Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(22): e202303818, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36973833

RESUMEN

Protein tyrosine phosphatase 1B (PTP1B) and T-cell protein tyrosine phosphatase (TC-PTP) play non-redundant negative regulatory roles in T-cell activation, tumor antigen presentation, insulin and leptin signaling, and are potential targets for several therapeutic applications. Here, we report the development of a highly potent and selective small molecule degrader DU-14 for both PTP1B and TC-PTP. DU-14 mediated PTP1B and TC-PTP degradation requires both target protein(s) and VHL E3 ligase engagement and is also ubiquitination- and proteasome-dependent. DU-14 enhances IFN-γ induced JAK1/2-STAT1 pathway activation and promotes MHC-I expression in tumor cells. DU-14 also activates CD8+ T-cells and augments STAT1 and STAT5 phosphorylation. Importantly, DU-14 induces PTP1B and TC-PTP degradation in vivo and suppresses MC38 syngeneic tumor growth. The results indicate that DU-14, as the first PTP1B and TC-PTP dual degrader, merits further development for treating cancer and other indications.


Asunto(s)
Neoplasias , Proteína Tirosina Fosfatasa no Receptora Tipo 2 , Humanos , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Linfocitos T CD8-positivos/metabolismo , Neoplasias/tratamiento farmacológico , Fosforilación , Inmunoterapia
2.
Biol Methods Protoc ; 9(1): bpae014, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38544761

RESUMEN

Proteolysis targeting chimera (PROTAC) is a protein degradation technique that has been increasingly used in the development of new drugs in recent years. Akt is a classical serine/threonine kinase, and its role outside of the kinase has gradually gained attention in recent years, making it one of the proteins targeted by PROTACs. Currently, there are many methods used for the evaluation of intracellular protein degradation, but each has its own advantages or disadvantages. This study aimed to investigate the feasibility of evaluating the degradation of pan-Akt proteins in cells by PROTACs (MS21 and MS170) using the NanoLuc luciferase method. After conducting a thorough comparison between this method and the classical western blot assay in various cells, as well as testing the stability of the experiments between multiple batches, we found that NanoLuc luciferase is a highly accurate, stable, low-cost and easy-to-operate method for the evaluation of intracellular pan-Akt degradation by PROTACs with a short cycle time and high cellular expandability. Given the numerous advantages of this method, it is hypothesized that it could be extended to evaluate the degradation of more target proteins of PROTACs. In summary, the NanoLuc luciferase is a suitable method for early protein degradation screening of PROTAC compounds.

3.
bioRxiv ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38464251

RESUMEN

The androgen receptor (AR) is a ligand-responsive transcription factor that binds at enhancers to drive terminal differentiation of the prostatic luminal epithelia. By contrast, in tumors originating from these cells, AR chromatin occupancy is extensively reprogrammed to drive hyper-proliferative, metastatic, or therapy-resistant phenotypes, the molecular mechanisms of which remain poorly understood. Here, we show that the tumor-specific enhancer circuitry of AR is critically reliant on the activity of Nuclear Receptor Binding SET Domain Protein 2 (NSD2), a histone 3 lysine 36 di-methyltransferase. NSD2 expression is abnormally gained in prostate cancer cells and its functional inhibition impairs AR trans-activation potential through partial off-loading from over 40,000 genomic sites, which is greater than 65% of the AR tumor cistrome. The NSD2-dependent AR sites distinctly harbor a chimeric AR-half motif juxtaposed to a FOXA1 element. Similar chimeric motifs of AR are absent at the NSD2-independent AR enhancers and instead contain the canonical palindromic motifs. Meta-analyses of AR cistromes from patient tumors uncovered chimeric AR motifs to exclusively participate in tumor-specific enhancer circuitries, with a minimal role in the physiological activity of AR. Accordingly, NSD2 inactivation attenuated hallmark cancer phenotypes that were fully reinstated upon exogenous NSD2 re-expression. Inactivation of NSD2 also engendered increased dependency on its paralog NSD1, which independently maintained AR and MYC hyper-transcriptional programs in cancer cells. Concordantly, a dual NSD1/2 PROTAC degrader, called LLC0150, was preferentially cytotoxic in AR-dependent prostate cancer as well as NSD2-altered hematologic malignancies. Altogether, we identify NSD2 as a novel subunit of the AR neo-enhanceosome that wires prostate cancer gene expression programs, positioning NSD1/2 as viable paralog co-targets in advanced prostate cancer.

4.
Eur J Med Chem ; 259: 115664, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37487306

RESUMEN

As a critical upstream regulator of nuclear factor-κB (NF-κB) activation, Bruton's tyrosine kinase (BTK) has been identified to be an effective therapeutic target for the treatment of acute or chronic inflammatory diseases. Herein, we describe the design, synthesis and structure-activity-relationship analysis of a novel series of Ibrutinib-based BTK PROTACs by recruiting Cereblon (CRBN) ligase. Among them, compound 15 was identified as the most potent degrader with a DC50 of 3.18 nM, significantly better than the positive control MT802 (DC50 of 63.31 nM). Compound 15 could also degrade BTK protein in Lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and suppress the mRNA expression and secretion of proinflammatory cytokines such as IL-1ß and IL-6 by inhibiting NF-κB activation. Furthermore, compound 15 reduced inflammatory responses in a mouse zymosan-induced peritonitis (ZIP) model. Our findings demonstrated for the first time that targeting BTK degradation by PROTACs might be an alternative option for the treatment of inflammatory disorders, and compound 15 represents one of the most efficient BTK PROTACs (DC50 = 3.18 nM; Dmax = 99.90%; near 100% degradation at 8 h) reported so far and could serve as a lead compound for further investigation as an anti-inflammatory agent.


Asunto(s)
FN-kappa B , Quimera Dirigida a la Proteólisis , Ratones , Animales , Agammaglobulinemia Tirosina Quinasa/metabolismo , FN-kappa B/metabolismo , Antiinflamatorios
5.
J Control Release ; 354: 155-166, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36538950

RESUMEN

Bromodomain-Containing Protein 4 (BRD4) is a member of the BET family of bromodomains, which participates in gene transcription process and is closely related to tumor progression. We observed the up-regulated expression of BRD4 in colorectal cancer (CRC) after doxorubicin (DOX) treatment, which might be a potential mechanism for DOX resistance. This study constructed the tumor-targeting (cyclo (Arg-Gly-Asp-D-Phe-Lys)-poly(ethylene glycol)-poly(ε-caprolactone)) (cRGD-PEG-PCL) copolymer for co-delivery of DOX and BRD4 PROTAC degrader ARV-825 (ARV-DOX/cRGD-P) for CRC treatment. The ARV-DOX/cRGD-P complexes elicited synergistic anti-tumor effect via cell cycle arrest and the increased cell apoptosis, and mechanism studies implicated the regulation of proliferation- and apoptosis-related pathways in vitro. Moreover, the administration of ARV-DOX/cRGD-P significantly improved anti-tumor activity in subcutaneous colorectal tumors and colorectal intraperitoneal disseminated tumor models in mice by promoting tumor apoptosis, suppressing tumor proliferation and angiogenesis. Taken together, these data reveal that ARV-825 can heighten DOX sensitivity in CRC treatment and BRD4 is a potential therapeutic target for DOX-resistant CRC. The ARV-DOX/cRGD-P preparations have outstanding anti-cancer effects and may be used for clinical treatment of colorectal cancer in the future.


Asunto(s)
Neoplasias Colorrectales , Nanopartículas , Animales , Ratones , Proteínas Nucleares , Línea Celular Tumoral , Quimera Dirigida a la Proteólisis , Proteolisis , Factores de Transcripción/metabolismo , Doxorrubicina/farmacología , Antibióticos Antineoplásicos/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico
6.
bioRxiv ; 2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37609171

RESUMEN

An effective cancer therapy requires both killing cancer cells and targeting tumor-promoting pathways or cell populations within the tumor microenvironment (TME). We purposely search for molecules that are critical for multiple tumor-promoting cell types and identified nuclear receptor subfamily 4 group A member 1 (NR4A1) as one such molecule. NR4A1 has been shown to promote the aggressiveness of cancer cells and maintain the immune suppressive TME. Using genetic and pharmacological approaches, we establish NR4A1 as a valid therapeutic target for cancer therapy. Importantly, we have developed the first-of-its kind proteolysis-targeting chimera (PROTAC, named NR-V04) against NR4A1. NR-V04 effectively degrades NR4A1 within hours of treatment in vitro and sustains for at least 4 days in vivo, exhibiting long-lasting NR4A1-degradation in tumors and an excellent safety profile. NR-V04 leads to robust tumor inhibition and sometimes eradication of established melanoma tumors. At the mechanistic level, we have identified an unexpected novel mechanism via significant induction of tumor-infiltrating (TI) B cells as well as an inhibition of monocytic myeloid derived suppressor cells (m-MDSC), two clinically relevant immune cell populations in human melanomas. Overall, NR-V04-mediated NR4A1 degradation holds promise for enhancing anti-cancer immune responses and offers a new avenue for treating various types of cancer.

7.
Cancers (Basel) ; 15(15)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37568703

RESUMEN

Synovial sarcoma (SyS) is a rare aggressive soft tissue sarcoma carrying the chromosomal translocation t(X;18), encoding the fusion transcript SS18::SSX. The fusion oncoprotein interacts with both BAF enhancer complexes and polycomb repressor complexes, resulting in genome-wide epigenetic perturbations and a unique altered genetic signature. Over 80% of the patients are initially diagnosed with localized disease and have a 5-year survival rate of 70-80%, but metastatic relapse occurs in 50% of the cases. Advanced, unresectable, or metastatic disease has a 5-year survival rate below 10%, representing a critical issue. This review summarizes the molecular mechanisms behind SyS and illustrates current treatments in front line, second line, and beyond settings. We analyze the use of immune check point inhibitors (ICI) in SyS that do not behave as an ICI-sensitive tumor, claiming the need for predictive genetic signatures and tumor immune microenvironment biomarkers. We highlight the clinical translation of innovative technologies, such as proteolysis targeting chimera (PROTAC) protein degraders or adoptive transfer of engineered immune cells. Adoptive cell transfer of engineered T-cell receptor cells targeting selected cancer/testis antigens has shown promising results against metastatic SyS in early clinical trials and further improvements are awaited from refinements involving immune cell engineering and tumor immune microenvironment enhancement.

8.
Eur J Med Chem ; 244: 114821, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36242985

RESUMEN

VEGFR-2 is an attractive therapeutic target for antitumor drug research by blocking tumor angiogenesis and PROTAC provides a new technology for targeted protein knockout. Herein, a library of novel VEGFR-2-PROTAC degraders were rationally designed and synthesized based on the Lys residue region on the surface of VEGFR-2 protein using protein structure-based drug design strategy. Among them, P7 exhibited preferable antitumor activity against HGC-27 cells and less toxic to human normal HUVEC, HEK293T and GES-1 cells in vitro, as well as the potent degradation activity of VEGFR-2 protein in HGC-27 cells (DC50: 0.084 ± 0.04 µM, Dmax: 73.7%) and HUVEC cells (DC50: 0.51 ± 0.10 µM, Dmax: 76.6%). Additionally, P7 degraded VEGFR-2 protein by the formation of ternary complex and the ubiquitin proteasome pathway in HGC-27 cells. Furthermore, P7 shortened the half-life of VEGFR-2 protein synthesis and had no inhibitory effect on the expression of VEGFR-2 mRNA in HGC-27 cells. Moreover, P7 inhibited the colony formation, migration and invasion of HGC-27 cells in a time- and dose-dependent manner, and meanwhile induced G2/M phase cycle arrest and apoptosis. All the results demonstrated that P7 could be as a promising VEGFR-2-PROTAC degrader for gastric cancer therapy.


Asunto(s)
Antineoplásicos , Neoplasias Gástricas , Humanos , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Lisina/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Células HEK293 , Proteolisis , Proliferación Celular , Antineoplásicos/farmacología , Antineoplásicos/química , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau
9.
Mater Today Bio ; 16: 100423, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36157053

RESUMEN

Current treatment of glioma is hampered due to the physical blood-brain barrier (BBB) and the resistance to traditional chemotherapeutic agents. Herein, we proposed a combined treatment strategy based on Cyclo (Arg-Gly-Asp-d-Phe-Lys) (cRGDfk) peptides-modified nanoparticle named cRGD-P in a self-assembly method for the co-delivery of doxorubicin (DOX) and BRD4 PROTAC degrader ARV-825 (ARV). Molecular dynamics simulations showed that cRGD-P could change its conformation to provide interaction sites for perfectly co-loading DOX and ARV. The cRGD-P/ARV-DOX exhibited an average size of 39.95 â€‹nm and a zeta potential of -0.25 â€‹mV. Increased expression of BRD4 in glioma cells was observed after being stimulated by cRGD-P/DOX, confirming one of the possible mechanisms of DOX resistance and the synergistic tumor inhibition effect of BRD4 degrading ARV combined with DOX. In the study, the combination of DOX and ARV in the cRGD-P nanoparticle system exhibited synergistic suppression of tumor growth in glioma cells on account of cell cycle arrest in the G2/M phase and the activation of tumor cells apoptosis-related pathways including triggering caspase cascade and downregulating Bcl-2 as well as upregulating Bax. The cRGD-P/ARV-DOX system could effectively suppress the heterotopic and orthotopic growth of glioma by increasing tumor apoptosis, inhibiting tumor proliferation, and decreasing tumor angiogenesis in vivo. Therefore, the cRGD-modified nanoparticle to co-deliver DOX and ARV provides a potential platform for exploiting a more effective and safer combination therapy for glioma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA