RESUMEN
DNA damage-activated signaling pathways are critical for coordinating multiple cellular processes, which must be tightly regulated to maintain genome stability. To provide a comprehensive and unbiased perspective of DNA damage response (DDR) signaling pathways, we performed 30 fluorescence-activated cell sorting (FACS)-based genome-wide CRISPR screens in human cell lines with antibodies recognizing distinct endogenous DNA damage signaling proteins to identify critical regulators involved in DDR. We discovered that proteasome-mediated processing is an early and prerequisite event for cells to trigger camptothecin- and etoposide-induced DDR signaling. Furthermore, we identified PRMT1 and PRMT5 as modulators that regulate ATM protein level. Moreover, we discovered that GNB1L is a key regulator of DDR signaling via its role as a co-chaperone specifically regulating PIKK proteins. Collectively, these screens offer a rich resource for further investigation of DDR, which may provide insight into strategies of targeting these DDR pathways to improve therapeutic outcomes.
Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Daño del ADN , Humanos , Citometría de Flujo , Transducción de Señal , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Genoma , Proteína-Arginina N-Metiltransferasas/genética , Proteínas Represoras/genéticaRESUMEN
PRMT5 is an essential arginine methyltransferase and a therapeutic target in MTAP-null cancers. PRMT5 uses adaptor proteins for substrate recruitment through a previously undefined mechanism. Here, we identify an evolutionarily conserved peptide sequence shared among the three known substrate adaptors (CLNS1A, RIOK1, and COPR5) and show that it is necessary and sufficient for interaction with PRMT5. We demonstrate that PRMT5 uses modular adaptor proteins containing a common binding motif for substrate recruitment, comparable with other enzyme classes such as kinases and E3 ligases. We structurally resolve the interface with PRMT5 and show via genetic perturbation that it is required for methylation of adaptor-recruited substrates including the spliceosome, histones, and ribosomal complexes. Furthermore, disruption of this site affects Sm spliceosome activity, leading to intron retention. Genetic disruption of the PRMT5-substrate adaptor interface impairs growth of MTAP-null tumor cells and is thus a site for development of therapeutic inhibitors of PRMT5.
Asunto(s)
Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/fisiología , Animales , Línea Celular Tumoral , Citoplasma/metabolismo , Femenino , Células HCT116 , Células HEK293 , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Canales Iónicos/metabolismo , Masculino , Metilación , Ratones , Ratones Desnudos , Proteínas Nucleares/metabolismo , Péptidos/genética , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Empalmosomas/metabolismoRESUMEN
The Hippo signaling axis is a tumor suppressor pathway that is activated by various extra-pathway factors to regulate cell differentiation and organ development. Recent studies have reported that autophosphorylation of the core kinase cassette stimulates activation of the Hippo signaling cascade. Here, we demonstrate that protein arginine methyltransferase 5 (PRMT5) contributes to inactivation of the Hippo signaling pathway in pancreatic cancer. We show that the Hippo pathway initiator serine/threonine kinase 3 (STK3, also known as MST2) of Hippo signaling pathway can be symmetrically di-methylated by PRMT5 at arginine-461 (R461) and arginine-467 (R467) in its SARAH domain. Methylation suppresses MST2 autophosphorylation and kinase activity by blocking its homodimerization, thereby inactivating Hippo signaling pathway in pancreatic cancer. Moreover, we also show that the specific PRMT5 inhibitor GSK3326595 re-activates the dysregulated Hippo signaling pathway and inhibits the growth of human pancreatic cancer xenografts in immunodeficient mice, thus suggesting potential clinical application of PRMT5 inhibitors in pancreatic cancer.
Asunto(s)
Vía de Señalización Hippo , Neoplasias Pancreáticas , Humanos , Ratones , Animales , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Metilación , Neoplasias Pancreáticas/genética , Arginina/metabolismo , Serina-Treonina Quinasa 3 , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Neoplasias PancreáticasRESUMEN
During human development, there is a switch in the erythroid compartment at birth that results in silencing of expression of fetal hemoglobin (HbF). Reversal of this silencing has been shown to be effective in overcoming the pathophysiologic defect in sickle cell anemia. Among the many transcription factors and epigenetic effectors that are known to mediate HbF silencing, two of the most potent are BCL11A and MBD2-NuRD. In this report, we present direct evidence that MBD2-NuRD occupies the γ-globin gene promoter in adult erythroid cells and positions a nucleosome there that results in a closed chromatin conformation that prevents binding of the transcriptional activator, NF-Y. We show that the specific isoform, MBD2a, is required for the formation and stable occupancy of this repressor complex that includes BCL11A, MBD2a-NuRD, and the arginine methyltransferase, PRMT5. The methyl cytosine binding preference and the arginine-rich (GR) domain of MBD2a are required for high affinity binding to methylated γ-globin gene proximal promoter DNA sequences. Mutation of the methyl cytosine-binding domain (MBD) of MBD2 results in a variable but consistent loss of γ-globin gene silencing, in support of the importance of promoter methylation. The GR domain of MBD2a is also required for recruitment of PRMT5, which in turn results in placement of the repressive chromatin mark H3K8me2s at the promoter. These findings support a unified model that integrates the respective roles of BCL11A, MBD2a-NuRD, PRMT5, and DNA methylation in HbF silencing.
Asunto(s)
Hemoglobina Fetal , gamma-Globinas , Adulto , Recién Nacido , Humanos , Genes Reguladores , Factores de Transcripción , Cromatina , Citosina , Proteína-Arginina N-Metiltransferasas , Proteínas de Unión al ADNRESUMEN
Homozygous 5'-methylthioadenosine phosphorylase (MTAP) deletions occur in approximately 15% of human cancers. Co-deletion of MTAP and methionine adenosyltransferase 2 alpha (MAT2a) induces a synthetic lethal phenotype involving protein arginine methyltransferase 5 (PRMT5) inhibition. MAT2a inhibitors are now in clinical trials for genotypic MTAP-/- cancers, however the MTAP-/- genotype represents fewer than 2% of human colorectal cancers (CRCs), limiting the utility of MAT2a inhibitors in these and other MTAP+/+ cancers. Methylthio-DADMe-immucillin-A (MTDIA) is a picomolar transition state analog inhibitor of MTAP that renders cells enzymatically MTAP-deficient to induce the MTAP-/- phenotype. Here, we demonstrate that MTDIA and MAT2a inhibitor AG-270 combination therapy mimics synthetic lethality in MTAP+/+ CRC cell lines with similar effects in mouse xenografts and without adverse histology on normal tissues. Combination treatment is synergistic with a 104-fold increase in drug potency for inhibition of CRC cell growth in culture. Combined MTDIA and AG-270 decreases S-adenosyl-L-methionine and increases 5'-methylthioadenosine in cells. The increased intracellular methylthioadenosine:S-adenosyl-L-methionine ratio inhibits PRMT5 activity, leading to cellular arrest and apoptotic cell death by causing MDM4 alternative splicing and p53 activation. Combination MTDIA and AG-270 treatment differs from direct inhibition of PRMT5 by GSK3326595 by avoiding toxicity caused by cell death in the normal gut epithelium induced by the PRMT5 inhibitor. The combination of MTAP and MAT2a inhibitors expands this synthetic lethal approach to include MTAP+/+ cancers, especially the remaining 98% of CRCs without the MTAP-/- genotype.
Asunto(s)
Desoxiadenosinas , Metionina Adenosiltransferasa , Neoplasias , Proteína-Arginina N-Metiltransferasas , Purina-Nucleósido Fosforilasa , S-Adenosilmetionina , Animales , Humanos , Ratones , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Desoxiadenosinas/antagonistas & inhibidores , Desoxiadenosinas/genética , Desoxiadenosinas/metabolismo , Sinergismo Farmacológico , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Metionina Adenosiltransferasa/antagonistas & inhibidores , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , Neoplasias/genética , Neoplasias/fisiopatología , Neoplasias/terapia , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Purina-Nucleósido Fosforilasa/genética , Purina-Nucleósido Fosforilasa/metabolismo , Pirrolidinas/farmacología , Pirrolidinas/uso terapéutico , S-Adenosilmetionina/metabolismoRESUMEN
U7 snRNP is a multisubunit endonuclease required for 3' end processing of metazoan replication-dependent histone pre-mRNAs. In contrast to the spliceosomal snRNPs, U7 snRNP lacks the Sm subunits D1 and D2 and instead contains two related proteins, Lsm10 and Lsm11. The remaining five subunits of the U7 heptameric Sm ring, SmE, F, G, B, and D3, are shared with the spliceosomal snRNPs. The pathway that assembles the unique ring of U7 snRNP is unknown. Here, we show that a heterodimer of Lsm10 and Lsm11 tightly interacts with the methylosome, a complex of the arginine methyltransferase PRMT5, MEP50, and pICln known to methylate arginines in the carboxy-terminal regions of the Sm proteins B, D1, and D3 during the spliceosomal Sm ring assembly. Both biochemical and cryo-EM structural studies demonstrate that the interaction is mediated by PRMT5, which binds and methylates two arginine residues in the amino-terminal region of Lsm11. Surprisingly, PRMT5 also methylates an amino-terminal arginine in SmE, a subunit that does not undergo this type of modification during the biogenesis of the spliceosomal snRNPs. An intriguing possibility is that the unique methylation pattern of Lsm11 and SmE plays a vital role in the assembly of the U7 snRNP.
Asunto(s)
Ribonucleoproteína Nuclear Pequeña U7 , Ribonucleoproteínas Nucleares Pequeñas , Animales , Ribonucleoproteína Nuclear Pequeña U7/química , Metilación , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Histonas/metabolismo , Arginina/químicaRESUMEN
Methylation and nitric oxide (NO)-based S-nitrosylation are highly conserved protein posttranslational modifications that regulate diverse biological processes. In higher eukaryotes, PRMT5 catalyzes Arg symmetric dimethylation, including key components of the spliceosome. The Arabidopsis prmt5 mutant shows severe developmental defects and impaired stress responses. However, little is known about the mechanisms regulating the PRMT5 activity. Here, we report that NO positively regulates the PRMT5 activity through S-nitrosylation at Cys-125 during stress responses. In prmt5-1 plants, a PRMT5C125S transgene, carrying a non-nitrosylatable mutation at Cys-125, fully rescues the developmental defects, but not the stress hypersensitive phenotype and the responsiveness to NO during stress responses. Moreover, the salt-induced Arg symmetric dimethylation is abolished in PRMT5C125S/prmt5-1 plants, correlated to aberrant splicing of pre-mRNA derived from a stress-related gene. These findings define a mechanism by which plants transduce stress-triggered NO signal to protein methylation machinery through S-nitrosylation of PRMT5 in response to environmental alterations.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Óxido Nítrico/metabolismo , Plantas Modificadas Genéticamente/enzimología , Procesamiento Proteico-Postraduccional , Proteína-Arginina N-Metiltransferasas/metabolismo , Estrés Fisiológico , Adaptación Fisiológica , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Cisteína , Regulación de la Expresión Génica de las Plantas , Metilación , Mutación , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Proteómica/métodos , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Transducción de SeñalRESUMEN
Arginine methylation is a common post-translational modification functioning as an epigenetic regulator of transcription and playing key roles in pre-mRNA splicing, DNA damage signaling, mRNA translation, cell signaling, and cell fate decision. Recently, a wealth of studies using transgenic mouse models and selective PRMT inhibitors helped define physiological roles for protein arginine methyltransferases (PRMTs) linking them to diseases such as cancer and metabolic, neurodegenerative, and muscular disorders. This review describes the recent molecular advances that have been uncovered in normal and diseased mammalian cells.
Asunto(s)
Arginina/metabolismo , Procesamiento Proteico-Postraduccional , Proteína-Arginina N-Metiltransferasas/metabolismo , Animales , Diferenciación Celular , Daño del ADN , Inhibidores Enzimáticos/farmacología , Humanos , Metilación , Ratones Transgénicos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/genética , Transducción de Señal , Transcripción GenéticaRESUMEN
Protein post-translation modification plays an important role in regulating DNA repair; however, the role of arginine methylation in this process is poorly understood. Here we identify the arginine methyltransferase PRMT5 as a key regulator of homologous recombination (HR)-mediated double-strand break (DSB) repair, which is mediated through its ability to methylate RUVBL1, a cofactor of the TIP60 complex. We show that PRMT5 targets RUVBL1 for methylation at position R205, which facilitates TIP60-dependent mobilization of 53BP1 from DNA breaks, promoting HR. Mechanistically, we demonstrate that PRMT5-directed methylation of RUVBL1 is critically required for the acetyltransferase activity of TIP60, promoting histone H4K16 acetylation, which facilities 53BP1 displacement from DSBs. Interestingly, RUVBL1 methylation did not affect the ability of TIP60 to facilitate ATM activation. Taken together, our findings reveal the importance of PRMT5-mediated arginine methylation during DSB repair pathway choice through its ability to regulate acetylation-dependent control of 53BP1 localization.
Asunto(s)
Proteínas Portadoras/metabolismo , Roturas del ADN de Doble Cadena , ADN Helicasas/metabolismo , Histona Acetiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Proteína-Arginina N-Metiltransferasas/metabolismo , Reparación del ADN por Recombinación , ATPasas Asociadas con Actividades Celulares Diversas , Acetilación , Animales , Arginina , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas Portadoras/genética , ADN Helicasas/genética , Inestabilidad Genómica , Células HEK293 , Células HeLa , Histona Acetiltransferasas/genética , Histonas/metabolismo , Humanos , Lisina Acetiltransferasa 5 , Metilación , Ratones , Ratones Transgénicos , Proteína-Arginina N-Metiltransferasas/genética , Interferencia de ARN , Factores de Tiempo , Transfección , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismoRESUMEN
Protein arginine methylations are important post-translational modifications (PTMs) in eukaryotes, regulating many biological processes. However, traditional collision-based mass spectrometry methods inevitably cause neutral losses of methylarginines, preventing the deep mining of biologically important sites. Herein we developed an optimized mass spectrometry workflow based on electron-transfer dissociation (ETD) with supplemental activation for proteomic profiling of arginine methylation in human cells. Using symmetric dimethylarginine (sDMA) as an example, we show that the ETD-based optimized workflow significantly improved the identification and site localization of sDMA. Quantitative proteomics identified 138 novel sDMA sites as potential PRMT5 substrates in HeLa cells. Further biochemical studies on SERBP1, a newly identified PRMT5 substrate, confirmed the coexistence of sDMA and asymmetric dimethylarginine in the central RGG/RG motif, and loss of either methylation caused increased the recruitment of SERBP1 to stress granules under oxidative stress. Overall, our optimized workflow not only enabled the identification and localization of extensive, nonoverlapping sDMA sites in human cells but also revealed novel PRMT5 substrates whose sDMA may play potentially important biological functions.
Asunto(s)
Arginina , Proteómica , Humanos , Células HeLa , Arginina/metabolismo , Procesamiento Proteico-Postraduccional , Metilación , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismoRESUMEN
The epithelium of the pulmonary airway is composed of several distinct cell types that differentiate from common progenitor cells to provide defense against environmental insults. Epigenetic mechanisms regulating lineage differentiation of airway epithelial progenitors remain poorly understood. Protein arginine methyltransferase 5 (Prmt5) is a predominant type II arginine methyltransferase that methylates >85% of symmetric arginine residues. Here, we provide evidence for the function of Prmt5 in promoting ciliated cell fate specification of airway epithelial progenitors. We show that lung epithelial-specific deletion of Prmt5 resulted in a complete loss of ciliated cells, an increased number of basal cells, and ecotopic-expressed Tp63-Krt5+ putative cells in the proximal airway. We further identified that transcription factor Tp63 is a direct target of Prmt5, and Prmt5 inhibited Tp63 transcription expression through H4R3 symmetric dimethylation (H4R3sme2). Moreover, inhibition of Tp63 expression in Prmt5-deficient tracheal progenitors could partially restore the ciliated cell deficient phenotype. Together, our data support a model where Prmt5-mediated H4R3sme2 represses Tp63 expression to promote ciliated cell fate specification of airway progenitors.
Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción , Animales , Humanos , Ratones , Diferenciación Celular , Línea Celular Tumoral , Pulmón/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Factores de Transcripción/metabolismo , Ratones Endogámicos C57BLRESUMEN
Both lysine and arginine methyltransferases are thought to be promising therapeutic targets for malignant tumors, yet how these methyltransferases function in malignant tumors, especially hepatocellular carcinoma (HCC), has not been fully elucidated. Here, we reported that SMYD4, a lysine methyltransferase, acts as an oncogene in HCC. SMYD4 was highly upregulated in HCC and promoted HCC cell proliferation and metastasis. Mechanistically, PRMT5, a well-known arginine methyltransferase, was identified as a SMYD4-binding protein. SMYD4 monomethylated PRMT5 and enhanced the interaction between PRMT5 and MEP50, thereby promoting the symmetrical dimethylation of H3R2 and H4R3 on the PRMT5 target gene promoter and subsequently activating DVL3 expression and inhibiting expression of E-cadherin, RBL2, and miR-29b-1-5p. Moreover, miR-29b-1-5p was found to inversely regulate SMYD4 expression in HCC cells, thus forming a positive feedback loop. Furthermore, we found that the oncogenic effect of SMYD4 could be effectively suppressed by PRMT5 inhibitor in vitro and in vivo. Clinically, high coexpression of SMYD4 and PRMT5 was associated with poor prognosis of HCC patients. In summary, our study provides a model of crosstalk between lysine and arginine methyltransferases in HCC and highlights the SMYD4-PRMT5 axis as a potential therapeutic target for the treatment of HCC.
Asunto(s)
Carcinoma Hepatocelular , Proliferación Celular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , MicroARNs , Proteína-Arginina N-Metiltransferasas , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Humanos , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Animales , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular/genética , Ratones , Metilación , Masculino , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Retroalimentación Fisiológica , Femenino , Ratones DesnudosRESUMEN
BACKGROUND: Homozygous deletion of methylthioadenosine phosphorylase (MTAP) occurs in â¼10%-15% of solid tumors. AMG 193, a CNS-penetrant methylthioadenosine-cooperative protein arginine methyltransferase 5 (PRMT5) inhibitor, selectively induces synthetic lethality in MTAP-deleted tumor cells. Here, we report results of the completed monotherapy dose exploration evaluating AMG 193 in patients with MTAP-deleted solid tumors. PATIENTS AND METHODS: In this first-in-human, multicenter, open-label, phase I study, patients with advanced CDKN2A-deleted and/or MTAP-deleted solid tumors received AMG 193 orally [once (o.d.) or twice (b.i.d.) daily] continuously in 28-day cycles. Primary objectives were safety and tolerability assessed by dose-limiting toxicities and determination of the maximum tolerated dose; secondary objectives included pharmacokinetics and preliminary antitumor activity measured by RECIST v1.1. RESULTS: As of 23 May 2024, 80 patients in dose exploration received AMG 193 at doses 40-1600 mg o.d. or 600 mg b.i.d. The most common treatment-related adverse events were nausea (48.8%), fatigue (31.3%), and vomiting (30.0%). Dose-limiting toxicities were reported in eight patients at doses ≥240 mg, including nausea, vomiting, fatigue, hypersensitivity reaction, and hypokalemia. The maximum tolerated dose was determined to be 1200 mg o.d. Mean exposure of AMG 193 increased in a dose-proportional manner from 40 mg to 1200 mg. Among the efficacy-assessable patients treated at the active and tolerable doses of 800 mg o.d., 1200 mg o.d., or 600 mg b.i.d. (n = 42), objective response rate was 21.4% (95% confidence interval 10.3% to 36.8%). Responses were observed across eight different tumor types, including squamous/non-squamous non-small-cell lung cancer, pancreatic adenocarcinoma, and biliary tract cancer. At doses ≥480 mg, complete intratumoral PRMT5 inhibition was confirmed in paired MTAP-deleted tumor biopsies, and molecular responses (circulating tumor DNA clearance) were observed. CONCLUSIONS: AMG 193 demonstrated a favorable safety profile without clinically significant myelosuppression. Encouraging antitumor activity across a variety of MTAP-deleted solid tumors was observed based on objective response rate and circulating tumor DNA clearance.
RESUMEN
Protein arginine methyltransferase 5 (Prmt5) is essential for normal B-cell development; however, the roles of Prmt5 in tumor-infiltrating B cells in tumor therapy have not been well elucidated. Here, we revealed that CD19-cre-Prmt5fl/fl (Prmt5cko) mice showed smaller tumor weights and volumes in the colorectal cancer mouse model; B cells expressed higher levels of Ccl22 and Il12a, which attracted T cells to the tumor site. Furthermore, we used direct RNA sequencing to comprehensively profile RNA processes in Prmt5 deletion B cells to explore underline mechanisms. We found significantly differentially expressed isoforms, mRNA splicing, poly(A) tail lengths, and m6A modification changes between the Prmt5cko and control groups. Cd74 isoform expressions might be regulated by mRNA splicing; the expression of two novel Cd74 isoforms was decreased, while one isoform was elevated in the Prmt5cko group, but the Cd74 gene expression showed no changes. We observed Ccl22, Ighg1, and Il12a expression was significantly increased in the Prmt5cko group, whereas Jak3 and Stat5b expression was decreased. Ccl22 and Ighg1 expression might be associated with poly(A) tail length, Jak3, Stat5b, and Il12a expression might be modulated by m6A modification. Our study demonstrated that Prmt5 regulates B-cell function through different mechanisms and supported the development of Prmt5-targeted antitumor treatments.
Asunto(s)
Neoplasias Colorrectales , Proteína-Arginina N-Metiltransferasas , Animales , Ratones , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Isoformas de Proteínas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Procesamiento Postranscripcional del ARN , ARN MensajeroRESUMEN
The infectious bursal diseases virus (IBDV) polymerase, VP1 protein, is responsible for transcription, initial translation and viral genomic replication. Knowledge about the new kind of post-translational modification of VP1 supports identification of novel drugs against the virus. Because the arginine residue is known to be methylated by protein arginine methyltransferase (PRMT) enzyme, we investigated whether IBDV VP1 is a substrate for known PRMTs. In this study, we show that VP1 is specifically associated with and methylated by PRMT5 at the arginine 426 (R426) residue. IBDV infection causes the accumulation of PRMT5 in the cytoplasm, which colocalizes with VP1 as a punctate structure. In addition, ectopic expression of PRMT5 significantly enhances the viral replication. In the presence of PMRT5, enzyme inhibitor and knockout of PRMT5 remarkably decreased viral replication. The polymerase activity of VP1 was severely damaged when R426 mutated to alanine, resulting in impaired viral replication. Our study reports a novel form of post-translational modification of VP1, which supports its polymerase function to facilitate the viral replication. IMPORTANCE Post-translational modification of infectious bursal disease virus (IBDV) VP1 is important for the regulation of its polymerase activity. Investigation of the significance of specific modification of VP1 can lead to better understanding of viral replication and can probably also help in identifying novel targets for antiviral compounds. Our work demonstrates the molecular mechanism of VP1 methylation mediated by PRMT5, which is critical for viral polymerase activity, as well as viral replication. Our study expands a novel insight into the function of arginine methylation of VP1, which might be useful for limiting the replication of IBDV.
Asunto(s)
Virus de la Enfermedad Infecciosa de la Bolsa , Proteína-Arginina N-Metiltransferasas , Replicación Viral , Animales , Línea Celular , Pollos , Virus de la Enfermedad Infecciosa de la Bolsa/enzimología , Virus de la Enfermedad Infecciosa de la Bolsa/genética , Metilación , Procesamiento Proteico-Postraduccional , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/metabolismo , Replicación Viral/genética , MutaciónRESUMEN
BACKGROUND: Excessive fatty acids in the liver lead to the accumulation of lipotoxic lipids and then cellular stress to further evoke the related disease, like non-alcoholic fatty liver disease (NAFLD). As reported, fatty acid stimulation can cause some specific miRNA dysregulation, which caused us to investigate the relationship between miRNA biogenesis and fatty acid overload. METHODS: Gene expression omnibus (GEO) dataset analysis, miRNA-seq, miRNA cleavage assay, RT-qPCR, western blotting, immunofluorescence and co-immunoprecipitation (co-IP) were used to reveal the change of miRNAs under pathological status and explore the relevant mechanism. High fat, high fructose, high cholesterol (HFHFrHC) diet-fed mice transfected with AAV2/8-shDrosha or AAV2/8-shPRMT5 were established to investigate the in vivo effects of Drosha or PRMT5 on NAFLD phenotype. RESULTS: We discovered that the cleavage of miRNAs was inhibited by analysing miRNA contents and detecting some representative pri-miRNAs in multiple mouse and cell models, which was further verified by the reduction of the Microprocessor activity in the presence of palmitic acid (PA). In vitro, PA could induce Drosha, the core RNase III in the Microprocessor complex, degrading through the proteasome-mediated pathway, while in vivo, knockdown of Drosha significantly promoted NAFLD to develop to a more serious stage. Mechanistically, our results demonstrated that PA can increase the methyltransferase activity of PRMT5 to degrade Drosha through MDM2, a ubiquitin E3 ligase for Drosha. The above results indicated that PRMT5 may be a critical regulator in lipid metabolism during NAFLD, which was confirmed by the knocking down of PRMT5 improved aberrant lipid metabolism in vitro and in vivo. CONCLUSIONS: We first demonstrated the relationship between miRNA dosage and NAFLD and proved that PA can activate the PRMT5-MDM2-Drosha signalling pathway to regulate miRNA biogenesis.
Asunto(s)
Metabolismo de los Lípidos , MicroARNs , Enfermedad del Hígado Graso no Alcohólico , Proteína-Arginina N-Metiltransferasas , Proteínas Proto-Oncogénicas c-mdm2 , Animales , Humanos , Masculino , Ratones , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , MicroARNs/metabolismo , MicroARNs/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Ribonucleasa III/metabolismo , Ribonucleasa III/genética , Transducción de SeñalRESUMEN
The aggressive nature and poor prognosis of lung cancer led us to explore the mechanisms driving disease progression. Utilizing our invasive cell-based model, we identified methylthioadenosine phosphorylase (MTAP) and confirmed its suppressive effects on tumorigenesis and metastasis. Patients with low MTAP expression display worse overall and progression-free survival. Mechanistically, accumulation of methylthioadenosine substrate in MTAP-deficient cells reduce the level of protein arginine methyltransferase 5 (PRMT5)-mediated symmetric dimethylarginine (sDMA) modification on proteins. We identify vimentin as a dimethyl-protein whose dimethylation levels drop in response to MTAP deficiency. The sDMA modification on vimentin reduces its protein abundance but trivially affects its filamentous structure. In MTAP-deficient cells, lower sDMA modification prevents ubiquitination-mediated vimentin degradation, thereby stabilizing vimentin and contributing to cell invasion. MTAP and PRMT5 negatively correlate with vimentin in lung cancer samples. Taken together, we propose a mechanism for metastasis involving vimentin post-translational regulation.
Asunto(s)
Neoplasias Pulmonares , Purina-Nucleósido Fosforilasa , Humanos , Neoplasias Pulmonares/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Purina-Nucleósido Fosforilasa/metabolismo , Vimentina/genéticaRESUMEN
BACKGROUND: Protein arginine methyltransferase 6 (PRMT6) is a type I arginine methyltransferase that asymmetrically dimethylates histone H3 arginine 2 (H3R2me2a). However, the biological roles and underlying molecular mechanisms of PRMT6 in colorectal cancer (CRC) remain unclear. METHODS: PRMT6 expression in CRC tissue was examined using immunohistochemistry. The effect of PRMT6 on CRC cells was investigated in vitro and in vivo. Mass spectrometry, co-immunoprecipitation and GST pulldown assays were performed to identify interaction partners of PRMT6. RNA-seq, chromatin immunoprecipitation, Western blot and qRT-PCR assays were used to investigate the mechanism of PRMT6 in gene regulation. RESULTS: PRMT6 is significantly upregulated in CRC tissues and facilitates cell proliferation of CRC cells in vitro and in vivo. Through RNA-seq analysis, CDKN2B (p15INK4b) and CCNG1 were identified as new transcriptional targets of PRMT6. PRMT6-dependent H3R2me2a mark was predominantly deposited at the promoters of CDKN2B and CCNG1 in CRC cells. Furthermore, PRMT5 was firstly characterized as an interaction partner of PRMT6. Notably, H3R2me2a coincides with PRMT5-mediated H4R3me2s and H3R8me2s marks at the promoters of CDKN2B and CCNG1 genes, thus leading to transcriptional repression of these genes. CONCLUSIONS: PRMT6 functionally associates with PRMT5 to promote CRC progression through epigenetically repressing the expression of CDKN2B and CCNG1. These insights raise the possibility that combinational intervention of PRMT6 and PRMT5 may be a promising strategy for CRC therapy.
Asunto(s)
Neoplasias Colorrectales , Represión Epigenética , Proteínas Nucleares , Proteína-Arginina N-Metiltransferasas , Humanos , Arginina/química , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Ciclina G1/genética , Ciclina G1/metabolismo , Regulación de la Expresión Génica , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Represión Epigenética/genética , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismoRESUMEN
Protein arginine methyltransferase 5 (PRMT5) is a type II PRMT enzyme that plays an important role in protein formation. PRMT5 is widely distributed in the nucleus and is involved in regulating a variety of biological processes, including gene transcription, signaling, and cell proliferation. PRMT5 regulates the function and stability of histones through methylation, affecting important cellular activities such as cell cycle regulation, DNA repair, and RNA processing. Studies have shown that PRMT5 is overexpressed in a variety of tumors and is closely related to the occurrence and development of tumors. In recent years, several PRMT5 inhibitors have entered clinical trials for the treatment of various cancers. In view of their importance, this paper reviews the first generation of PRMT5 inhibitors obtained by high-throughput screening, virtual screening, lead compound optimization and substitution modification, as well as novel PRMT5 inhibitors obtained by PROTAC technology and by synthetic lethal principle. Finally, by comparing the differences between the first generation and the second generation, the challenges and future development directions of PRMT5 inhibitors are discussed.
RESUMEN
Epigenetic regulators play key roles in cancer and are increasingly being targeted for treatment. However, for many, little is known about mechanisms of resistance to the inhibition of these regulators. We have generated a model of resistance to inhibitors of protein arginine methyltransferase 5 (PRMT5). This study was conducted in KrasG12D;Tp53-null lung adenocarcinoma (LUAD) cell lines. Resistance to PRMT5 inhibitors (PRMT5i) arose rapidly, and barcoding experiments showed that this resulted from a drug-induced transcriptional state switch, not selection of a preexisting population. This resistant state is both stable and conserved across variants arising from distinct LUAD lines. Moreover, it brought with it vulnerabilities to other chemotherapeutics, especially the taxane paclitaxel. This paclitaxel sensitivity depended on the presence of stathmin 2 (STMN2), a microtubule regulator that is specifically expressed in the resistant state. Remarkably, STMN2 was also essential for resistance to PRMT5 inhibition. Thus, a single gene is required for both acquisition of resistance to PRMT5i and collateral sensitivity to paclitaxel in our LUAD cells. Accordingly, the combination of PRMT5i and paclitaxel yielded potent and synergistic killing of the murine LUAD cells. Importantly, the synergy between PRMT5i and paclitaxel also extended to human cancer cell lines. Finally, analysis of The Cancer Genome Atlas patient data showed that high STMN2 levels correlate with complete regression of tumors in response to taxane treatment. Collectively, this study reveals a recurring mechanism of PRMT5i resistance in LUAD and identifies collateral sensitivities that have potential clinical relevance.