Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.408
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 41: 453-481, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36750319

RESUMEN

The innate immune system detects pathogens via germline-encoded receptors that bind to conserved pathogen ligands called pathogen-associated molecular patterns (PAMPs). Here we consider an additional strategy of pathogen sensing called effector-triggered immunity (ETI). ETI involves detection of pathogen-encoded virulence factors, also called effectors. Pathogens produce effectors to manipulate hosts to create a replicative niche and/or block host immunity. Unlike PAMPs, effectors are often diverse and rapidly evolving and can thus be unsuitable targets for direct detection by germline-encoded receptors. Effectors are instead often sensed indirectly via detection of their virulence activities. ETI is a viable strategy for pathogen sensing and is used across diverse phyla, including plants, but the molecular mechanisms of ETI are complex compared to simple receptor/ligand-based PAMP detection. Here we survey the mechanisms and functions of ETI, with a particular focus on emerging insights from animal studies. We suggest that many examples of ETI may remain to be discovered, hiding in plain sight throughout immunology.


Asunto(s)
Reconocimiento de Inmunidad Innata , Moléculas de Patrón Molecular Asociado a Patógenos , Humanos , Animales , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Virulencia
2.
Annu Rev Immunol ; 39: 77-101, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33441019

RESUMEN

Nearly all animal cells contain proteins evolved to trigger the destruction of the cell in which they reside. The activation of these proteins occurs via sequential programs, and much effort has been expended in delineating the molecular mechanisms underlying the resulting processes of programmed cell death (PCD). These efforts have led to the definition of apoptosis as a form of nonimmunogenic PCD that is required for normal development and tissue homeostasis, and of pyroptosis and necroptosis as forms of PCD initiated by pathogen infection that are associated with inflammation and immune activation. While this paradigm has served the field well, numerous recent studies have highlighted cross talk between these programs, challenging the idea that apoptosis, pyroptosis, and necroptosis are linear pathways with defined immunological outputs. Here, we discuss the emerging idea of cell death as a signaling network, considering connections between cell death pathways both as we observe them now and in their evolutionary origins. We also discuss the engagement and subversion of cell death pathways by pathogens, as well as the key immunological outcomes of these processes.


Asunto(s)
Necroptosis , Piroptosis , Animales , Apoptosis , Humanos , Inflamación , Transducción de Señal
3.
Annu Rev Immunol ; 39: 511-536, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33577348

RESUMEN

The surfaces of all living organisms and most secreted proteins share a common feature: They are glycosylated. As the outermost-facing molecules, glycans participate in nearly all immunological processes, including driving host-pathogen interactions, immunological recognition and activation, and differentiation between self and nonself through a complex array of pathways and mechanisms. These fundamental immunologic roles are further cast into sharp relief in inflammatory, autoimmune, and cancer disease states in which immune regulation goes awry. Here, we review the broad impact of glycans on the immune system and discuss the changes and clinical opportunities associated with the onset of immunologic disease.


Asunto(s)
Interacciones Huésped-Patógeno , Polisacáridos , Animales , Diferenciación Celular , Humanos
4.
Annu Rev Immunol ; 39: 103-129, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33472004

RESUMEN

B cell subsets differ in development, tissue distribution, and mechanisms of activation. In response to infections, however, all can differentiate into extrafollicular plasmablasts that rapidly provide highly protective antibodies, indicating that these plasmablasts are the main humoral immune response effectors. Yet, the effectiveness of this response type depends on the presence of antigen-specific precursors in the circulating mature B cell pool, a pool that is generated initially through the stochastic processes of B cell receptor assembly. Importantly, germinal centers then mold the repertoire of this B cell pool to be increasingly responsive to pathogens by generating a broad array of antimicrobial memory B cells that act as highly effective precursors of extrafollicular plasmablasts. Such B cell repertoire molding occurs in two ways: continuously via the chronic germinal centers of mucosal lymphoid tissues, driven by the presence of the microbiome, and via de novo generated germinal centers following acute infections. For effectively evaluating humoral immunity as a correlate of immune protection, it might be critical to measure memory B cell pools in addition to antibody titers.


Asunto(s)
Subgrupos de Linfocitos B , Linfocitos B , Animales , Centro Germinal , Humanos , Inmunidad Humoral , Receptores de Antígenos de Linfocitos B
5.
Annu Rev Immunol ; 38: 511-539, 2020 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-32340578

RESUMEN

The continuous interactions between host and pathogens during their coevolution have shaped both the immune system and the countermeasures used by pathogens. Natural killer (NK) cells are innate lymphocytes that are considered central players in the antiviral response. Not only do they express a variety of inhibitory and activating receptors to discriminate and eliminate target cells but they can also produce immunoregulatory cytokines to alert the immune system. Reciprocally, several unrelated viruses including cytomegalovirus, human immunodeficiency virus, influenza virus, and dengue virus have evolved a multitude of mechanisms to evade NK cell function, such as the targeting of pathways for NK cell receptors and their ligands, apoptosis, and cytokine-mediated signaling. The studies discussed in this article provide further insights into the antiviral function of NK cells and the pathways involved, their constituent proteins, and ways in which they could be manipulated for host benefit.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Evasión Inmune , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Virus/inmunología , Animales , Biomarcadores , Citocinas/metabolismo , Humanos , Receptores de Células Asesinas Naturales/metabolismo , Transducción de Señal , Virosis/inmunología , Virosis/metabolismo , Virosis/virología
6.
Annu Rev Immunol ; 36: 193-220, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29328787

RESUMEN

Retroviruses are genome invaders that have shared a long history of coevolution with vertebrates and their immune system. Found endogenously in genomes as traces of past invasions, retroviruses are also considerable threats to human health when they exist as exogenous viruses such as HIV. The immune response to retroviruses is engaged by germline-encoded sensors of innate immunity that recognize viral components and damage induced by the infection. This response develops with the induction of antiviral effectors and launching of the clonal adaptive immune response, which can contribute to protective immunity. However, retroviruses efficiently evade the immune response, owing to their rapid evolution. The failure of specialized immune cells to respond, a form of neglect, may also contribute to inadequate antiretroviral immune responses. Here, we discuss the mechanisms by which immune responses to retroviruses are mounted at the molecular, cellular, and organismal levels. We also discuss how intrinsic, innate, and adaptive immunity may cooperate or conflict during the generation of immune responses.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Infecciones por Retroviridae/inmunología , Infecciones por Retroviridae/virología , Retroviridae/inmunología , Inmunidad Adaptativa , Animales , Humanos , Evasión Inmune , Sistema Inmunológico/citología , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Inmunidad Innata , Infecciones por Retroviridae/metabolismo
7.
Cell ; 187(9): 2095-2116, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38670067

RESUMEN

Plant diseases cause famines, drive human migration, and present challenges to agricultural sustainability as pathogen ranges shift under climate change. Plant breeders discovered Mendelian genetic loci conferring disease resistance to specific pathogen isolates over 100 years ago. Subsequent breeding for disease resistance underpins modern agriculture and, along with the emergence and focus on model plants for genetics and genomics research, has provided rich resources for molecular biological exploration over the last 50 years. These studies led to the identification of extracellular and intracellular receptors that convert recognition of extracellular microbe-encoded molecular patterns or intracellular pathogen-delivered virulence effectors into defense activation. These receptor systems, and downstream responses, define plant immune systems that have evolved since the migration of plants to land ∼500 million years ago. Our current understanding of plant immune systems provides the platform for development of rational resistance enhancement to control the many diseases that continue to plague crop production.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Inmunidad de la Planta , Plantas , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Plantas/inmunología , Plantas/genética , Resistencia a la Enfermedad/genética , Humanos
8.
Cell ; 187(15): 4113-4127.e13, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38876107

RESUMEN

Vector-borne diseases are a leading cause of death worldwide and pose a substantial unmet medical need. Pathogens binding to host extracellular proteins (the "exoproteome") represents a crucial interface in the etiology of vector-borne disease. Here, we used bacterial selection to elucidate host-microbe interactions in high throughput (BASEHIT)-a technique enabling interrogation of microbial interactions with 3,324 human exoproteins-to profile the interactomes of 82 human-pathogen samples, including 30 strains of arthropod-borne pathogens and 8 strains of related non-vector-borne pathogens. The resulting atlas revealed 1,303 putative interactions, including hundreds of pairings with potential roles in pathogenesis, including cell invasion, tissue colonization, immune evasion, and host sensing. Subsequent functional investigations uncovered that Lyme disease spirochetes recognize epidermal growth factor as an environmental cue of transcriptional regulation and that conserved interactions between intracellular pathogens and thioredoxins facilitate cell invasion. In summary, this interactome atlas provides molecular-level insights into microbial pathogenesis and reveals potential host-directed targets for next-generation therapeutics.


Asunto(s)
Interacciones Huésped-Patógeno , Humanos , Animales , Enfermedad de Lyme/microbiología , Enfermedades Transmitidas por Vectores , Interacciones Microbiota-Huesped , Borrelia burgdorferi/patogenicidad , Borrelia burgdorferi/metabolismo
9.
Annu Rev Immunol ; 34: 421-47, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-26907213

RESUMEN

Evolution has yielded multiple complex and complementary mechanisms to detect environmental danger and protect tissues from damage. The nervous system rapidly processes information and coordinates complex defense behaviors, and the immune system eliminates diverse threats by virtue of mobile, specialized cell populations. The two systems are tightly integrated, cooperating in local and systemic reflexes that restore homeostasis in response to tissue injury and infection. They further share a broad common language of cytokines, growth factors, and neuropeptides that enables bidirectional communication. However, this reciprocal cross talk permits amplification of maladaptive feedforward inflammatory loops that contribute to the development of allergy, autoimmunity, itch, and pain. Appreciating the immune and nervous systems as a holistic, coordinated defense system provides both new insights into inflammation and exciting opportunities for managing acute and chronic inflammatory diseases.


Asunto(s)
Hipersensibilidad/fisiopatología , Inflamación , Neuroinmunomodulación , Dolor/fisiopatología , Animales , Autoinmunidad , Comunicación Celular , Citocinas/metabolismo , Homeostasis , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neuropéptidos/metabolismo
10.
Cell ; 186(12): 2690-2704.e20, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37295405

RESUMEN

Biofilm formation is generally recognized as a bacterial defense mechanism against environmental threats, including antibiotics, bacteriophages, and leukocytes of the human immune system. Here, we show that for the human pathogen Vibrio cholerae, biofilm formation is not only a protective trait but also an aggressive trait to collectively predate different immune cells. We find that V. cholerae forms biofilms on the eukaryotic cell surface using an extracellular matrix comprising primarily mannose-sensitive hemagglutinin pili, toxin-coregulated pili, and the secreted colonization factor TcpF, which differs from the matrix composition of biofilms on other surfaces. These biofilms encase immune cells and establish a high local concentration of a secreted hemolysin to kill the immune cells before the biofilms disperse in a c-di-GMP-dependent manner. Together, these results uncover how bacteria employ biofilm formation as a multicellular strategy to invert the typical relationship between human immune cells as the hunters and bacteria as the hunted.


Asunto(s)
Vibrio cholerae , Animales , Humanos , Vibrio cholerae/metabolismo , Conducta Predatoria , Biopelículas , Fimbrias Bacterianas , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
11.
Cell ; 186(15): 3196-3207.e17, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37369204

RESUMEN

Pathogens produce diverse effector proteins to manipulate host cellular processes. However, how functional diversity is generated in an effector repertoire is poorly understood. Many effectors in the devastating plant pathogen Phytophthora contain tandem repeats of the "(L)WY" motif, which are structurally conserved but variable in sequences. Here, we discovered a functional module formed by a specific (L)WY-LWY combination in multiple Phytophthora effectors, which efficiently recruits the serine/threonine protein phosphatase 2A (PP2A) core enzyme in plant hosts. Crystal structure of an effector-PP2A complex shows that the (L)WY-LWY module enables hijacking of the host PP2A core enzyme to form functional holoenzymes. While sharing the PP2A-interacting module at the amino terminus, these effectors possess divergent C-terminal LWY units and regulate distinct sets of phosphoproteins in the host. Our results highlight the appropriation of an essential host phosphatase through molecular mimicry by pathogens and diversification promoted by protein modularity in an effector repertoire.


Asunto(s)
Monoéster Fosfórico Hidrolasas , Phytophthora , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas/metabolismo , Phytophthora/química , Phytophthora/metabolismo , Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Proteína Fosfatasa 2/metabolismo , Enfermedades de las Plantas
12.
Cell ; 186(5): 957-974.e28, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36812912

RESUMEN

Bats are distinctive among mammals due to their ability to fly, use laryngeal echolocation, and tolerate viruses. However, there are currently no reliable cellular models for studying bat biology or their response to viral infections. Here, we created induced pluripotent stem cells (iPSCs) from two species of bats: the wild greater horseshoe bat (Rhinolophus ferrumequinum) and the greater mouse-eared bat (Myotis myotis). The iPSCs from both bat species showed similar characteristics and had a gene expression profile resembling that of cells attacked by viruses. They also had a high number of endogenous viral sequences, particularly retroviruses. These results suggest that bats have evolved mechanisms to tolerate a large load of viral sequences and may have a more intertwined relationship with viruses than previously thought. Further study of bat iPSCs and their differentiated progeny will provide insights into bat biology, virus host relationships, and the molecular basis of bats' special traits.


Asunto(s)
Quirópteros , Células Madre Pluripotentes , Virosis , Virus , Animales , Virus/genética , Transcriptoma , Filogenia
13.
Cell ; 185(13): 2354-2369.e17, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35568036

RESUMEN

Interferons (IFNs) induce an antimicrobial state, protecting tissues from infection. Many viruses inhibit IFN signaling, but whether bacterial pathogens evade IFN responses remains unclear. Here, we demonstrate that the Shigella OspC family of type-III-secreted effectors blocks IFN signaling independently of its cell death inhibitory activity. Rather, IFN inhibition was mediated by the binding of OspC1 and OspC3 to the Ca2+ sensor calmodulin (CaM), blocking CaM kinase II and downstream JAK/STAT signaling. The growth of Shigella lacking OspC1 and OspC3 was attenuated in epithelial cells and in a murine model of infection. This phenotype was rescued in both models by the depletion of IFN receptors. OspC homologs conserved in additional pathogens not only bound CaM but also inhibited IFN, suggesting a widespread virulence strategy. These findings reveal a conserved but previously undescribed molecular mechanism of IFN inhibition and demonstrate the critical role of Ca2+ and IFN targeting in bacterial pathogenesis.


Asunto(s)
Interferones , Factores de Virulencia , Animales , Antivirales , Señalización del Calcio , Células Epiteliales/metabolismo , Interferones/metabolismo , Ratones , Factores de Virulencia/metabolismo
14.
Cell ; 185(4): 614-629.e21, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35148840

RESUMEN

Activation of the innate immune system via pattern recognition receptors (PRRs) is key to generate lasting adaptive immunity. PRRs detect unique chemical patterns associated with invading microorganisms, but whether and how the physical properties of PRR ligands influence the development of the immune response remains unknown. Through the study of fungal mannans, we show that the physical form of PRR ligands dictates the immune response. Soluble mannans are immunosilent in the periphery but elicit a potent pro-inflammatory response in the draining lymph node (dLN). By modulating the physical form of mannans, we developed a formulation that targets both the periphery and the dLN. When combined with viral glycoprotein antigens, this mannan formulation broadens epitope recognition, elicits potent antigen-specific neutralizing antibodies, and confers protection against viral infections of the lung. Thus, the physical properties of microbial ligands determine the outcome of the immune response and can be harnessed for vaccine development.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Antígenos Virales/inmunología , Candida albicans/química , Mananos/inmunología , Hidróxido de Aluminio/química , Animales , Anticuerpos Neutralizantes/inmunología , Especificidad de Anticuerpos/inmunología , Linfocitos B/inmunología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Chlorocebus aethiops , Epítopos/inmunología , Inmunidad Innata , Inmunización , Inflamación/patología , Interferones/metabolismo , Lectinas Tipo C/metabolismo , Ligandos , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Senos Paranasales/metabolismo , Subunidades de Proteína/metabolismo , Lectina 1 Similar a Ig de Unión al Ácido Siálico/metabolismo , Solubilidad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Linfocitos T/inmunología , Factor de Transcripción ReIB/metabolismo , Células Vero , beta-Glucanos/metabolismo
15.
Cell ; 184(16): 4154-4167.e12, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34324837

RESUMEN

Environmental light cycles entrain circadian feeding behaviors in animals that produce rhythms in exposure to foodborne bacteria. Here, we show that the intestinal microbiota generates diurnal rhythms in innate immunity that synchronize with feeding rhythms to anticipate microbial exposure. Rhythmic expression of antimicrobial proteins was driven by daily rhythms in epithelial attachment by segmented filamentous bacteria (SFB), members of the mouse intestinal microbiota. Rhythmic SFB attachment was driven by the circadian clock through control of feeding rhythms. Mechanistically, rhythmic SFB attachment activated an immunological circuit involving group 3 innate lymphoid cells. This circuit triggered oscillations in epithelial STAT3 expression and activation that produced rhythmic antimicrobial protein expression and caused resistance to Salmonella Typhimurium infection to vary across the day-night cycle. Thus, host feeding rhythms synchronize with the microbiota to promote rhythms in intestinal innate immunity that anticipate exogenous microbial exposure.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Microbioma Gastrointestinal , Inmunidad Innata , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Adhesión Bacteriana , Adhesión Celular , Células Epiteliales/microbiología , Conducta Alimentaria , Intestino Delgado/microbiología , Intestino Delgado/ultraestructura , Linfocitos/metabolismo , Ratones Endogámicos C57BL , Muramidasa/metabolismo , Proteínas Asociadas a Pancreatitis/metabolismo , Factor de Transcripción STAT3/metabolismo , Salmonelosis Animal/microbiología , Transducción de Señal
16.
Cell ; 184(9): 2394-2411.e16, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33743211

RESUMEN

SARS-CoV-2 is the cause of a pandemic with growing global mortality. Using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS), we identified 309 host proteins that bind the SARS-CoV-2 RNA during active infection. Integration of this data with ChIRP-MS data from three other RNA viruses defined viral specificity of RNA-host protein interactions. Targeted CRISPR screens revealed that the majority of functional RNA-binding proteins protect the host from virus-induced cell death, and comparative CRISPR screens across seven RNA viruses revealed shared and SARS-specific antiviral factors. Finally, by combining the RNA-centric approach and functional CRISPR screens, we demonstrated a physical and functional connection between SARS-CoV-2 and mitochondria, highlighting this organelle as a general platform for antiviral activity. Altogether, these data provide a comprehensive catalog of functional SARS-CoV-2 RNA-host protein interactions, which may inform studies to understand the host-virus interface and nominate host pathways that could be targeted for therapeutic benefit.


Asunto(s)
Interacciones Huésped-Patógeno , ARN Viral/genética , SARS-CoV-2/genética , Animales , COVID-19/virología , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Chlorocebus aethiops , Femenino , Genoma Viral , Humanos , Pulmón/virología , Masculino , Espectrometría de Masas , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteoma/metabolismo , Proteínas de Unión al ARN/metabolismo , SARS-CoV-2/ultraestructura , Células Vero
17.
Cell ; 184(20): 5201-5214.e12, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34536345

RESUMEN

Certain obligate parasites induce complex and substantial phenotypic changes in their hosts in ways that favor their transmission to other trophic levels. However, the mechanisms underlying these changes remain largely unknown. Here we demonstrate how SAP05 protein effectors from insect-vectored plant pathogenic phytoplasmas take control of several plant developmental processes. These effectors simultaneously prolong the host lifespan and induce witches' broom-like proliferations of leaf and sterile shoots, organs colonized by phytoplasmas and vectors. SAP05 acts by mediating the concurrent degradation of SPL and GATA developmental regulators via a process that relies on hijacking the plant ubiquitin receptor RPN10 independent of substrate ubiquitination. RPN10 is highly conserved among eukaryotes, but SAP05 does not bind insect vector RPN10. A two-amino-acid substitution within plant RPN10 generates a functional variant that is resistant to SAP05 activities. Therefore, one effector protein enables obligate parasitic phytoplasmas to induce a plethora of developmental phenotypes in their hosts.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/parasitología , Interacciones Huésped-Parásitos/fisiología , Parásitos/fisiología , Proteolisis , Ubiquitinas/metabolismo , Secuencia de Aminoácidos , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Ingeniería Genética , Humanos , Insectos/fisiología , Modelos Biológicos , Fenotipo , Fotoperiodo , Filogenia , Phytoplasma/fisiología , Desarrollo de la Planta , Brotes de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Reproducción , Nicotiana , Factores de Transcripción/metabolismo , Transcripción Genética
18.
Cell ; 184(14): 3774-3793.e25, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34115982

RESUMEN

Cytomegaloviruses (CMVs) have co-evolved with their mammalian hosts for millions of years, leading to remarkable host specificity and high infection prevalence. Macrophages, which already populate barrier tissues in the embryo, are the predominant immune cells at potential CMV entry sites. Here we show that, upon CMV infection, macrophages undergo a morphological, immunophenotypic, and metabolic transformation process with features of stemness, altered migration, enhanced invasiveness, and provision of the cell cycle machinery for viral proliferation. This complex process depends on Wnt signaling and the transcription factor ZEB1. In pulmonary infection, mouse CMV primarily targets and reprograms alveolar macrophages, which alters lung physiology and facilitates primary CMV and secondary bacterial infection by attenuating the inflammatory response. Thus, CMV profoundly perturbs macrophage identity beyond established limits of plasticity and rewires specific differentiation processes, allowing viral spread and impairing innate tissue immunity.


Asunto(s)
Citomegalovirus/fisiología , Macrófagos Alveolares/virología , Animales , Presentación de Antígeno , Efecto Espectador , Ciclo Celular , Línea Celular Transformada , Reprogramación Celular , Citomegalovirus/patogenicidad , Citomegalovirus/ultraestructura , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Proteínas Fluorescentes Verdes/metabolismo , Pulmón/patología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/ultraestructura , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fenotipo , Células Madre/patología , Replicación Viral/fisiología , Vía de Señalización Wnt
19.
Cell ; 182(5): 1328-1340.e13, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32814014

RESUMEN

Among arthropod vectors, ticks transmit the most diverse human and animal pathogens, leading to an increasing number of new challenges worldwide. Here we sequenced and assembled high-quality genomes of six ixodid tick species and further resequenced 678 tick specimens to understand three key aspects of ticks: genetic diversity, population structure, and pathogen distribution. We explored the genetic basis common to ticks, including heme and hemoglobin digestion, iron metabolism, and reactive oxygen species, and unveiled for the first time that genetic structure and pathogen composition in different tick species are mainly shaped by ecological and geographic factors. We further identified species-specific determinants associated with different host ranges, life cycles, and distributions. The findings of this study are an invaluable resource for research and control of ticks and tick-borne diseases.


Asunto(s)
Variación Genética/genética , Enfermedades por Picaduras de Garrapatas/microbiología , Garrapatas/genética , Animales , Línea Celular , Vectores de Enfermedades , Especificidad del Huésped/genética
20.
Cell ; 183(6): 1562-1571.e12, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33306955

RESUMEN

Ticks transmit a diverse array of microbes to vertebrate hosts, including human pathogens, which has led to a human-centric focus in this vector system. Far less is known about pathogens of ticks themselves. Here, we discover that a toxin in blacklegged ticks (Ixodes scapularis) horizontally acquired from bacteria-called domesticated amidase effector 2 (dae2)-has evolved to kill mammalian skin microbes with remarkable efficiency. Secreted into the saliva and gut of ticks, Dae2 limits skin-associated staphylococci in ticks while feeding. In contrast, Dae2 has no intrinsic ability to kill Borrelia burgdorferi, the tick-borne Lyme disease bacterial pathogen. These findings suggest ticks resist their own pathogens while tolerating symbionts. Thus, just as tick symbionts can be pathogenic to humans, mammalian commensals can be harmful to ticks. Our study underscores how virulence is context-dependent and bolsters the idea that "pathogen" is a status and not an identity.


Asunto(s)
Bacterias/metabolismo , Factores Inmunológicos/metabolismo , Ixodes/fisiología , Piel/microbiología , Simbiosis , Animales , Antibacterianos/farmacología , Biocatálisis , Pared Celular/metabolismo , Conducta Alimentaria , Femenino , Tracto Gastrointestinal/metabolismo , Interacciones Huésped-Patógeno , Ratones , Modelos Moleculares , Peptidoglicano/metabolismo , Filogenia , Saliva/metabolismo , Glándulas Salivales/metabolismo , Staphylococcus epidermidis/fisiología , Homología Estructural de Proteína , Especificidad por Sustrato , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA