Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Plant Cell ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819320

RESUMEN

The brassinosteroid (BR) receptor BRASSINOSTEROID-INSENSITIVE 1 (BRI1) plays a critical role in plant growth and development. Although much is known about how BR signaling regulates growth and development in many crop species, the role of StBRI1 in regulating potato (Solanum tuberosum) tuber development is not well understood. To address this question, a series of comprehensive genetic and biochemical methods were applied in this investigation. It was determined that StBRI1 and Solanum tuberosum PLASMA MEMBRANE (PM) PROTON ATPASE2 (PHA2), a PM-localized proton ATPase, play important roles in potato tuber development. The individual overexpression of StBRI1 and PHA2 led to a 22% and 25% increase in tuber yield per plant, respectively. Consistent with the genetic evidence, in vivo interaction analysis using double transgenic lines and PM H+-ATPase activity assays indicated that StBRI1 interacts with the C-terminus of PHA2, which restrains the intramolecular interaction of the PHA2 C-terminus with the PHA2 central loop to attenuate autoinhibition of PM H+-ATPase activity, resulting in increased PHA2 activity. Furthermore, the extent of PM H+-ATPase autoinhibition involving phosphorylation-dependent mechanisms corresponds to phosphorylation of the penultimate Thr residue (Thr-951) in PHA2. These results suggest that StBRI1 phosphorylates PHA2 and enhances its activity, which subsequently promotes tuber development. Altogether, our results uncover a BR-StBRI1-PHA2 module that regulates tuber development and suggest a prospective strategy for improving tuberous crop growth and increasing yield via the cell surface-based BR signaling pathway.

2.
Gland Surg ; 9(1): 150-158, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32206607

RESUMEN

Secondary hypertension is a common condition with a broad differential diagnosis. Identification of the true cause of hypertension can be critical for guiding appropriate management. Here, we review hereditary conditions underlying the most common cause of secondary hypertension, primary aldosteronism, as well as other disorders impacting various levels of mineralocorticoid action. Recently, several pathogenic variants of ion channels have been described as etiologies of familial aldosteronism. Defects in steroid hormone synthesis cause hypertension in 11ß-hydroxylase deficiency and 17α-hydroxylase deficiency, two types of congenital adrenal hyperplasia. Inappropriate activation of mineralocorticoid receptors underlies the syndrome of apparent mineralocorticoid excess and constitutive activation of the mineralocorticoid receptor. Finally, Liddle syndrome and pseudohypoaldosteronism type 2 are disorders impacting the function of renal sodium channels, the endpoint of mineralocorticoid action. We discuss the pathophysiology, clinical presentation, diagnosis and management of these low renin hypertension states that ultimately result in apparent excess mineralocorticoid activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA