Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; : 107784, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39303918

RESUMEN

Redox signaling is a fundamental mechanism that controls all major biological processes partly via protein cysteine oxidations, including S-glutathionylation. Despite over 2,000 cysteines identified to form S-glutathionylation in databases, the identification of redox cysteines functionally linked to a biological process of interest remains challenging. Here, we demonstrate a strategy combining glutathionylation proteomic database, bioinformatics, and biological screening, which resulted in the identification of S-glutathionylated proteins, including PP2Cα, as redox players of cell migration. We showed that PP2Cα, a prototypical magnesium-dependent serine/threonine phosphatase, is susceptible to S-glutathionylation selectively at non-conserved C314. PP2Cα glutathionylation causes increased migration and invasion of breast cancer cell lines in oxidative stress or upon hydrogen peroxide production. Mechanistically, PP2Cα glutathionylation modulates its protein-protein interactions, activating c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) pathways to elevate migration and invasion. In addition, PP2Cα glutathionylation occurs in response to epidermal-growth factor, supporting a serine/threonine phosphatase PP2Cα as a new redox player in growth factor signal transduction.

2.
BMC Genomics ; 25(1): 83, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245685

RESUMEN

BACKGROUND: Protein phosphatases type 2C (PP2C) are heavily involved in plant growth and development, hormone-related signaling pathways and the response of various biotic and abiotic stresses. However, a comprehensive report identifying the genome-scale of PP2C gene family in ginger is yet to be published. RESULTS: In this study, 97 ZoPP2C genes were identified based on the ginger genome. These genes were classified into 15 branches (A-O) according to the phylogenetic analysis and distributed unevenly on 11 ginger chromosomes. The proteins mainly functioned in the nucleus. Similar motif patterns and exon/intron arrangement structures were identified in the same subfamily of ZoPP2Cs. Collinearity analysis indicated that ZoPP2Cs had 33 pairs of fragment duplicated events uniformly distributed on the corresponding chromosomes. Furthermore, ZoPP2Cs showed greater evolutionary proximity to banana's PP2Cs. The forecast of cis-regulatory elements and transcription factor binding sites demonstrated that ZoPP2Cs participate in ginger growth, development, and responses to hormones and stresses. ZoERFs have plenty of binding sites of ZoPP2Cs, suggesting a potential synergistic contribution between ZoERFs and ZoPP2Cs towards regulating growth/development and adverse conditions. The protein-protein interaction network displayed that five ZoPP2Cs (9/23/26/49/92) proteins have robust interaction relationship and potential function as hub proteins. Furthermore, the RNA-Seq and qRT-PCR analyses have shown that ZoPP2Cs exhibit various expression patterns during ginger maturation and responses to environmental stresses such as chilling, drought, flooding, salt, and Fusarium solani. Notably, exogenous application of melatonin led to notable up-regulation of ZoPP2Cs (17/59/11/72/43) under chilling stress. CONCLUSIONS: Taken together, our investigation provides significant insights of the ginger PP2C gene family and establishes the groundwork for its functional validation and genetic engineering applications.


Asunto(s)
Zingiber officinale , Zingiber officinale/genética , Filogenia , Perfilación de la Expresión Génica , Fosfoproteínas Fosfatasas/genética , Genoma de Planta , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
BMC Genomics ; 25(1): 749, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090531

RESUMEN

BACKGROUND: Abscisic acid (ABA) plays a crucial role in seed dormancy, germination, and growth, as well as in regulating plant responses to environmental stresses during plant growth and development. However, detailed information about the PYL-PP2C-SnRK2s family, a central component of the ABA signaling pathway, is not known in pitaya. RESULTS: In this study, we identified 19 pyrabactin resistance-likes (PYLs), 70 type 2 C protein phosphatases (PP2Cs), and 14 SNF1-related protein kinase 2s (SnRK2s) from pitaya. In pitaya, tandem duplication was the primary mechanism for amplifying the PYL-PP2C-SnRK2s family. Co-linearity analysis revealed more homologous PYL-PP2C-SnRK2s gene pairs located in collinear blocks between pitaya and Beta vulgaris L. than that between pitaya and Arabidopsis. Transcriptome analysis showed that the PYL-PP2C-SnRK2s gene family plays a role in pitaya's response to infection by N. dimidiatum. By spraying ABA on pitaya and subsequently inoculating it with N. dimidiatum, we conducted qRT-PCR experiments to observe the response of the PYL-PP2C-SnRK2s gene family and disease resistance-related genes to ABA. These treatments significantly enhanced pitaya's resistance to pitaya canker. Further protein interaction network analysis helped us identify five key PYLs genes that were upregulated during the interaction between pitaya and N. dimidiatum, and their expression patterns were verified by qRT-PCR. Subcellular localization analysis revealed that the PYL (Hp1879) gene is primarily distributed in the nucleus. CONCLUSION: This study enhances our understanding of the response of PYL-PP2C-SnRK2s to ABA and also offers a new perspective on pitaya disease resistance.


Asunto(s)
Ácido Abscísico , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Transducción de Señal , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Perfilación de la Expresión Génica , Filogenia , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Familia de Multigenes , Proteína Fosfatasa 2C/metabolismo , Proteína Fosfatasa 2C/genética
4.
EMBO J ; 38(17): e101859, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31368592

RESUMEN

The phytohormone abscisic acid (ABA) regulates plant responses to abiotic stress, such as drought and high osmotic conditions. The multitude of functionally redundant components involved in ABA signaling poses a major challenge for elucidating individual contributions to the response selectivity and sensitivity of the pathway. Here, we reconstructed single ABA signaling pathways in yeast for combinatorial analysis of ABA receptors and coreceptors, downstream-acting SnRK2 protein kinases, and transcription factors. The analysis shows that some ABA receptors stimulate the pathway even in the absence of ABA and that SnRK2s are major determinants of ABA responsiveness by differing in the ligand-dependent control. Five SnRK2s, including SnRK2.4 known to be active under osmotic stress in plants, activated ABA-responsive transcription factors and were regulated by ABA receptor complexes in yeast. In the plant tissue, SnRK2.4 and ABA receptors competed for coreceptor interaction in an ABA-dependent manner consistent with a tight integration of SnRK2.4 into the ABA signaling pathway. The study establishes the suitability of the yeast system for the dissection of core signaling cascades and opens up future avenues of research on ligand-receptor regulation.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Levaduras/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vías Biosintéticas , Regulación de la Expresión Génica de las Plantas , Presión Osmótica , Fosforilación , Ingeniería de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Levaduras/genética
5.
J Cell Sci ; 134(4)2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33536246

RESUMEN

Under starvation conditions, cells degrade their own components via autophagy in order to provide sufficient nutrients to ensure their survival. However, even if starvation persists, the cell is not completely degraded through autophagy, implying the existence of some kind of termination mechanism. In the yeast Saccharomyces cerevisiae, autophagy is terminated after 10-12 h of nitrogen starvation. In this study, we found that termination is mediated by re-phosphorylation of Atg13 by the Atg1 protein kinase, which is also affected by PP2C phosphatases, and the eventual dispersion of the pre-autophagosomal structure, also known as the phagophore assembly site (PAS). In a genetic screen, we identified an uncharacterized vacuolar membrane protein, Tag1, as a factor responsible for the termination of autophagy. Re-phosphorylation of Atg13 and eventual PAS dispersal were defective in the Δtag1 mutant. The vacuolar luminal domain of Tag1 and autophagic progression are important for the behaviors of Tag1. Together, our findings reveal the mechanism and factors responsible for termination of autophagy in yeast.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Quinasas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Biochem Biophys Res Commun ; 644: 49-54, 2023 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-36630734

RESUMEN

Neuronal insulin resistance is a major risk for development of Alzheimer's Disease (AD). Studies already reported few kinases participating in neuronal insulin signaling connected with progression of AD pathogenesis, yet complete information is missing. α isoform of Protein Phosphatase-2C (PP2C) is a Ser/Thr phosphatase, only known in 3T3-L1 adipocytes as a positive regulator of insulin signaling. However, many aspects of its function in neuronal insulin signaling and insulin resistance are unidentified. Recently, we reported that PP2Cα positively regulates neuronal glucose uptake possibly by a mechanism of dephosphorylation of IRS-1 at Ser522 and by inactivating AMPK, exacerbating hyperinsulinemia mediated neuronal insulin resistance. Since PP2Cα affected neuronal insulin signaling and AD is connected to neuronal insulin resistance, in the present study, we studied the role of PP2Cα in regulating activities of both isoforms of GSK3α and GSK3ß (one of the leading kinases for AD progression). The results led us to test the role of PP2Cα on AD hallmarks. Silencing of PP2Cα caused hyperphosphorylation of a potential kinase Tau, leading to NFT formation and increased Aß deposition. Our study thereby demonstrates escalation of hyperinsulinemia mediated neuronal insulin resistance leading to AD-like pathogenesis by PP2Cα in vitro and hints a novel molecule, PP2Cα, linking AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Hiperinsulinismo , Resistencia a la Insulina , Humanos , Enfermedad de Alzheimer/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Fenotipo , Proteína Fosfatasa 2C/metabolismo
7.
New Phytol ; 238(1): 237-251, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36565039

RESUMEN

The phytohormone abscisic acid (ABA) is important for the plant growth and development, in which it plays a key role in the responses to drought stress. Among the core components of ABA signaling, SnRK2s interact with a range of proteins, including Raf-like MAP3Ks. In this study, we isolated the pepper MEKK subfamily member CaMEKK23 that interacts with CaSnRK2.6. CaMEKK23 has kinase activity and is specifically trans-phosphorylated by CaSnRK2.6. Compared with control plants, CaMEKK23-silenced pepper were found to be sensitive to drought stress and insensitive to ABA, whereas overexpression of CaMEKK23 in both pepper and Arabidopsis plants induced the opposite phenotypes. These altered phenotypes were established to be dependent on the kinase activity of CaMEKK23, which was also shown to interact with CaPP2Cs, functioning upstream of CaSnRK2.6. In addition to inhibiting the kinase activity of CaMEKK23, these CaPP2Cs were found to have inhibitory effects on CaSnRK2.6. Using CaMEKK23-, CaAITP1/CaMEKK23-, CaSnRK2.6-, and CaAITP1/CaSnRK2.6-silenced pepper, we revealed that CaMEKK23 and CaSnRK2.6 function downstream of CaAITP1. Collectively, our findings indicate that CaMEKK23 plays a positive regulatory role in the ABA-mediated drought stress responses in pepper plants, and that its phosphorylation status is modulated by CaSnRK2.6 and CaPP2Cs, functioning as core components of ABA signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Transducción de Señal , Sequías , Arabidopsis/genética , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37894962

RESUMEN

The protein phosphatase 2C (PP2C), a key regulator of the ABA signaling pathway, plays important roles in plant growth and development, hormone signaling, and abiotic stress response. Although the PP2C gene family has been identified in many species, systematic analysis was still relatively lacking in ramie (Boehmeria nivea L.). In the present study, we identified 63 BnPP2C genes from the ramie genome, using bioinformatics analysis, and classified them into 12 subfamilies, and this classification was consistently supported by their gene structures and conserved motifs. In addition, we observed that the functional differentiation of the BnPP2C family of genes was restricted and that fragment replication played a major role in the amplification of the BnPP2C gene family. The promoter cis-regulatory elements of BnPP2C genes were mainly involved in light response regulation, phytohormone synthesis, transport and signaling, environmental stress response and plant growth and development regulation. We identified BnPP2C genes with tissue specificity, using ramie transcriptome data from different tissues, in rhizome leaves and bast fibers. The qRT-PCR results showed that the BnPP2C1, BnPP2C26 and BnPP2C27 genes had a strong response to drought, high salt and ABA, and there were a large number of stress-responsive elements in the promoter region of BnPP2C1 and BnPP2C26. The results suggested that BnPP2C1 and BnPP2C26 could be used as the candidate genes for drought and salt tolerance in ramie. These results provide a reference for further studies on the function of the PP2C gene and advance the development of the mechanism of ramie stress response, with a view to providing candidate genes for the molecular breeding of ramie for drought and salt tolerance.


Asunto(s)
Boehmeria , Boehmeria/genética , Boehmeria/metabolismo , Transcriptoma , Hojas de la Planta/metabolismo , Regiones Promotoras Genéticas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Molecules ; 28(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37513321

RESUMEN

Liver fibrosis resulting from chronic liver damage is becoming one of the major threats to health worldwide. Active saponin constituents isolated from Gynostemma pentaphyllum were found to possess a protective effect in liver diseases. Here, we obtained a naturally abundant gypenoside, XLVI, and evaluated its liver protection activity in both animal and cellular models. The results showed that it ameliorated acute and chronic liver injuries and lightened the process of fibrogenesis in vivo. XLVI can inhibit TGF-ß-induced activation of hepatic stellate cells and ECM deposition in vitro. The underlying mechanism study verified that it upregulated the protein expression of protein phosphatase 2C alpha and strengthened the vitality of the phosphatase together with a PP2Cα agonist gypenoside NPLC0393. These results shed new light on the molecular mechanisms and the potential therapeutic function of the traditional herb Gynostemma pentaphyllum in the treatment of liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas , Hepatopatías , Ratones , Animales , Gynostemma , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Hepatopatías/metabolismo , Matriz Extracelular
10.
J Integr Plant Biol ; 65(8): 1918-1936, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37158049

RESUMEN

Drought seriously impacts wheat production (Triticum aestivum L.), while the exploitation and utilization of genes for drought tolerance are insufficient. Leaf wilting is a direct reflection of drought tolerance in plants. Clade A PP2Cs are abscisic acid (ABA) co-receptors playing vital roles in the ABA signaling pathway, regulating drought response. However, the roles of other clade PP2Cs in drought tolerance, especially in wheat, remain largely unknown. Here, we identified a gain-of-function drought-induced wilting 1 (DIW1) gene from the wheat Aikang 58 mutant library by map-based cloning, which encodes a clade I protein phosphatase 2C (TaPP2C158) with enhanced protein phosphatase activity. Phenotypic analysis of overexpression and CRISPR/Cas9 mutant lines demonstrated that DIW1/TaPP2C158 is a negative regulator responsible for drought resistance. We found that TaPP2C158 directly interacts with TaSnRK1.1 and de-phosphorylates it, thus inactivating the TaSnRK1.1-TaAREB3 pathway. TaPP2C158 protein phosphatase activity is negatively correlated with ABA signaling. Association analysis suggested that C-terminal variation of TaPP2C158 changing protein phosphatase activity is highly correlated with the canopy temperature, and seedling survival rate under drought stress. Our data suggest that the favorable allele with lower phosphatase activity of TaPP2C158 has been positively selected in Chinese breeding history. This work benefits us in understanding the molecular mechanism of wheat drought tolerance, and provides elite genetic resources and molecular markers for improving wheat drought tolerance.


Asunto(s)
Sequías , Triticum , Triticum/metabolismo , Resistencia a la Sequía , Monoéster Fosfórico Hidrolasas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento , Proteína Fosfatasa 2C/genética , Proteína Fosfatasa 2C/metabolismo , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/metabolismo
11.
J Biol Chem ; 296: 100518, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33684446

RESUMEN

Reversible phosphorylation relies on highly regulated kinases and phosphatases that target specific substrates to control diverse cellular processes. Here, we address how protein phosphatase activity is directed to the correct substrates under the correct conditions. The serine/threonine phosphatase SpoIIE from Bacillus subtilis, a member of the widespread protein phosphatase 2C (PP2C) family of phosphatases, is activated by movement of a conserved α-helical element in the phosphatase domain to create the binding site for the metal cofactor. We hypothesized that this conformational switch could provide a general mechanism for control of diverse members of the PP2C family of phosphatases. The B. subtilis phosphatase RsbU responds to different signals, acts on a different substrates, and produces a more graded response than SpoIIE. Using an unbiased genetic screen, we isolated mutants in the α-helical switch region of RsbU that are constitutively active, indicating conservation of the switch mechanism. Using phosphatase activity assays with phosphoprotein substrates, we found that both phosphatases integrate substrate recognition with activating signals to control metal-cofactor binding and substrate dephosphorylation. This integrated control provides a mechanism for PP2C family of phosphatases to produce specific responses by acting on the correct substrates, under the appropriate conditions.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Proteína Fosfatasa 2C/metabolismo , Regulación Alostérica , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Cristalografía por Rayos X , Fosfoproteínas , Fosforilación , Conformación Proteica , Proteína Fosfatasa 2C/química , Proteína Fosfatasa 2C/genética , Transducción de Señal , Especificidad por Sustrato
12.
Mol Plant Microbe Interact ; 35(9): 737-747, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35696659

RESUMEN

The antagonistic effect of plant immunity on growth likely drove evolution of molecular mechanisms that prevent accidental initiation and prolonged activation of plant immune responses. Signaling networks of pattern-triggered and effector-triggered immunity, the two main layers of plant immunity, are tightly regulated by the activity of protein phosphatases that dephosphorylate their protein substrates and reverse the action of protein kinases. Members of the PP2C class of protein phosphatases have emerged as key negative regulators of plant immunity, primarily from research in the model plant Arabidopsis thaliana, revealing the potential to employ PP2C proteins to enhance plant disease resistance. As a first step towards focusing on the PP2C family for both basic and translational research, we analyzed the tomato genome sequence to ascertain the complement of the tomato PP2C family, identify conserved protein domains and signals in PP2C amino acid sequences, and examine domain combinations in individual proteins. We then identified tomato PP2Cs that are candidate regulators of single or multiple layers of the immune signaling network by in-depth analysis of publicly available RNA-seq datasets. These included expression profiles of plants treated with fungal or bacterial pathogen-associated molecular patterns, with pathogenic, nonpathogenic, and disarmed bacteria, as well as pathogenic fungi and oomycetes. Finally, we discuss the possible use of immunity-associated PP2Cs to better understand the signaling networks of plant immunity and to engineer durable and broad disease resistance in crop plants. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Arabidopsis/genética , Arabidopsis/metabolismo , Resistencia a la Enfermedad/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Inmunidad de la Planta , Plantas/genética , Proteínas Quinasas/genética
13.
New Phytol ; 233(4): 1732-1749, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34859454

RESUMEN

Plants employ an array of intricate and hierarchical signaling cascades to perceive and transduce informational cues to synchronize and tailor adaptive responses. Systemic stress response (SSR) is a recognized complex signaling and response network quintessential to plant's local and distal responses to environmental triggers; however, the identity of the initiating signals has remained fragmented. Here, we show that both biotic (aphids and viral pathogens) and abiotic (high light and wounding) stresses induce accumulation of the plastidial-retrograde-signaling metabolite methylerythritol cyclodiphosphate (MEcPP), leading to reduction of the phytohormone auxin and the subsequent decreased expression of the phosphatase PP2C.D1. This enables phosphorylation of mitogen-activated protein kinases 3/6 and the consequential induction of the downstream events ultimately, resulting in biosynthesis of the two SSR priming metabolites pipecolic acid and N-hydroxy-pipecolic acid. This work identifies plastids as a major initiation site, and the plastidial retrograde signal MEcPP as an initiator of a multicomponent signaling cascade potentiating the biosynthesis of SSR activators, in response to biotic and abiotic triggers.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Plastidios/metabolismo
14.
Proc Natl Acad Sci U S A ; 116(5): 1613-1620, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30655342

RESUMEN

Macroautophagy is orchestrated by the Atg1-Atg13 complex in budding yeast. Under nutrient-rich conditions, Atg13 is maintained in a hyperphosphorylated state by the TORC1 kinase. After nutrient starvation, Atg13 is dephosphorylated, triggering Atg1 kinase activity and macroautophagy induction. The phosphatases that dephosphorylate Atg13 remain uncharacterized. Here, we show that two redundant PP2C phosphatases, Ptc2 and Ptc3, regulate macroautophagy by dephosphorylating Atg13 and Atg1. In the absence of these phosphatases, starvation-induced macroautophagy and the cytoplasm-to-vacuole targeting pathway are inhibited, and the recruitment of the essential autophagy machinery to the phagophore assembly site is impaired. Expressing a genomic ATG13-8SA allele lacking key TORC1 phosphorylation sites partially bypasses the macroautophagy defect in ptc2Δ ptc3Δ strains. Moreover, Ptc2 and Ptc3 interact with the Atg1-Atg13 complex. Taken together, these results suggest that PP2C-type phosphatases promote macroautophagy by regulating the Atg1 complex.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia/fisiología , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Quinasas/metabolismo , Proteína Fosfatasa 2C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Fosforilación/fisiología , Saccharomyces cerevisiae/metabolismo
15.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36361951

RESUMEN

As a typical ancient tetraploid, soybean (Glycine max) is an important oil crop species and plays a crucial role in supplying edible oil, plant protein and animal fodder worldwide. As global warming intensifies, the yield of soybean in the field is often strongly restricted by drought stress. SNF1-related protein kinase 2 (SnRK2) and type A protein phosphatase 2C (PP2C-A) family members are core components of the abscisic acid (ABA) signal transduction pathway in plants and have been suggested to play important roles in increasing plant tolerance to drought stress, but genetic information supporting this idea is still lacking in soybean. Here, we cloned the GmSnRK2s and GmPP2C-A family genes from the reference genome of Williams 82 soybean. The results showed that the expression patterns of GmSnRK2s and GmPP2C-As are spatiotemporally distinct. The expression of GmSnRK2s in response to ABA and drought signals is not strictly the same as that of Arabidopsis SnRK2 homologous genes. Moreover, our results indicated that the duplicate pairs of GmSnRK2s and GmPP2C-As have similar expression patterns, cis-elements and relationships. GmSnRK2.2 may have a distinct function in the drought-mediated ABA signaling pathway. Furthermore, the results of yeast two-hybrid (Y2H) assays between GmSnRK2s and GmPP2C-As revealed that GmSnRK2.17, GmSnRK2.18, GmSnRK2.22, GmPP2C5, GmPP2C7, GmPP2C10 and GmPP2C17 may play central roles in the crosstalk among ABA signals in response to drought stress. Furthermore, GmPP2C-As and GmSnRKs were targeted by miRNA and validated by degradome sequencing, which may play multiple roles in the crosstalk between ABA and drought signals and other stress signals. Taken together, these results indicate that GmSnRK2s and GmPP2C-As may play a variety of roles in the drought-mediated ABA signaling pathway.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Glycine max/genética , Glycine max/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Arabidopsis/metabolismo , Plantas/metabolismo , Estrés Fisiológico/genética , Proteínas de Arabidopsis/genética
16.
Plant Mol Biol ; 107(6): 499-517, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34596817

RESUMEN

KEY MESSAGE: GhDRP1 acts as a negatively regulator to participate in response to drought stress possibly by modulating ABA signaling pathway and flavonoid biosynthesis pathway which affects stomata movement and thus water loss, ROS scavenging enzymes, and proline accumulation in cotton. Type-2C protein phosphatases (PP2C) may play important roles in plant stress signal transduction. Here, we show the evidence that a cotton PP2C protein GhDRP1 participates in plant response to drought stress. GhDRP1 gene encodes an active type-2C protein phosphatase (PP2C) and its expression is significantly induced in cotton by drought stress. Compared with wild type, the GhDRP1 overexpression (OE) transgenic cotton and Arabidopsis displayed reduced drought tolerance, whereas GhDRP1-silenced (RNAi) cotton showed enhanced drought tolerance. Under drought stress, malondialdehyde content was lower, whereas superoxide dismutase and peroxidase activities, proline content, stomata closure and relative water content were higher in GhDRP1 RNAi plants compared with those in wild type. In contrast, GhDRP1 OE plants showed the opposite phenotype under the same conditions. Expression levels of some stress-related and flavonoid biosynthesis-related genes were altered in GhDRP1 transgenic plants under drought stress. Additionally, GhDRP1 protein could interact with other proteins such as PYLs, SNF1-related protein kinase and GLK1-like protein. Collectively, these data suggest that GhDRP1 participates in plant response to drought stress possibly by modulating ABA signaling pathway and flavonoid biosynthesis pathway which affects stomata movement and thus water loss, ROS scavenging enzymes, and proline accumulation in cotton.


Asunto(s)
Sequías , Gossypium/enzimología , Gossypium/fisiología , Proteínas de Plantas/metabolismo , Proteína Fosfatasa 2C/metabolismo , Estrés Fisiológico , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Modelos Biológicos , Fenotipo , Hojas de la Planta/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Unión Proteica , Proteína Fosfatasa 2C/genética , Estrés Fisiológico/genética
17.
New Phytol ; 229(4): 2035-2049, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33048351

RESUMEN

Plant stomata play a crucial role in leaf function, controlling water transpiration in response to environmental stresses and modulating the gas exchange necessary for photosynthesis. The phytohormone abscisic acid (ABA) promotes stomatal closure and inhibits light-induced stomatal opening. The Arabidopsis thaliana E3 ubiquitin ligase COP1 functions in ABA-mediated stomatal closure. However, the underlying molecular mechanisms are still not fully understood. Yeast two-hybrid assays were used to identify ABA signaling components that interact with COP1, and biochemical, molecular and genetic studies were carried out to elucidate the regulatory role of COP1 in ABA signaling. The cop1 mutants are hyposensitive to ABA-triggered stomatal closure under light and dark conditions. COP1 interacts with and ubiquitinates the Arabidopsis clade A type 2C phosphatases (PP2Cs) ABI/HAB group and AHG3, thus triggering their degradation. Abscisic acid enhances the COP1-mediated degradation of these PP2Cs. Mutations in ABI1 and AHG3 partly rescue the cop1 stomatal phenotype and the phosphorylation level of OST1, a crucial SnRK2-type kinase in ABA signaling. Our data indicate that COP1 is part of a novel signaling pathway promoting ABA-mediated stomatal closure by regulating the stability of a subset of the Clade A PP2Cs. These findings provide novel insights into the interplay between ABA and the light signaling component in the modulation of stomatal movement.


Asunto(s)
Ácido Abscísico , Proteínas de Arabidopsis/fisiología , Fosfoproteínas Fosfatasas/fisiología , Estomas de Plantas/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Proteína Coat de Complejo I , Mutación/genética , Proteínas Quinasas/fisiología
18.
J Exp Bot ; 72(12): 4520-4534, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33837765

RESUMEN

Plants have developed defense mechanisms to survive in extreme environmental conditions. Abscisic acid (ABA) is a key phytohormone associated with plant adaptation to environmental stress. In this study, we isolated and functionally characterized the pepper RING-type E3 ligase CaAIRE1 (Capsicum annuum ABA Induced RING-type E3 ligase 1) containing the C3HC4-type RING domain. CaAIRE1 was induced by ABA and drought, and CaAIRE1 had E3 ligase activity. CaAIRE1-silenced pepper and CaAIRE1-overexpressing Arabidopsis presented drought-sensitive and drought-tolerant phenotypes, respectively, which were accompanied by altered transpiration water loss and ABA sensitivity. Moreover, we found that CaAIRE1 interacts with and ubiquitinates the pepper type 2C protein phosphatase, CaAITP1 (Capsicum annuum CaAIRE1 Interacting Target Phosphatase 1). A cell-free degradation assay with CaAIRE1-silenced peppers and CaAIRE1-overexpressing Arabidopsis plants revealed that the CaAITP1 protein level was negatively modulated by the expression level of CaAIRE1. In contrast to CaAIRE1, CaAITP1-silenced pepper showed ABA-sensitivity phenotypes. CaAITP1-overexpressing Arabidopsis plants were the most insensitive phenotypes to ABA compared with the wild type and other pepper PP2C-overexpressing plants. Taken together, our data indicate that CaAITP1 plays a major role as a negative modulator in ABA signaling, and CaAIRE1 regulates the ABA signaling and drought response through modulation of CaAITP1 stability.


Asunto(s)
Ácido Abscísico , Proteínas de Arabidopsis , Proteínas de Arabidopsis/genética , Capsicum , Sequías , Regulación de la Expresión Génica de las Plantas , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Transducción de Señal , Estrés Fisiológico , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
19.
J Exp Bot ; 72(2): 757-774, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33529339

RESUMEN

The identification of those prevalent abscisic acid (ABA) receptors and molecular mechanisms that trigger drought adaptation in crops well adapted to harsh conditions such as date palm (Phoenix dactylifera, Pd) sheds light on plant-environment interactions. We reveal that PdPYL8-like receptors are predominantly expressed under abiotic stress, with Pd27 being the most expressed receptor in date palm. Therefore, subfamily I PdPYL8-like receptors have been selected for ABA signaling during abiotic stress response in this crop. Biochemical characterization of PdPYL8-like and PdPYL1-like receptors revealed receptor- and ABA-dependent inhibition of PP2Cs, which triggers activation of the pRD29B-LUC reporter in response to ABA. PdPYLs efficiently abolish PP2C-mediated repression of ABA signaling, but loss of the Trp lock in the seed-specific AHG1-like phosphatase PdPP2C79 markedly impairs its inhibition by ABA receptors. Characterization of Arabidopsis transgenic plants that express PdPYLs shows enhanced ABA signaling in seed, root, and guard cells. Specifically, Pd27-overexpressing plants showed lower ABA content and were more efficient than the wild type in lowering transpiration at negative soil water potential, leading to enhanced drought tolerance. Finally, PdPYL8-like receptors accumulate after ABA treatment, which suggests that ABA-induced stabilization of these receptors operates in date palm for efficient boosting of ABA signaling in response to abiotic stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Phoeniceae , Ácido Abscísico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Phoeniceae/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico
20.
EMBO Rep ; 20(11): e47965, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31475431

RESUMEN

To perceive pathogens, plants employ pattern recognition receptor (PRR) complexes, which then transmit these signals via the receptor-like cytoplasmic kinase BIK1 to induce defense responses. How BIK1 activity and stability are controlled is still not completely understood. Here, we show that the Hippo/STE20 homolog MAP4K4 regulates BIK1-mediated immune responses. MAP4K4 associates and phosphorylates BIK1 at Ser233, Ser236, and Thr242 to ensure BIK1 stability and activity. Furthermore, MAP4K4 phosphorylates PP2C38 at Ser77 to enable flg22-induced BIK1 activation. Our results uncover that a Hippo/STE20 homolog, MAP4K4, maintains the homeostasis of the central immune component BIK1.


Asunto(s)
Inmunidad de la Planta , Plantas/inmunología , Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Secuencia Conservada , Citocinas/metabolismo , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Sitios Genéticos , Modelos Biológicos , Mutación , Fosforilación , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Plantas/genética , Plantas/microbiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Proteolisis , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA