-hydroxyethylamino)-6-aminohexylcarbamic acid tert-butyl ester-9-isopropylpurine (CK59), the CaMKII inhibitor, the disturbed cell viability and molecules induced by PFOS could be alleviated (CREB expression was excluded) in astrocytes. The cytotoxic effect of neuron exposed to astrocyte conditional medium collected from PFOS (PFOS-ACM) pretreated with CK59 was also decreased. These results indicated that PFOS mediated GLT-1 expression through astrocyte-derived CaMKII-DLG signaling, which might be associated with injuries on neurons. The present study gave an insight in further exploration of mechanism in PFOS-induced neurotoxicity.


Asunto(s)
Ácidos Alcanesulfónicos , Astrocitos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Fluorocarburos , Ratas , Animales , Astrocitos/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Células Cultivadas
4.
Environ Sci Technol ; 58(25): 11162-11174, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38857410

RESUMEN

Thermal treatment has emerged as a promising approach for either the end-of-life treatment or regeneration of granular activated carbon (GAC) contaminated with per- and polyfluoroalkyl substances (PFAS). However, its effectiveness has been limited by the requirement for high temperatures, the generation of products of incomplete destruction, and the necessity to scrub HF in the flue gas. This study investigates the use of common alkali and alkaline-earth metal additives to enhance the mineralization of perfluorooctanesulfonate (PFOS) adsorbed onto GAC. When treated at 800 °C without an additive, only 49% of PFOS was mineralized to HF. All additives tested demonstrated improved mineralization, and Ca(OH)2 had the best performance, achieving a mineralization efficiency of 98% in air or N2. Its ability to increase the reaction rate and shift the byproduct selectivity suggests that its role may be catalytic. Moreover, additives reduced HF in the flue gas by instead reacting with the additive to form inorganic fluorine (e.g., CaF2) in the starting waste material. A hypothesized reaction mechanism is proposed that involves the electron transfer from O2- defect sites of CaO to intermediates formed during the thermal decomposition of PFOS. These findings advocate for the use of additives in the thermal treatment of GAC for disposal or reuse, with the potential to reduce operating costs and mitigate the environmental impact associated with incinerating PFAS-laden wastes.


Asunto(s)
Ácidos Alcanesulfónicos , Carbón Orgánico , Fluorocarburos , Carbón Orgánico/química , Ácidos Alcanesulfónicos/química , Fluorocarburos/química , Metales Alcalinotérreos/química , Adsorción , Álcalis/química , Calor
5.
Environ Sci Technol ; 58(22): 9863-9874, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38780413

RESUMEN

The long-term leaching of polyfluoroalkyl substances (PFAS) within the vadose zone of an AFFF application site for which the depth to groundwater is approximately 100 m was investigated by characterizing the vertical distribution of PFAS in a high spatial resolution. The great majority (99%) of PFAS mass resides in the upper 3 m of the vadose zone. The depths to which each PFAS migrated, quantified by moment analysis, is an inverse function of molar volume, demonstrating chromatographic separation. The PFAS were operationally categorized into three chain-length groups based on the three general patterns of retention observed. The longest-chain (>∼335 cm3/mol molar volume) PFAS remained within the uppermost section of the core, exhibiting minimal leaching. Conversely, the shortest-chain (<∼220 cm3/mol) PFAS accumulated at the bottom of the interval, which coincides with the onset of a calcic horizon. PFAS with intermediate-chain lengths were distributed along the length of the core, exhibiting differential magnitudes of leaching. The minimal or differential leaching observed for the longest- and intermediate-chain-length PFAS, respectively, demonstrates that retention processes significantly impacted migration. The accumulation of shorter-chain PFAS at the bottom of the core is hypothesized to result from limited deep infiltration and potential-enhanced retention associated with the calcic horizon.


Asunto(s)
Fluorocarburos , Agua Subterránea , Contaminantes Químicos del Agua , Agua Subterránea/química , Monitoreo del Ambiente
6.
Environ Sci Technol ; 58(11): 5129-5138, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38385684

RESUMEN

Attention has been drawn to the associations between PFASs and human cognitive decline. However, knowledge on the occurrence and permeability of PFASs in the brains of patients with cognitive impairment has not been reported. Here, we determined 30 PFASs in paired sera and cerebrospinal fluids (CSFs) from patients with cognitive impairment (n = 41) and controls without cognitive decline (n = 18). We revealed similar serum PFAS levels but different CSF PFAS levels, with lower CSF PFOA (median: 0.125 vs 0.303 ng/mL, p < 0.05), yet higher CSF PFOS (0.100 vs 0.052 ng/mL, p < 0.05) in patients than in controls. Blood-brain transfer rates also showed lower RCSF/Serum values for PFOA and higher RCSF/Serum values for PFOS in patients, implying potential heterogeneous associations with cognitive function. The RCSF/Serum values for C4-C14 perfluoroalkyl carboxylates exhibited a U-shape trend with increasing chain length. Logistic regression analyses demonstrated that CSF PFOS levels were linked to the heightened risk of cognitive impairment [odds ratio: 3.22 (1.18-11.8)] but not for serum PFOS. Toxicity inference results based on the Comparative Toxicogenomics Database suggested that PFOS in CSF may have a greater potential to impair human cognition than other PFASs. Our results contribute to a better understanding of brain PFAS exposure and its potential impact on cognitive function.


Asunto(s)
Ácidos Alcanesulfónicos , Disfunción Cognitiva , Contaminantes Ambientales , Fluorocarburos , Humanos , Ácidos Alcanesulfónicos/toxicidad , Fluorocarburos/toxicidad , Ácidos Carboxílicos , Permeabilidad
7.
Environ Sci Technol ; 58(12): 5405-5418, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38483317

RESUMEN

Per- and polyfluoroalkyl substances (PFASs), with significant health risks to humans and wildlife, bioaccumulate in plants. However, the mechanisms underlying plant uptake remain poorly understood. This study deployed transcriptomic analysis coupled with genetic and physiological studies using Arabidopsis to investigate how plants respond to perfluorooctanesulfonic acid (PFOS), a long-chain PFAS. We observed increased expressions of genes involved in plant uptake and transport of phosphorus, an essential plant nutrient, suggesting intertwined uptake and transport processes of phosphorus and PFOS. Furthermore, PFOS-altered response differed from the phosphorus deficiency response, disrupting phosphorus metabolism to increase phosphate transporter (PHT) transcript. Interestingly, pht1;2 and pht1;8 mutants showed reduced sensitivity to PFOS compared to that of the wild type, implying an important role of phosphate transporters in PFOS sensing. Furthermore, PFOS accumulated less in the shoots of the pht1;8 mutant, indicating the involvement of PHT1;8 protein in translocating PFOS from roots to shoots. Supplementing phosphate improved plant's tolerance to PFOS and reduced PFOS uptake, suggesting that manipulating the phosphate source in PFOS-contaminated soils may be a promising strategy for minimizing PFOS uptake by edible crops or promoting PFOS uptake during phytoremediation. This study highlighted the critical role of phosphate sensing and transport system in the uptake and translocation of PFOS in plants.


Asunto(s)
Ácidos Alcanesulfónicos , Arabidopsis , Fluorocarburos , Humanos , Fosfatos , Redes Reguladoras de Genes , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Fósforo/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
8.
Environ Sci Technol ; 58(24): 10806-10816, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38829301

RESUMEN

Temporal and spatial variability of per- and polyfluoroalkyl substances (PFASs) in herring, cod, eelpout, and guillemot covering four decades and more than 1000 km in the Baltic Sea was investigated to evaluate the effect of PFAS regulations and residence times of PFASs. Overall, PFAS concentrations responded rapidly to recent regulations but with some notable basin- and homologue-specific variability. The well-ventilated Kattegat and Bothnian Bay showed a faster log-linear decrease for most PFASs than the Baltic Proper, which lacks a significant loss mechanism. PFOS and FOSA, for example, have decreased with 0-7% y-1 in the Baltic Proper and 6-16% y-1 in other basins. PFNA and partly PFOA are exceptions and continue to show stagnant or increasing concentrations. Further, we found that Bothnian Bay herring contained the highest concentrations of >C12 perfluoroalkyl carboxylic acids (PFCAs), likely from rivers with high loads of dissolved organic carbon. In the Kattegat, low PFAS concentrations, but a high FOSA fraction, could be due to influence from the North Sea inflow below the halocline and possibly a local source of FOSA and/or isomer-specific biotransformation. This study represents the most comprehensive spatial and temporal investigation of PFASs in Baltic wildlife while providing new insights into cycling of PFASs within the Baltic Sea ecosystem.


Asunto(s)
Monitoreo del Ambiente , Fluorocarburos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Fluorocarburos/análisis , Océanos y Mares , Animales
9.
Environ Sci Technol ; 58(3): 1731-1740, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38206803

RESUMEN

Perfluorooctanesulfonate (PFOS) has become a major concern due to its widespread occurrence in the environment and severe toxic effects. In this study, we investigate PFOS sorption on goethite surfaces under different water chemistry conditions to understand the impact of variable groundwater chemistry. Our investigation is based on multiple lines of evidence, including (i) a series of sorption experiments with varying pH, ionic strength, and PFOS initial concentration, (ii) IR spectroscopy analysis, and (iii) surface complexation modeling. PFOS was found to bind to goethite through a strong hydrogen-bonded (HB) complex and a weaker outer-sphere complex involving Na+ coadsorption (OS-Na+). The pH and ionic strength of the solution had a nontrivial impact on the speciation and coexistence of these surface complexes. Acidic conditions and low ionic strength promoted hydrogen bonding between the sulfonate headgroup and protonated hydroxo surface sites. Higher electrolyte concentrations and pH values hindered the formation of strong hydrogen bonds upon the formation of a ternary PFOS-Na+-goethite outer-sphere complex. The findings of this study illuminate the key control of variable solution chemistry on PFOS adsorption to mineral surfaces and the importance to develop surface complexation models integrating mechanistic insights for the accurate prediction of PFOS mobility and environmental fate.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Compuestos de Hierro , Agua/química , Minerales/química , Ácidos Alcanesulfónicos/química , Compuestos de Hierro/química , Adsorción , Concentración de Iones de Hidrógeno
10.
Environ Sci Technol ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037862

RESUMEN

Perfluorooctanesulfonate (PFOS), a toxic anionic perfluorinated surfactant, exhibits variable electrostatic adsorption mechanisms on charge-regulated minerals depending on solution hydrochemistry. This work explores the interplay of multicomponent interactions and surface charge effects on PFOS adsorption to goethite surfaces under flow-through conditions. We conducted a series of column experiments in saturated goethite-coated porous media subjected to dynamic hydrochemical conditions triggered by step changes in the electrolyte concentration of the injected solutions. Measurements of pH and PFOS breakthrough curves at the outlet allowed tracking the propagation of multicomponent reactive fronts. We performed process-based reactive transport simulations incorporating a mechanistic network of surface complexation reactions to quantitatively interpret the geochemical processes. The experimental and modeling outcomes reveal that the coupled spatio-temporal evolution of pH and electrolyte fronts, driven by the electrostatic properties of the mineral, exerts a key control on PFOS mobility by determining its adsorption and speciation reactions on goethite surfaces. These results illuminate the important influence of multicomponent transport processes and surface charge effects on PFOS mobility, emphasizing the need for mechanistic adsorption models in reactive transport simulations of ionizable PFAS compounds to determine their environmental fate and to perform accurate risk assessment.

11.
Environ Res ; 250: 118485, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38373549

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) have already drawn a lot of attention for their accumulation and reproductive toxicity in organisms. Perfluorooctanoic acid (PFOA) and perfluorooctanoic sulfonate (PFOS), two representative PFAS, are toxic to humans and animals. Due to their widespread use in environmental media with multiple toxicities, PFOA and PFOS have been banned in numerous countries, and many substitutes have been produced to meet market requirements. Unfortunately, most alternatives to PFOA and PFOS have proven to be cumulative and highly toxic. Of the reported multiple organ toxicities, reproductive toxicity deserves special attention. It has been confirmed through epidemiological studies that PFOS and PFOA are not only associated with reduced testosterone levels in humans, but also with an association with damage to the integrity of the blood testicular barrier. In addition, for women, PFOA and PFOS are correlated with abnormal sex hormone levels, and increase the risk of infertility and abnormal menstrual cycle. Nevertheless, there is controversial evidence on the epidemiological relationship that exists between PFOA and PFOS as well as sperm quality and reproductive hormones, while the evidence from animal studies is relatively consistent. Based on the published papers, the potential toxicity mechanisms for PFOA, PFOS and their substitutes were reviewed. For males, PFOA and PFOS may produce reproductive toxicity in the following five ways: (1) Apoptosis and autophagy in spermatogenic cells; (2) Apoptosis and differentiation disorders of Leydig cells; (3) Oxidative stress in sperm and disturbance of Ca2+ channels in sperm membrane; (4) Degradation of delicate intercellular junctions between Sertoli cells; (5) Activation of brain nuclei and shift of hypothalamic metabolome. For females, PFOA and PFOS may produce reproductive toxicity in the following five ways: (1) Damage to oocytes through oxidative stress; (2) Inhibition of corpus luteum function; (3) Inhibition of steroid hormone synthesis; (4) Damage to follicles by affecting gap junction intercellular communication (GJIC); (5) Inhibition of placental function. Besides, PFAS substitutes show similar reproductive toxicity with PFOA and PFOS, and are even more toxic to the placenta. Finally, based on the existing knowledge, future developments and direction of efforts in this field are suggested.


Asunto(s)
Ácidos Alcanesulfónicos , Caprilatos , Fluorocarburos , Reproducción , Fluorocarburos/toxicidad , Humanos , Ácidos Alcanesulfónicos/toxicidad , Caprilatos/toxicidad , Animales , Reproducción/efectos de los fármacos , Femenino , Masculino , Contaminantes Ambientales/toxicidad
12.
Environ Res ; 252(Pt 1): 118100, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38176628

RESUMEN

A 3-D transport and dispersion model was applied to study the recent past and future dynamics of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) concentrations in the Black Sea for the 2016-2030 period. The modelled surface concentrations show a distinct seasonal behaviour, shaped by winter to spring convective mixing. A significant increasing long-term trend in PFOS concentrations is established, with concentrations in water layers 200 m below the surface increasing at 4-8% per year. Driving mechanisms for PFOA and PFOS transport and accumulation in the subsurface and deeper layers are the cooling of the surface water in winter and the transport of water masses from the North Western Shelf (NWS) of the Black Sea. A simulated 50% phase-out of PFOA and PFOS from 2020 to 2030 shows a 21% reduction in PFOA, while PFOS continues to increase.


Asunto(s)
Ácidos Alcanesulfónicos , Caprilatos , Fluorocarburos , Contaminantes Químicos del Agua , Fluorocarburos/análisis , Fluorocarburos/química , Ácidos Alcanesulfónicos/análisis , Caprilatos/análisis , Contaminantes Químicos del Agua/análisis , Mar Negro , Monitoreo del Ambiente , Estaciones del Año , Agua de Mar/química , Movimientos del Agua
13.
Environ Res ; 256: 119221, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38795951

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) constitutes a group of highly persistent man-made substances. Recent evidence indicates that PFAS negatively impact the immune system. However, it remains unclear how different PFAS are associated with alterations in circulating leukocyte subpopulations. More detailed knowledge of such potential associations can provide better understanding into mechanisms of PFAS immunotoxicity in humans. In this exploratory study, associations of serum levels of common PFAS (perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS)) and immune cell profiles of peripheral blood mononuclear cells, both with and without immunostimulation, were investigated. High-dimensional single cell analysis by mass cytometry was done on blood leukocytes from fifty participants in the Norwegian human biomonitoring EuroMix study. Different PFAS were associated with changes in various subpopulations of natural killer (NK), T helper (Th), and cytotoxic T (Tc) cells. Broadly, PFAS concentrations were related to increased frequencies of NK cells and activated subpopulations of NK cells. Additionally, increased levels of activated T helper memory cell subpopulations point to Th2/Th17 and Treg-like skewed profiles. Finally, PFAS concentrations were associated with decreased frequencies of T cytotoxic cell subpopulations with CXCR3+ effector memory (EM) phenotypes. Several of these observations point to biologically plausible mechanisms that may contribute to explaining the epidemiological reports of immunosuppression by PFAS. Our results suggest that PFAS exposures even at relatively low levels are associated with changes in immune cell subpopulations, a finding which should be explored more thoroughly in a larger cohort. Additionally, causal relationships should be confirmed in experimental studies. Overall, this study demonstrates the strength of profiling by mass cytometry in revealing detailed changes in immune cells at a single cell level.


Asunto(s)
Fluorocarburos , Células Asesinas Naturales , Humanos , Fluorocarburos/toxicidad , Fluorocarburos/sangre , Masculino , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Adulto , Femenino , Persona de Mediana Edad , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/sangre , Exposición a Riesgos Ambientales , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Linfocitos T Colaboradores-Inductores/inmunología , Noruega , Ácidos Alcanesulfónicos/toxicidad , Ácidos Alcanesulfónicos/sangre , Anciano
14.
Environ Health ; 23(1): 42, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627679

RESUMEN

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are associated with many adverse health conditions. Among the main effects is carcinogenicity in humans, which deserves to be further clarified. An evident association has been reported for kidney cancer and testicular cancer. In 2013, a large episode of surface, ground and drinking water contamination with PFAS was uncovered in three provinces of the Veneto Region (northern Italy) involving 30 municipalities and a population of about 150,000. We report on the temporal evolution of all-cause mortality and selected cause-specific mortality by calendar period and birth cohort in the local population between 1980 and 2018. METHODS: The Italian National Institute of Health pre-processed and made available anonymous data from the Italian National Institute of Statistics death certificate archives for residents of the provinces of Vicenza, Padua and Verona (males, n = 29,629; females, n = 29,518) who died between 1980 and 2018. Calendar period analysis was done by calculating standardised mortality ratios using the total population of the three provinces in the same calendar period as reference. The birth cohort analysis was performed using 20-84 years cumulative standardised mortality ratios. Exposure was defined as being resident in one of the 30 municipalities of the Red area, where the aqueduct supplying drinking water was fed by the contaminated groundwater. RESULTS: During the 34 years between 1985 (assumed as beginning date of water contamination) and 2018 (last year of availability of cause-specific mortality data), in the resident population of the Red area we observed 51,621 deaths vs. 47,731 expected (age- and sex-SMR: 108; 90% CI: 107-109). We found evidence of raised mortality from cardiovascular disease (in particular, heart diseases and ischemic heart disease) and malignant neoplastic diseases, including kidney cancer and testicular cancer. CONCLUSIONS: For the first time, an association of PFAS exposure with mortality from cardiovascular disease was formally demonstrated. The evidence regarding kidney cancer and testicular cancer is consistent with previously reported data.


Asunto(s)
Ácidos Alcanesulfónicos , Enfermedades Cardiovasculares , Agua Potable , Fluorocarburos , Neoplasias Renales , Neoplasias de Células Germinales y Embrionarias , Neoplasias Testiculares , Masculino , Femenino , Humanos , Agua Potable/análisis , Italia/epidemiología
15.
J Endocrinol Invest ; 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38522066

RESUMEN

BACKGROUND: The family of perfluoroalkyl and polyfluoroalkyl substances (PFAS) raised concern for their proven bioaccumulation and persistence in the environment and animals as well as for their hazardous health effects. As a result, new congeners of PFAS have rapidly replaced the so-called "old long-chain PFAS" (mainly PFOA and PFOS), currently out-of-law and banned by most countries. These compounds derive from the original structure of "old long-chain PFAS", by cutting or making little conformational changes to their structure, thus obtaining new molecules with similar industrial applications. The new congeners were designed to obtain "safer" compounds. Indeed, old-long-chain PFAS were reported to exert thyroid disruptive effects in vitro, and in vivo in animals and humans. However, shreds of evidence accumulated so far indicate that the "restyling" of the old PFAS leads to the production of compounds, not only functionally similar to the previous ones but also potentially not free of adverse health effects and bioaccumulation. Studies aimed at characterizing the effects of new-PFAS congeners on thyroid function indicate that some of these new-PFAS congeners showed similar effects. PURPOSE: The present review is aimed at providing an overview of recent data regarding the effects of novel PFAS alternatives on thyroid function. RESULTS AND CONCLUSIONS: An extensive review of current legislation and of the shreds of evidence obtained from in vitro and in vivo studies evaluating the effects of the exposure to novel PFOA and PFOS alternatives, as well as of PFAS mixture on thyroid function will be provided.

16.
Arch Toxicol ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884658

RESUMEN

Per- and poly-fluorinated compounds constitute a wide group of fluorocarbon chemicals with widespread industrial applications, ranging from non-stick coating in cookware to water surfactants, from fire-fighting foams to water-repellent coatings on textiles. Presently, over 12,000 PFAS are known worldwide. In recent years, extensive research has focused on investigating the biological effects of these molecules on various organisms, including humans. Here, we conducted in silico simulations to examine the potential binding of a representative selection of PFAS to various human proteins known to be involved in chemical transportation and accumulation processes. Specifically, we targeted human serum albumin (HSA), transthyretin (TTR), thyroxine binding protein (TBG), fatty acid binding proteins (FABPs), organic anion transporters (OATs), aiming to assess the potential for bioaccumulation. Molecular docking simulations were employed for this purpose, supplemented by molecular dynamics (MD) simulations to account for protein flexibility, when necessary. Our findings indicate that so-called "legacy PFAS" such as PFOA or PFOS exhibit a higher propensity for interaction with the analysed human protein targets compared to newly formulated PFAS, characterised by higher branching and hydrophilicity, and possibly a higher accumulation in the human body.

17.
Arch Toxicol ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782768

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) and perfluoro-2-methyl-3-oxahexanoic acid (GenX), the new replacement PFAS, are major environmental contaminants. In rodents, these PFAS induce several adverse effects on the liver, including increased proliferation, hepatomegaly, steatosis, hypercholesterolemia, nonalcoholic fatty liver disease and liver cancers. Activation of peroxisome proliferator receptor alpha by PFAS is considered the primary mechanism of action in rodent hepatocyte-induced proliferation. However, the human relevance of this mechanism is uncertain. We investigated human-relevant mechanisms of PFAS-induced adverse hepatic effects using FRG liver-chimeric humanized mice with livers repopulated with functional human hepatocytes. Male FRG humanized mice were treated with 0.067 mg/L of PFOA, 0.145 mg/L of PFOS, or 1 mg/L of GenX in drinking water for 28 days. PFOS caused a significant decrease in total serum cholesterol and LDL/VLDL, whereas GenX caused a significant elevation in LDL/VLDL with no change in total cholesterol and HDL. All three PFAS induced significant hepatocyte proliferation. RNA-sequencing with alignment to the human genome showed a total of 240, 162, and 619 differentially expressed genes after PFOA, PFOS, and GenX exposure, respectively. Upstream regulator analysis revealed that all three PFAS induced activation of p53 and inhibition of androgen receptor and NR1D1, a transcriptional repressor important in circadian rhythm. Further biochemical studies confirmed NR1D1 inhibition and in silico modeling indicated potential interaction of all three PFAS with the DNA-binding domain of NR1D1. In conclusion, our studies using FRG humanized mice have revealed new human-relevant molecular mechanisms of PFAS including their previously unknown effect on circadian rhythm.

18.
J Toxicol Environ Health A ; 87(1): 22-32, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37818790

RESUMEN

Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are polyfluoroalkyl substances (PFAS) used as surface coatings in manufacturing. Exposure to PFAS was shown to be correlated with infertility, low birth weight, and delayed aspects of pubertal development in mammals. Despite many correlational studies, there have been few direct investigations examining the link between PFAS exposure and early animal development. The aim of this study was to (1) examine the effects of PFOA on development and reproduction using the roundworm Caenorhabditis elegans, a model with a high predictive value for human reproductive toxicity and (2) compare observations to exposure to PFOS. PFAS exposure did not markedly alter egg hatching but delayed population growth, in part due to slower larval development. PFAS-exposed worms took longer to progress through larval stages to reach reproductive maturity, and this was not attributed to PFOA-induced toxicity to their food. Our results provide a robust benchmark for testing developmental and reproductive toxicity for other PFAS and PFAS-alternatives which continue to be used in manufacturing and released into the environment.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Animales , Humanos , Caenorhabditis elegans , Crecimiento Demográfico , Fluorocarburos/toxicidad , Ácidos Alcanesulfónicos/toxicidad , Mamíferos
19.
Am J Ind Med ; 67(4): 321-333, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38345456

RESUMEN

BACKGROUND: Exposure to per- and polyfluoroalkyl substances (PFAS) has been associated with several health outcomes, though few occupationally-exposed populations have been studied. We evaluated mortality and cancer incidence in a cohort of perfluorooctanesulfonyl fluoride-based specialty chemical manufacturing workers. METHODS: The cohort included any employee who ever worked at the facility from 1961 to 2010 (N = 4045), with a primary interest in those who had 365 cumulative days of employment (N = 2659). Vital status and mortality records were obtained through 2014 and the cohort was linked to state cancer registries to obtain incident cancer cases from 1995 to 2014. Cumulative exposure was derived from a comprehensive exposure reconstruction that estimated job-specific perfluorooctanesulfonate (PFOS)-equivalents (mg/m3 ) exposure. Overall and exposure-specific standardized mortality ratios (SMR) were estimated in reference to the US population. Hazard ratios (HRs) and 95% confidence interval (CI) for cumulative PFOS-equivalent exposure (log2 transformed) were estimated within the cohort for specific causes of death and incident cancers using a time-dependent Cox model. RESULTS: Death rates were lower than expected except for cerebrovascular disease (SMR = 2.42, 95% CI = 1.25-4.22) and bladder cancer (SMR = 3.91, 95% CI = 1.07-10.02) in the highest exposure quartile. Within the cohort, the incidence of bladder, colorectal, and pancreatic cancer were positively associated with exposure, however except for lung cancer (HR = 1.05, 95% CI = 1.00-1.11) the CIs did not exclude an HR of 1. CONCLUSIONS: This study provides some evidence that occupational exposure to PFOS is associated with bladder and lung cancers and with cerebrovascular disease.


Asunto(s)
Ácidos Alcanesulfónicos , Trastornos Cerebrovasculares , Fluorocarburos , Neoplasias Pulmonares , Enfermedades Profesionales , Exposición Profesional , Neoplasias de la Vejiga Urinaria , Humanos , Fluoruros , Estudios de Cohortes , Exposición Profesional/efectos adversos , Incidencia , Neoplasias de la Vejiga Urinaria/inducido químicamente , Neoplasias de la Vejiga Urinaria/epidemiología , Neoplasias Pulmonares/epidemiología , Enfermedades Profesionales/inducido químicamente , Enfermedades Profesionales/epidemiología
20.
Ecotoxicol Environ Saf ; 269: 115820, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38103469

RESUMEN

Perfluorooctanesulfonate (PFOS) is a ubiquitous environmental pollutant associated with increasing health concerns and environmental hazards. Toxicological analyses of PFOS exposure are hampered by large interspecies variations and limited studies on the mechanistic details of PFOS-induced toxicity. We investigated the effects of PFOS exposure on Xenopus laevis embryos based on the reported developmental effects in zebrafish. X. laevis was selected to further our understanding of interspecies variation in response to PFOS, and we built upon previous studies by including transcriptomics and an assessment of ciliogenic effects. Midblastula-stage X. laevis embryos were exposed to PFOS using the frog embryo teratogenesis assay Xenopus (FETAX). Results showed teratogenic effects of PFOS in a time- and dose-dependent manner. The morphological abnormalities of skeleton deformities, a small head, and a miscoiled gut were associated with changes in gene expression evidenced by whole-mount in situ hybridization and transcriptomics. The transcriptomic profile of PFOS-exposed embryos indicated the perturbation in the expression of genes associated with cell death, and downregulation in adenosine triphosphate (ATP) biosynthesis. Moreover, we observed the effects of PFOS exposure on cilia development as a reduction in the number of multiciliated cells and changes in the directionality and velocity of the cilia-driven flow. Collectively, these data broaden the molecular understanding of PFOS-induced developmental effects, whereby ciliary dysfunction and disrupted ATP synthesis are implicated as the probable modes of action of embryotoxicity. Furthermore, our findings present a new challenge to understand the links between PFOS-induced developmental toxicity and vital biological processes.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Perfilación de la Expresión Génica , Pez Cebra , Animales , Xenopus laevis/genética , Adenosina Trifosfato , Embrión no Mamífero , Teratógenos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA