Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 56(7): 1533-1547.e7, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37354904

RESUMEN

The crosstalk between the immune and neuroendocrine systems is critical for intestinal homeostasis and gut-brain communications. However, it remains unclear how immune cells participate in gut sensation of hormones and neurotransmitters release in response to environmental cues, such as self-lipids and microbial lipids. We show here that lipid-mediated engagement of invariant natural killer T (iNKT) cells with enterochromaffin (EC) cells, a subset of intestinal epithelial cells, promoted peripheral serotonin (5-HT) release via a CD1d-dependent manner, regulating gut motility and hemostasis. We also demonstrated that inhibitory sphingolipids from symbiotic microbe Bacteroides fragilis represses 5-HT release. Mechanistically, CD1d ligation on EC cells transduced a signal and restrained potassium conductance through activation of protein tyrosine kinase Pyk2, leading to calcium influx and 5-HT secretion. Together, our data reveal that by engaging with iNKT cells, gut chemosensory cells selectively perceive lipid antigens via CD1d to control 5-HT release, modulating intestinal and systemic homeostasis.


Asunto(s)
Células T Asesinas Naturales , Serotonina , Serotonina/metabolismo , Lípidos , Antígenos CD1d/metabolismo
2.
J Biol Chem ; 300(5): 107253, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569938

RESUMEN

Homocysteine, a sulfur-containing amino acid derived from methionine metabolism, is a known agonist of N-methyl-D-aspartate receptor (NMDAR) and is involved in neurotoxicity. Our previous findings showed that neuronal exposure to elevated homocysteine levels leads to sustained low-level increase in intracellular Ca2+, which is dependent on GluN2A subunit-containing NMDAR (GluN2A-NMDAR) stimulation. These studies further showed a role of ERK MAPK in homocysteine-GluN2A-NMDAR-mediated neuronal death. However, the intracellular mechanisms associated with such sustained GluN2A-NMDAR stimulation and subsequent Ca2+ influx have remained unexplored. Using live-cell imaging with Fluo3-AM and biochemical approaches, we show that homocysteine-GluN2A NMDAR-induced initial Ca2+ influx triggers sequential phosphorylation and subsequent activation of the proline rich tyrosine kinase 2 (Pyk2) and Src family kinases, which in turn phosphorylates GluN2A-Tyr1325 residue of GluN2A-NMDARs to maintain channel activity. The continuity of this cycle of events leads to sustained Ca2+ influx through GluN2A-NMDAR. Our findings also show that lack of activation of the regulatory tyrosine phosphatase STEP, which can limit Pyk2 and Src family kinase activity further contributes to the maintenance of this cycle. Additional studies using live-cell imaging of neurons expressing a redox-sensitive GFP targeted to the mitochondrial matrix show that treatment with homocysteine leads to a progressive increase in mitochondrial reactive oxygen species generation, which is dependent on GluN2A-NMDAR-mediated sustained ERK MAPK activation. This later finding demonstrates a novel role of GluN2A-NMDAR in homocysteine-induced mitochondrial ROS generation and highlights the role of ERK MAPK as the intermediary signaling pathway between GluN2A-NMDAR stimulation and mitochondrial reactive oxygen species generation.


Asunto(s)
Homocisteína , Mitocondrias , Especies Reactivas de Oxígeno , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Homocisteína/metabolismo , Homocisteína/farmacología , Especies Reactivas de Oxígeno/metabolismo , Animales , Mitocondrias/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Calcio/metabolismo , Fosforilación/efectos de los fármacos , Quinasa 2 de Adhesión Focal/metabolismo , Familia-src Quinasas/metabolismo , Ratas , Ratones , Humanos
3.
J Hepatol ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39260704

RESUMEN

BACKGROUND & AIMS: The mechanisms underlying the regulation of hepatocyte non-receptor tyrosine kinases in metabolic dysfunction-associated steatohepatitis (MASH) remain largely unclear. METHODS: Hepatocyte-specific overexpression or deletion and anti-protein tyrosine kinase 2 beta (PYK2) or anti-TRAF6-binding protein (T6BP) crosslinking were utilised to study fatty liver protection by T6BP. P-PTC, a peptide-proteolysis targeting chimaera, degrades PYK2 to block MASH progression. RESULTS: Since PYK2 activation is promoter signalling in steatohepatitis development, we find that T6BP is a novel and critical suppressor of PYK2 that reduces hepatic lipid accumulation, pro-inflammatory factor release, and pro-fibrosis production by ubiquitin ligase CBL to degrade PYK2. Mechanistic evidence suggests that T6BP directly targets PYK2 and prevents its N-terminal FERM domain-triggered dimerization, disrupting downstream PYK2-JNK signalling hyperactivation. Additionally, T6BP favourably recruits CBL, a particular E3 ubiquitin ligase targeting PYK2, to form a complex and degrade PYK2. T6BP (F1), a core fragment of T6BP, directly blocks N-terminal FERM domain-associated dimerization of PYK2, followed by T6BP-recruiting CBL-mediated PYK2 degradation in a typical T6BP-dependent manner when the tiny fragment is specifically expressed using thyroxine binding globulin (TBG)-ground vectors. This inhibits the progression of MASH, metabolic dysfunction-associated steatotic liver disease (MASLD)-related HCC (MASH-HCC), and metabolic syndrome in dietary rodent models. First-ever peptide-proteolysis targeting chimaera (P-PTC) based on the core segment of T6BP as a ligand for targeted recruitment of CBL targeting metabolic disorders like MASH has been devised and validated in animal models. CONCLUSIONS: Our study revealed a previously unknown mechanism: identification of T6BP as a key eliminator of fatty liver strongly contributes to the development of promising therapeutic targets, and the discovery of crucial fragments of T6BP-based pharmacon that interrupt PYK2 dimerization are novel and viable treatments for fatty liver and its advanced symptoms and complications. IMPACT AND IMPLICATIONS: Excessive high-energy diet ingestion is critical in driving steatohepatitis via regulation of hepatocyte non-receptor tyrosine kinases. The mechanisms under lying the regulation of hepatocyte PYK2 in metabolic dysfunction-associated steatohepatitis (MASH) remain largely unclear. Here, we found that T6BP as a critical fatty liver eliminator has a significant impact on the development of promising therapeutic targets. Additionally, vital T6BP-based pharmacon fragments that impede PYK2 dimerization have been found, offering new and effective treatments for advanced fatty liver symptoms and complications.

4.
Mol Med ; 30(1): 163, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333897

RESUMEN

BACKGROUND: Fibrosis cataract occurs in patients receiving cataract extraction. Still, no medication that can cure the disease exists in clinical. This study aims to investigate the effects and mechanisms of Entrectinib on fibrotic cataract in vitro and in vivo. METHODS: The human lens cells line SRA 01/04 and C57BL/6J mice were applied in the study. Entrectinib was used in animals and cells. Cataract severity was assessed by slit lamp and Hematoxylin and Eosin staining. Expression of alpha-smooth muscle actin, fibronectin, and collagen I were examined by real-time quantitative PCR, western blotting, and immunofluorescence. Cell proliferation was evaluated by Cell Counting Kit-8. Cell migration was measured by wound healing and transwell assays. Molecular docking, Drug Affinity Responsive Target Stability, and Cellular Thermal Shift Assay were applied to seek and certify the target of Entrectinib treating fibrosis cataract. RESULTS: Entrectinib can ameliorate fibrotic cataract in vitro and in vivo. At the RNA and the protein levels, the expression of alpha-smooth muscle actin, collagen I, and fibronectin can be downgraded by Entrectinib, while E-cadherin can be upregulated. The migration and proliferation of cells were inhibited by Entrectinib. Mechanistically, Entrectinib obstructs TGFß2/Smad and TGFß2/non-Smad signaling pathways to hinder the fibrosis cataract by targeting PYK2 protein. CONCLUSIONS: Targeting with PYK2, Entrectinib can block TGF-ß2/Smad and TGF-ß2/non-Smad signaling pathways, lessen the activation of EMT, and alleviate fibrosis cataract. Entrectinib may be a potential treatment for fibrosis cataract in clinic.


Asunto(s)
Catarata , Quinasa 2 de Adhesión Focal , Transducción de Señal , Factor de Crecimiento Transformador beta2 , Animales , Ratones , Transducción de Señal/efectos de los fármacos , Catarata/etiología , Catarata/tratamiento farmacológico , Catarata/metabolismo , Catarata/patología , Humanos , Factor de Crecimiento Transformador beta2/metabolismo , Quinasa 2 de Adhesión Focal/metabolismo , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Movimiento Celular/efectos de los fármacos , Línea Celular , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Indazoles/farmacología , Indazoles/uso terapéutico , Masculino , Quinasa 1 de Adhesión Focal
5.
Cell Commun Signal ; 22(1): 313, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844957

RESUMEN

BACKGROUND: Non-small-cell lung cancer (NSCLC) accounts for 80-85% of all lung cancer and is the leading cause of cancer-related deaths globally. Although various treatment strategies have been introduced, the 5-year survival rate of patients with NSCLC is only 20-30%. Thus, it remains necessary to study the pathogenesis of NSCLC and develop new therapeutic drugs. Notably, PYK2 has been implicated in the progression of many tumors, including NSCLC, but its detailed mechanism remains unclear. In this study, we aimed to elucidate the mechanisms through which PYK2 promotes NSCLC progression. METHODS: The mRNA and protein levels of various molecules were measured using qRT-PCR, western blot (WB), and immunohistochemistry (IHC), respectively. We established stable PYK2 knockdown and overexpression cell lines, and CCK-8, EdU, and clonogenic assays; wound healing, transwell migration, and Matrigel invasion assays; and flow cytometry were employed to assess the phenotypes of tumor cells. Protein interactions were evaluated with co-immunoprecipitation (co-IP), immunofluorescence (IF)-based colocalization, and nucleocytoplasmic separation assays. RNA sequencing was performed to explore the transcriptional regulation mediated by PYK2. Secreted VGF levels were examined using ELISA. Dual-luciferase reporter system was used to detect transcriptional regulation site. PF4618433 (PYK2 inhibitor) and Stattic (STAT3 inhibitor) were used for rescue experiments. A public database was mined to analyze the effect of these molecules on NSCLC prognosis. To investigate the role of PYK2 in vivo, mouse xenograft models of lung carcinoma were established and examined. RESULTS: The protein level of PYK2 was higher in human NSCLC tumors than in the adjacent normal tissue, and higher PYK2 expression was associated with poorer prognosis. PYK2 knockdown inhibited the proliferation and motility of tumor cells and caused G1-S arrest and cyclinD1 downregulation in A549 and H460 cells. Meanwhile, PYK2 overexpression had the opposite effect in H1299 cells. The siRNA-induced inhibition of integrins alpha V and beta 1 led to the downregulation of p-PYK2(Tyr402). Activated PYK2 could bind to STAT3 and enhance its phosphorylation at Tyr705, regulating the nuclear accumulation of p-STAT3(Tyr705). This further promoted the expression of VGF, as confirmed by RNA sequencing in a PYK2-overexpressing H1299 cell line and validated by rescue experiments. Two sites in promoter region of VGF gene were confirmed as binding sites of STAT3 by Dual-luciferase assay. Data from the TGCA database showed that VGF was related to the poor prognosis of NSCLC. IHC revealed higher p-PYK2(Tyr402) and VGF expression in lung tumors than in adjacent normal tissues. Moreover, both proteins showed higher levels in advanced TNM stages than earlier ones. A positive linear correlation existed between the IHC score of p-PYK2(Tyr402) and VGF. Knockdown of VGF inhibited tumor progression and reversed the tumor promoting effect of PYK2 overexpression in NSCLC cells. Finally, the mouse model exhibited enhanced tumor growth when PYK2 was overexpressed, while the inhibitors PF4618433 and Stattic could attenuate this effect. CONCLUSIONS: The Integrin αVß1-PYK2-STAT3-VGF axis promotes NSCLC development, and the PYK2 inhibitor PF4618433 and STAT3 inhibitor Stattic can reverse the pro-tumorigenic effect of high PYK2 expression in mouse models. Our findings provide insights into NSCLC progression and could guide potential therapeutic strategies against NSCLC with high PYK2 expression levels.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Proliferación Celular , Progresión de la Enfermedad , Quinasa 2 de Adhesión Focal , Neoplasias Pulmonares , Factor de Transcripción STAT3 , Animales , Humanos , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Quinasa 2 de Adhesión Focal/metabolismo , Quinasa 2 de Adhesión Focal/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones Endogámicos BALB C , Ratones Desnudos , Transducción de Señal/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Integrinas/metabolismo , Integrina beta1/metabolismo , Factores de Crecimiento Nervioso/metabolismo
6.
Dig Dis Sci ; 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39414740

RESUMEN

BACKGROUND: Proline-rich tyrosine kinase 2 (PYK2) is involved in the occurrence, proliferation, migration, and invasion of various tumors. However, few studies have reported the role of PYK2 in colorectal cancer (CRC). AIM: To explore the effects of PYK2 on CRC metastasis and elucidate the detailed molecular mechanisms involved. METHODS: The expression and prognosis value of PYK2 in CRC prognosis were analyzed using data from The Cancer Genome Atlas (TCGA). PYK2 was knocked down or overexpressed in human CRC cell line, HCT116. Cell proliferation, migration, invasion, and cycle changes were analyzed using CCK-8, Transwell, and flow cytometry assays. Western blotting and quantitative real-time PCR were performed to detect the mRNA and protein levels of cell proliferation and epithelial-mesenchymal transition (EMT) indicators. Fluorescence staining was performed to examine the cytoskeleton. RESULTS: Lower expression of PYK2 was observed in CRC tissues and associated with poor prognosis and metastasis in patients with CRC in TCGA database. PYK2 knockdown significantly induced the migration and invasion of CRC cells but did not affect cell proliferation or cycle. Immunofluorescence staining of phalloidin showed that the downregulation of PYK2 increased the cytoskeleton in CRC cells. Moreover, low expression of PYK2 induced the downregulation of E-cadherin and upregulation of snail and vimentin by activating Wnt/ß-catenin signaling, thus promoting EMT in CRC cells. CONCLUSIONS: Low PYK2 expression was found in tumor tissues, especially metastases, and significantly correlated with patient prognosis. Moreover, decreased PYK2 induces EMT by activating Wnt/ß-catenin signaling, which is the potential mechanism of CRC metastasis. Regulating the expression of PYK2 to suppress tumor cell metastasis may represent a promising therapeutic strategy for metastatic CRC.

7.
Cell Mol Life Sci ; 80(5): 120, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041420

RESUMEN

BACKGROUND: Hypoxia-inducible factors (HIFs) are the most essential endogenous transcription factors in the hypoxic microenvironment and regulate multiple genes involved in the proliferation, migration, invasion, and EMT of hepatocellular carcinoma (HCC) cells. However, the regulatory mechanism of HIFs in driving HCC progression remains poorly understood. METHODS: Gain- and loss-of-function experiments were carried out to investigate the role of TMEM237 in vitro and in vivo. The molecular mechanisms involved in HIF-1α-induced TMEM237 expression and TMEM237-mediated enhancement of HCC progression were confirmed by luciferase reporter, ChIP, IP-MS and Co-IP assays. RESULTS: TMEM237 was identified as a novel hypoxia-responsive gene in HCC. HIF-1α directly bound to the promoter of TMEM237 to transactivate its expression. The overexpression of TMEM237 was frequently detected in HCC and associated with poor clinical outcomes in patients. TMEM237 facilitated the proliferation, migration, invasion, and EMT of HCC cells and promoted tumor growth and metastasis in mice. TMEM237 interacted with NPHP1 and strengthened the interaction between NPHP1 and Pyk2 to trigger the phosphorylation of Pyk2 and ERK1/2, thereby contributing to HCC progression. The TMEM237/NPHP1 axis mediates hypoxia-induced activation of the Pyk2/ERK1/2 pathway in HCC cells. CONCLUSIONS: Our study demonstrated that HIF-1α-activated TMEM237 interacted with NPHP1 to activate the Pyk2/ERK pathway, thereby promoting HCC progression.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Proteínas del Citoesqueleto/metabolismo , Quinasa 2 de Adhesión Focal/metabolismo , Hipoxia/genética , Neoplasias Hepáticas/metabolismo , Sistema de Señalización de MAP Quinasas , Microambiente Tumoral , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
8.
Immunology ; 168(1): 83-95, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36054607

RESUMEN

Integrin-mediated T-cell adhesion and migration is a crucial step in immune response and autoimmune diseases. However, the underlying signalling mechanisms are not fully elucidated. In this study, we examined the implication of purinergic signalling, which has been associated with T-cell activation, in the adhesion and migration of human Th17 cells across fibronectin, a major matrix protein associated with inflammatory diseases. We showed that the adhesion of human Th17 cells to fibronectin induces, via ß1 integrin, a sustained release of adenosine triphosphate (ATP) from the mitochondria through the pannexin-1 hemichannels. Inhibition of ATP release or its degradation with apyrase impaired the capacity of the cells to attach and migrate across fibronectin. Inhibition studies identified a major role for the purinergic receptor P2X4 in T-cell adhesion and migration but not for P2X7 or P2Y11 receptors. Blockade of P2X4 but not P2X7 or P2Y11 receptors reduced cell adhesion and migration by inhibiting activation of ß1 integrins, which is essential for ligand binding. Furthermore, we found that ß1 integrin-induced ATP release, P2X4 receptor transactivation, cell adhesion and migration were dependent on the focal adhesion kinase Pyk2 but not FAK. Finally, P2X4 receptor inhibition also blocked fibronectin-induced Pyk2 activation suggesting the existence of a positive feedback loop of activation between ß1 integrin/Pyk2 and P2X4 purinergic signalling pathways. Our findings uncovered an unrecognized link between ß1 integrin and P2X4 receptor signalling pathways for promoting T-cell adhesion and migration across the extracellular matrix.


Asunto(s)
Fibronectinas , Integrina beta1 , Humanos , Integrina beta1/metabolismo , Fibronectinas/metabolismo , Quinasa 2 de Adhesión Focal/metabolismo , Receptores Purinérgicos P2X4 , Células Th17 , Adhesión Celular , Adenosina Trifosfato/metabolismo
9.
Microbiology (Reading) ; 169(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37311220

RESUMEN

Adherent-invasive Escherichia coli (AIEC) have been implicated in the aetiology of Crohn's disease (CD). They are characterized by an ability to adhere to and invade intestinal epithelial cells, and to replicate intracellularly in macrophages resulting in inflammation. Proline-rich tyrosine kinase 2 (PYK2) has previously been identified as a risk locus for inflammatory bowel disease and a regulator of intestinal inflammation. It is overexpressed in patients with colorectal cancer, a major long-term complication of CD. Here we show that Pyk2 levels are significantly increased during AIEC infection of murine macrophages while the inhibitor PF-431396 hydrate, which blocks Pyk2 activation, significantly decreased intramacrophage AIEC numbers. Imaging flow cytometry indicated that Pyk2 inhibition blocked intramacrophage replication of AIEC with no change in the overall number of infected cells, but a significant reduction in bacterial burden per cell. This reduction in intracellular bacteria resulted in a 20-fold decrease in tumour necrosis factor α secretion by cells post-AIEC infection. These data demonstrate a key role for Pyk2 in modulating AIEC intracellular replication and associated inflammation and may provide a new avenue for future therapeutic intervention in CD.


Asunto(s)
Infecciones por Escherichia coli , Quinasa 2 de Adhesión Focal , Humanos , Animales , Ratones , Fosforilación , Quinasa 2 de Adhesión Focal/genética , Citocinas , Inflamación
10.
J Neurooncol ; 161(3): 593-604, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36790653

RESUMEN

BACKGROUND: The development of resistance to temozolomide (TMZ), a standard chemotherapeutic, limits the effective treatment of glioblastoma (GBM). Focal adhesion kinase (FAK) and proline rich tyrosine kinase 2 (Pyk2) regulate proliferation and invasion of GBM cells. We found that TMZ activates FAK and Pyk2 signaling in GBM. We hypothesized that pharmacological inhibitors of Pyk2/FAK together with TMZ can enhance the inhibitory effect of TMZ on tumor growth and dispersal and improve the treatment outcome. METHODS: Primary human GBM cell cultures and a C57Bl/6-GL261 mouse glioma implantation model were used. Pyk2 (Tyr579/580) and FAK (Tyr925) phosphorylation was analyzed by western blotting. Viability, cell cycle, migration, invasion and invadopodia formation were investigated in vitro. Animal survival, tumor size and invasion, TUNEL apoptotic cell death and the Ki67 proliferation index were evaluated in vivo upon treatment with TMZ (50 mg/kg, once/day, orally) and the Pyk2/FAK inhibitor PF-562271 (once/daily, 50 mg/kg, orally) vs. TMZ monotherapy. RESULTS: In vitro studies revealed significantly reduced viability, cell cycle progression, invasion and invadopodia with TMZ (100 µM) + PF-562271 (16 nM) compared with TMZ alone. In vivo studies demonstrated that combinatorial treatment led to prominent reductions in tumor size and invasive margins, extensive signs of apoptosis and a reduced proliferation index, together with a 15% increase in the survival rate in animals, compared with TMZ monotherapy. CONCLUSION: TMZ + PF-562271 eliminates TMZ-related Pyk2/FAK activation in GBM and improves the treatment efficacy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Animales , Humanos , Ratones , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Quinasa 2 de Adhesión Focal/metabolismo , Quinasa 2 de Adhesión Focal/farmacología , Glioblastoma/patología , Glioma/tratamiento farmacológico , Glioma/patología , Ratones Endogámicos C57BL , Transducción de Señal , Temozolomida/uso terapéutico
11.
J Neurooncol ; 163(3): 675-692, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37415005

RESUMEN

PURPOSE: Glioblastoma (GBM) is a fatal primary brain tumor with extremely poor clinical outcomes. The anticancer efficiency of tyrosine kinase inhibitors (TKIs) has been shown in GBM and other cancer, with limited therapeutic outcomes. In the current study, we aimed to investigate the clinical impact of active proline-rich tyrosine kinase-2 (PYK2) and epidermal growth factor receptor (EGFR) in GBM and evaluate its druggability by a synthetic TKI-Tyrphostin A9 (TYR A9). METHODS: The expression profile of PYK2 and EGFR in astrocytoma biopsies (n = 48) and GBM cell lines were evaluated through quantitative PCR, western blots, and immunohistochemistry. The clinical association of phospho-PYK2 and EGFR was analyzed with various clinicopathological features and the Kaplan-Meier survival curve. The phospho-PYK2 and EGFR druggability and subsequent anticancer efficacy of TYR A9 was evaluated in GBM cell lines and intracranial C6 glioma model. RESULTS: Our expression data revealed an increased phospho-PYK2, and EGFR expression aggravates astrocytoma malignancy and is associated with patients' poor survival. The mRNA and protein correlation analysis showed a positive association between phospho-PYK2 and EGFR in GBM tissues. The in-vitro studies demonstrated that TYR A9 reduced GBM cell growth, cell migration, and induced apoptosis by attenuating PYK2/EGFR-ERK signaling. The in-vivo data showed TYR A9 treatment dramatically reduced glioma growth with augmented animal survival by repressing PYK2/EGFR-ERK signaling. CONCLUSION: Altogether, this study report that increased phospho-PYK2 and EGFR expression in astrocytoma was associated with poor prognosis. The in-vitro and in-vivo evidence underlined translational implication of TYR A9 by suppressing PYK2/EGFR-ERK modulated signaling pathway. The schematic diagram displayed proof of concept of the current study indicating activated PYK2 either through the Ca2+/Calmodulin-dependent protein kinase II (CAMKII) signaling pathway or autophosphorylation at Tyr402 induces association to the SH2 domain of c-Src that leads to c-Src activation. Activated c-Src in turn activates PYK2 at other tyrosine residues that recruit Grb2/SOS complex and trigger ERK½ activation. Besides, PYK2 interaction with c-Src acts as an upstream of EGFR transactivator that can activate the ERK½ signaling pathway, which induces cell proliferation and cell survival by increasing anti-apoptotic proteins or inhibiting pro-apoptotic proteins. TYR A9 treatment attenuate GBM cell proliferation and migration; and induce GBM cell death by inhibiting PYK2 and EGFR-induced ERK activation.


Asunto(s)
Astrocitoma , Glioblastoma , Glioma , Animales , Glioblastoma/tratamiento farmacológico , Quinasa 2 de Adhesión Focal/metabolismo , Transducción de Señal , Receptores ErbB/metabolismo , Fosforilación , Astrocitoma/tratamiento farmacológico
12.
Biochem Genet ; 61(1): 336-353, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35918619

RESUMEN

Abnormal expression of long non-coding RNAs (lncRNAs) is involved in many pathological processes of cancers. However, the role of lncRNA LINC00052 in breast cancer progression is still unclear. Here, LINC00052 expression was detected by in situ hybridization and quantitative real-time PCR assays. Cell Counting Kit-8, wound healing, and transwell assays were used to investigate changes in the proliferation, migration, and invasion of breast cancer cells. MiR-548p was found associated with LINC00052 or Notch2 by RNA pull-down, dual-luciferase reporter, and qRT-PCR assays. The effect of LINC00052 on lung metastasis was explored through in vivo experiments. High LINC00052 expression was observed in breast cancer tissues and cells. LINC00052 silencing inhibited the proliferation, migration, and invasion of MCF7 cells, and LINC00052 overexpression produced the opposite results. MiR-548p, a target gene of LINC00052, partially rescued the effects of LINC00052 on proliferation, migration, and invasion of MCF7. Notch2 was the target of miR-548p and LINC00052 could promote Notch2 expression. Moreover, the phosphorylation of proline-rich tyrosine kinase 2 (Pyk2), a downstream factor of Notch2, was increased by LINC00052, and a Pyk2 mutant could inhibit the cell migration and invasion induced by LINC00052 overexpression in MDA-MB-468 cells, which was similar to the function of the miR-548p mimic. We further demonstrated that LINC00052 exacerbated the metastases of breast cancer cells in vivo. Our research demonstrated that LINC00052 is highly expressed in breast cancer and promotes breast cancer proliferation, migration, and invasion via the miR-548p/Notch2/Pyk2 axis. LINC00052 could serve as a potential therapeutic target for breast cancer.


Asunto(s)
Neoplasias de la Mama , MicroARNs , ARN Largo no Codificante , Humanos , Femenino , ARN Largo no Codificante/genética , MicroARNs/metabolismo , Neoplasias de la Mama/genética , Quinasa 2 de Adhesión Focal/genética , Quinasa 2 de Adhesión Focal/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Invasividad Neoplásica/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Receptor Notch2/genética , Receptor Notch2/metabolismo
13.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37686276

RESUMEN

The majority of glioblastomas (GBMs) recur shortly after tumor resection and recurrent tumors differ significantly from newly diagnosed GBMs, phenotypically and genetically. In this study, using a Gl261-C57Bl/6 mouse glioma implantation model, we identified significant upregulation of proline-rich tyrosine kinase Pyk2 and focal adhesion kinase (FAK) phosphorylation levels-pPyk2 (579/580) and pFAK (925)-without significant modifications in total Pyk2 and FAK protein expression in tumors regrown after surgical resection, compared with primary implanted tumors. Previously, we demonstrated that Pyk2 and FAK are involved in the regulation of tumor cell invasion and proliferation and are associated with reduced overall survival. We hypothesized that the use of inhibitors of Pyk2/FAK in the postsurgical period may reduce the growth of recurrent tumors. Using Western blot analysis and confocal immunofluorescence approaches, we demonstrated upregulation of Cyclin D1 and the Ki67 proliferation index in tumors regrown after resection, compared with primary implanted tumors. Treatment with Pyk2/FAK inhibitor PF-562271, administered through oral gavage at 50 mg/kg daily for two weeks beginning 2 days before tumor resection, reversed Pyk2/FAK signaling upregulation in recurrent tumors, reduced tumor volume, and increased animal survival. In conclusion, the use of Pyk2/FAK inhibitors can contribute to a delay in GBM tumor regrowth after surgical resection.


Asunto(s)
Glioblastoma , Glioma , Ratones , Animales , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Ratones Endogámicos C57BL , Quinasa 2 de Adhesión Focal/genética , Implantación del Embrión
14.
J Comput Chem ; 43(28): 1911-1922, 2022 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-36073605

RESUMEN

Early-stage drug discovery projects often focus on equilibrium binding affinity to the target alongside selectivity and other pharmaceutical properties. The kinetics of drug binding are ignored but can have significant influence on drug efficacy. Therefore, increasing attention has been paid on evaluating drug-binding kinetics early in a drug discovery process. Simulating drug-binding kinetics at the atomic level is challenging for the long time scale involved. Here, we used the transition-based reweighting analysis method (TRAM) with the Markov state model to study the dissociation of a ligand from the protein kinase PYK2. TRAM combines biased and unbiased simulations to reduce computational costs. This work used the umbrella sampling technique for the biased simulations. Although using the potential of mean force from umbrella sampling simulations with the transition-state theory over-estimated the dissociation rate by three orders of magnitude, TRAM gave a dissociation rate within an order of magnitude of the experimental value.


Asunto(s)
Quinasa 2 de Adhesión Focal , Proteínas Quinasas , Cinética , Ligandos , Simulación de Dinámica Molecular , Preparaciones Farmacéuticas , Unión Proteica
15.
Acta Pharmacol Sin ; 43(4): 797-810, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34226665

RESUMEN

Newborns suffering from hypoxia-ischemia (HI) brain injury still lack effective treatment. Proline-rich tyrosine kinase 2 (Pyk2) is a non-receptor tyrosine kinase, which is highly correlated with transient ischemic brain injury in adult. In this study, we investigated the role of Pyk2 in neonatal HI brain injury. HI was induced in postnatal day 7 mouse pups by unilateral common carotid artery ligation followed by hypoxic exposure. Pyk2 interference lentivirus (LV-Pyk2 shRNA) was constructed and injected into unilateral cerebral ventricle of neonatal mice before HI. Infarct volume, pathological changes, and neurological behaviors were assessed on postnatal day 8-14. We showed that the phosphorylation level of Pyk2 was significantly increased in neonatal brain after HI, whereas LV-Pyk2 shRNA injection significantly attenuated acute HI brain damage and improved neurobehavioral outcomes. In oxygen-glucose deprivation-treated cultured cortical neurons, Pyk2 inhibition significantly alleviated NMDA receptor-mediated excitotoxicity; similar results were also observed in neonatal HI brain injury. We demonstrated that Pyk2 inhibition contributes to the long-term cerebrovascular recovery assessed by laser speckle contrast imaging, but cognitive function was not obviously improved as evaluated in Morris water maze and novel object recognition tests. Thus, we constructed lentiviral LV-HIF-Pyk2 shRNA, through which HIF-1α promoter-mediated interference of Pyk2 would occur during the anoxic environment. Intracerebroventricular injection of LV-HIF-Pyk2 shRNA significantly improved long-term recovery of cognitive function in HI-treated neonatal mice. In conclusion, this study demonstrates that Pyk2 interference protects neonatal brain from hypoxic-ischemic injury. HIF-1α promoter-mediated hypoxia conditional control is a useful tool to distinguish between hypoxic period and normal period. Pyk2 is a promising drug target for potential treatment of neonatal HI brain injury.


Asunto(s)
Lesiones Encefálicas , Hipoxia-Isquemia Encefálica , Animales , Animales Recién Nacidos , Encéfalo/patología , Lesiones Encefálicas/patología , Quinasa 2 de Adhesión Focal/farmacología , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Ratones
16.
J Integr Neurosci ; 21(1): 25, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35164461

RESUMEN

Major depressive disorder is a chronic psychiatric disease with a high prevalence. Brain mechanisms for depression at cellular and molecular levels are far from clear. Increasing evidence from clinical and preclinical studies reveals critical roles of the non-receptor tyrosine kinase (nRTK) superfamily in the pathophysiology, symptomatology, and therapy of depression. To date, several nRTK members from three nRTK subfamilies, i.e., the Src family kinase (SFK), the Janus tyrosine kinase (JAK) and the focal adhesion kinase (FAK) subfamilies, may connect to the intracellular, intranuclear, and synaptic signaling network linking chronic stress to depression- and anxiety-like behavior. These SFK/JAK/FAK nRTKs are abundantly expressed in the prefrontal cortex and hippocampus, two core limbic regions implicated in depression, and are enriched at synaptic sites. In various acute or chronic animal models of depression, the nRTKs were significantly altered (up- or downregulated) in their phosphorylation, expression, subcellular/subsynaptic distribution, and/or function. Stress that precipitates depressive behavior also influenced the interaction of nRTKs with other signaling molecules and downstream substrates, including ionotropic and metabotropic glutamate receptors. The commonly-used antidepressants showed the ability to alter nRTK activity. In sum, the limbic SFK/JAK/FAK nRTKs are sensitive to stress and undergo drastic adaptations in response to chronic depression. These long-lasting adaptations contribute to the remodeling of signaling network or synaptic plasticity critical for the vulnerability to depression and the therapeutic efficacy of antidepressants.


Asunto(s)
Depresión/tratamiento farmacológico , Depresión/metabolismo , Proteínas Tirosina Quinasas/efectos de los fármacos , Proteínas Tirosina Quinasas/metabolismo , Animales
17.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36555115

RESUMEN

PyK2 is a member of the proline-rich tyrosine kinase and focal adhesion kinase families and is ubiquitously expressed. PyK2 is mainly activated by stimuli, such as activated Src kinases and intracellular acidic pH. The mechanism of PyK2 activation in cancer cells has been addressed extensively. The up-regulation of PyK2 through overexpression and enhanced phosphorylation is a key feature of tumorigenesis and cancer migration. In this review, we summarized the cancer milieu, including acidification and cancer-associated molecules, such as chemical reagents, interactive proteins, chemokine-related molecules, calcium channels/transporters, and oxidative molecules that affect the fate of PyK2. The inhibition of PyK2 leads to a beneficial strategy to attenuate cancer cell development, including metastasis. Thus, we highlighted the effect of PyK2 on various cancer cell types and the distribution of molecules that affect PyK2 activation. In particular, we underlined the relationship between PyK2 and cancer metastasis and its potential to treat cancer cells.


Asunto(s)
Quinasa 2 de Adhesión Focal , Neoplasias , Quinasa 2 de Adhesión Focal/metabolismo , Familia-src Quinasas/metabolismo , Fosforilación , Quinasa 1 de Adhesión Focal/metabolismo
18.
Eur J Neurosci ; 53(8): 2532-2540, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33595911

RESUMEN

Diabetes mellitus is a metabolic disorder that can lead to cognitive dysfunction. The hippocampus plays an important role in the cognitive function. Research has identified correlations between hippocampal impairment and diabetes, yet their intermediate remains unclear. Soluble epoxide hydrolase (sEH) is an enzyme that degrades epoxyeicosatrienoic acids (EETs), which have multiple protective effects by suppressing inflammation, apoptosis and oxidative stress. In this study, under diabetic conditions both hippocampal injury and cognitive decline are accompanied by upregulation of sEH. Moreover, the sEH inhibitor trans-4-[4-(3-adamantan-1-y1-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB) prevents cognitive dysfunction and decreased ROS accumulation and apoptosis in the diabetic hippocampus. t-AUCB treatment restored neuronal synaptic plasticity by restoring the expression of the postsynaptic proteins Postsynaptic density protein-95 (PSD95) and N-methyl-d-aspartate receptor subunit 2B (NR2B), the levels of which were positively correlated with Proline-rich tyrosine kinase 2 (Pyk2) levels under diabetic conditions. Thus, we suggest that hippocampal protection via sEH inhibition might be a potential therapeutic approach to attenuate the progression of cognitive decline in diabetes.


Asunto(s)
Disfunción Cognitiva , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animales , Inhibidores Enzimáticos , Epóxido Hidrolasas/metabolismo , Hipocampo/metabolismo , Ratones , Neuronas/metabolismo
19.
J Cell Sci ; 132(6)2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30814332

RESUMEN

STIM1- and Orai1-mediated store-operated Ca2+ entry (SOCE) constitutes the major Ca2+ influx in almost all electrically non-excitable cells. However, little is known about the spatiotemporal organization at the elementary level. Here, we developed Orai1-tethered or palmitoylated biosensor GCaMP6f to report subplasmalemmal Ca2+ signals. We visualized spontaneous discrete and long-lasting transients ('Ca2+ glows') arising from STIM1-Orai1 in invading melanoma cells. Ca2+ glows occurred preferentially in single invadopodia and at sites near the cell periphery under resting conditions. Re-addition of external Ca2+ after store depletion elicited spatially synchronous Ca2+ glows, followed by high-rate discharge of asynchronous local events. Knockout of STIM1 or expression of the dominant-negative Orai1-E106A mutant markedly decreased Ca2+ glow frequency, diminished global SOCE and attenuated invadopodial formation. Functionally, invadopodial Ca2+ glows provided high Ca2+ microdomains to locally activate Ca2+/calmodulin-dependent Pyk2 (also known as PTK2B), which initiates the SOCE-Pyk2-Src signaling cascade required for invasion. Overall, the discovery of elemental Ca2+ signals of SOCE not only unveils a previously unappreciated gating mode of STIM1-Orai1 channels in situ, but also underscores a critical role of the spatiotemporal dynamics of SOCE in orchestrating complex cell behaviors such as invasion. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Señalización del Calcio/fisiología , Quinasa 2 de Adhesión Focal/metabolismo , Proteínas de Neoplasias/metabolismo , Células Neoplásicas Circulantes/metabolismo , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Técnicas Biosensibles , Calcio/metabolismo , Canales de Calcio/metabolismo , Línea Celular , Membrana Celular/metabolismo , Células HEK293 , Humanos , Microscopía Confocal , Imagen Molecular/métodos
20.
Stem Cells ; 38(3): 410-421, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31746084

RESUMEN

In this study, we examined the Ca2+ -permeable Piezo1 channel, a newly identified mechanosensing ion channel, in human dental pulp-derived mesenchymal stem cells (MSCs) and hypothesized that activation of the Piezo1 channel regulates MSC migration via inducing ATP release and activation of the P2 receptor purinergic signaling. The Piezo1 mRNA and protein were readily detected in hDP-MSCs from multiple donors and, consistently, brief exposure to Yoda1, the Piezo1 channel-specific activator, elevated intracellular Ca2+ concentration. Yoda1-induced Ca2+ response was inhibited by ruthenium red or GsMTx4, two Piezo1 channel inhibitors, and also by Piezo1-specific siRNA. Brief exposure to Yoda1 also induced ATP release. Persistent exposure to Yoda1 stimulated MSC migration, which was suppressed by Piezo1-specific siRNA, and also prevented by apyrase, an ATP scavenger, or PPADS, a P2 generic antagonist. Furthermore, stimulation of MSC migration induced by Yoda1 as well as ATP was suppressed by PF431396, a PYK2 kinase inhibitor, or U0126, an inhibitor of the mitogen-activated protein kinase MEK/ERK signaling pathway. Collectively, these results suggest that activation of the Piezo1 channel stimulates MSC migration via inducing ATP release and subsequent activation of the P2 receptor purinergic signaling and downstream PYK2 and MEK/ERK signaling pathways, thus revealing novel insights into the molecular and signaling mechanisms regulating MSC migration. Such findings provide useful information for evolving a full understanding of MSC migration and homing and developing strategies to improve MSC-based translational applications.


Asunto(s)
Adenosina Trifosfato/metabolismo , Canales Iónicos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Receptores Purinérgicos P2/metabolismo , Adulto , Movimiento Celular , Niño , Femenino , Humanos , Masculino , Transducción de Señal , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA