Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(1): 105564, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38103644

RESUMEN

The polysialyltransferases ST8SIA2 and ST8SIA4 and their product, polysialic acid (polySia), are known to be related to cancers and mental disorders. ST8SIA2 and ST8SIA4 have conserved amino acid (AA) sequence motifs essential for the synthesis of the polySia structures on the neural cell adhesion molecule. To search for a new motif in the polysialyltransferases, we adopted the in silico Individual Meta Random Forest program that can predict disease-related AA substitutions. The Individual Meta Random Forest program predicted a new eight-amino-acids sequence motif consisting of highly pathogenic AA residues, thus designated as the pathogenic (P) motif. A series of alanine point mutation experiments in the pathogenic motif (P motif) showed that most P motif mutants lost the polysialylation activity without changing the proper enzyme expression levels or localization in the Golgi. In addition, we evaluated the enzyme stability of the P motif mutants using newly established calculations of mutation energy, demonstrating that the subtle change of the conformational energy regulates the activity. In the AlphaFold2 model, we found that the P motif was a buried ß-strand underneath the known surface motifs unique to ST8SIA2 and ST8SIA4. Taken together, the P motif is a novel buried ß-strand that regulates the full activity of polysialyltransferases from the inside of the molecule.


Asunto(s)
Mutación , Sialiltransferasas , Humanos , Secuencias de Aminoácidos/genética , Sustitución de Aminoácidos , Simulación por Computador , Aparato de Golgi/enzimología , Aparato de Golgi/metabolismo , Moléculas de Adhesión de Célula Nerviosa/química , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Mutación Puntual , Conformación Proteica en Lámina beta , Transporte de Proteínas , Bosques Aleatorios , Ácidos Siálicos/metabolismo , Sialiltransferasas/química , Sialiltransferasas/genética , Sialiltransferasas/metabolismo
2.
FASEB J ; 38(16): e23883, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39150825

RESUMEN

Mutations in SCN4A gene encoding Nav1.4 channel α-subunit, are known to cause neuromuscular disorders such as myotonia or paralysis. Here, we study the effect of two amino acid replacements, K1302Q and G1306E, in the DIII-IV loop of the channel, corresponding to mutations found in patients with myotonia. We combine clinical, electrophysiological, and molecular modeling data to provide a holistic picture of the molecular mechanisms operating in mutant channels and eventually leading to pathology. We analyze the existing clinical data for patients with the K1302Q substitution, which was reported for adults with or without myotonia phenotypes, and report two new unrelated patients with the G1306E substitution, who presented with severe neonatal episodic laryngospasm and childhood-onset myotonia. We provide a functional analysis of the mutant channels by expressing Nav1.4 α-subunit in Xenopus oocytes in combination with ß1 subunit and recording sodium currents using two-electrode voltage clamp. The K1302Q variant exhibits abnormal voltage dependence of steady-state fast inactivation, being the likely cause of pathology. K1302Q does not lead to decelerated fast inactivation, unlike several other myotonic mutations such as G1306E. For both mutants, we observe increased window currents corresponding to a larger population of channels available for activation. To elaborate the structural rationale for our experimental data, we explore the contacts involving K/Q1302 and E1306 in the AlphaFold2 model of wild-type Nav1.4 and Monte Carlo-minimized models of mutant channels. Our data provide the missing evidence to support the classification of K1302Q variant as likely pathogenic and may be used by clinicians.


Asunto(s)
Miotonía , Canal de Sodio Activado por Voltaje NAV1.4 , Canal de Sodio Activado por Voltaje NAV1.4/genética , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Humanos , Animales , Miotonía/genética , Femenino , Xenopus laevis , Masculino , Mutación , Oocitos/metabolismo , Adulto , Sustitución de Aminoácidos
3.
Subcell Biochem ; 104: 295-381, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38963492

RESUMEN

The present work delves into the enigmatic world of mitochondrial alpha-keto acid dehydrogenase complexes discussing their metabolic significance, enzymatic operation, moonlighting activities, and pathological relevance with links to underlying structural features. This ubiquitous family of related but diverse multienzyme complexes is involved in carbohydrate metabolism (pyruvate dehydrogenase complex), the citric acid cycle (α-ketoglutarate dehydrogenase complex), and amino acid catabolism (branched-chain α-keto acid dehydrogenase complex, α-ketoadipate dehydrogenase complex); the complexes all function at strategic points and also participate in regulation in these metabolic pathways. These systems are among the largest multienzyme complexes with at times more than 100 protein chains and weights ranging up to ~10 million Daltons. Our chapter offers a wealth of up-to-date information on these multienzyme complexes for a comprehensive understanding of their significance in health and disease.


Asunto(s)
Mitocondrias , Humanos , Mitocondrias/metabolismo , Mitocondrias/enzimología , Animales , Ciclo del Ácido Cítrico/fisiología , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Complejo Cetoglutarato Deshidrogenasa/química
4.
Biochem Biophys Res Commun ; 738: 150563, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39178581

RESUMEN

Mutations in human ppa2 gene encoding mitochondrial inorganic pyrophosphatase (PPA2) result in the mitochondria malfunction in heart and brain and lead to early death. In comparison with its cytosolic counterpart, PPA2 of any species is a poorly characterized enzyme with a previously unknown 3D structure. We report here the crystal structure of PPA2 from yeast Ogataea parapolymorpha (OpPPA2), as well as its biochemical characterization. OpPPA2 is a dimer, demonstrating the fold typical for other eukaryotic Family I pyrophosphatases, including the human cytosolic enzyme. Cofactor Mg2+ ions found in OpPPA2 structure have similar coordination to most known Family I pyrophosphatases. Most of the residues associated with the pathological mutations in human PPA2 are conserved in OpPPA2, and their structural context suggests possible explanations for the effects of the mutations on the human enzyme. In this work, the mutant variant of OpPPA2, Met52Val, corresponding to the natural pathogenic variant Met94Val of human PPA2, is characterized. The obtained structural and biochemical data provide a step to understanding the structural basis of PPA2-associated pathologies.

5.
Neurol Sci ; 45(5): 2057-2061, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37985634

RESUMEN

Chorea-acanthocytosis (ChAc) is a rare clinical genetic disorder of the nervous system, which is characterized by choreiform movement disorder, cognitive decline, and psychiatric disorders. ChAc is mostly diagnosed based on its typical clinical manifestations and the increased number of acanthocytes in peripheral blood smears. Here, we report a patient, who has the characteristic clinical manifestations of ChAc with limb choreiform movements, involuntary lip and tongue bites, seizures, and emotional instability. However, her blood smear was negative for acanthocytes with scanning electron microscopy. We later identified two novel pathogenic mutations in the patient's vacuolar protein sorting homolog 13 A (VPS13A) on chromosome 9q21 by targeted gene sequencing, and she was definitively diagnosed with "ChAc." After treatment with carbamazepine, haloperidol, the patient's symptoms gradually improved. We consider that an acanthocyte negative blood smear cannot rule out ChAC diagnosis, and genetic testing is the "gold standard" for the diagnosis. Through a review of previous research, it is rare for a patient to have a clear diagnosis of ChAc by genetic testing, but whose blood smear is negative for acanthocytes with electron microscopy. In addition, in this report, we discovered two novel pathogenic mutations, which have not been reported previously, and extended the genetic characteristics of ChAc.


Asunto(s)
Trastornos del Movimiento , Neuroacantocitosis , Humanos , Femenino , Neuroacantocitosis/diagnóstico , Neuroacantocitosis/genética , Neuroacantocitosis/patología , Acantocitos/metabolismo , Acantocitos/patología , Trastornos del Movimiento/patología , Transporte de Proteínas , Mutación/genética , Proteínas de Transporte Vesicular/genética
6.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38473962

RESUMEN

Colorectal cancer is the third leading cause of death from neoplasia worldwide. Thanks to new screening programs, we are now seeing an increase in Early Onset of ColoRectal Cancer (EOCRC) in patients below the age of 50. Herein, we report a clinical case of a woman affected by EOCRC. This case illustrates the importance of genetic predisposition testing also in tumor patients. Indeed, for our patient, we used a combined approach of multiple molecular and cellular biology technologies that revealed the presence of an interesting novel variant in the SMARCA4 gene. The latter gene is implicated in damage repair processes and related, if mutated, to the onset of various tumor types. In addition, we stabilized Patient-Derived Organoids from the tumor tissue of the same patient and the result confirmed the presence of this novel pathogenic variant that has never been found before even in early onset cancer. In conclusion, with this clinical case, we want to underscore the importance of including patients even those below the age of 50 years in appropriate screening programs which should also include genetic tests for predisposition to early onset cancers.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Femenino , Humanos , Persona de Mediana Edad , Neoplasias Colorrectales/patología , Neoplasias del Colon/genética , Pruebas Genéticas , Predisposición Genética a la Enfermedad , ADN , ADN Helicasas/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética
7.
BMC Cancer ; 23(1): 97, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36707770

RESUMEN

OBJECTIVES: Distant metastasis remains the main cause of death in breast cancer. Breast cancer risk is strongly influenced by pathogenic mutation.This study was designed to develop a multiple-feature model using clinicopathological and imaging characteristics adding pathogenic mutations associated signs to predict recurrence or metastasis in breast cancers in high familial risk women. METHODS: Genetic testing for breast-related gene mutations was performed in 54 patients with breast cancers. Breast MRI findings were retrospectively evaluated in 64 tumors of the 54 patients. The relationship between pathogenic mutation, clinicopathological and radiologic features was examined. The disease recurrence or metastasis were estimated. Multiple logistic regression analyses were performed to identify independent factors of pathogenic mutation and disease recurrence or metastasis. Based on significant factors from the regression models, a multivariate logistic regression was adopted to establish two models for predicting disease recurrence or metastasis in breast cancer using R software. RESULTS: Of the 64 tumors in 54 patients, 17 tumors had pathogenic mutations and 47 tumors had no pathogenic mutations. The clinicopathogenic and imaging features associated with pathogenic mutation included six signs: biologic features (p = 0.000), nuclear grade (p = 0.045), breast density (p = 0.005), MRI lesion type (p = 0.000), internal enhancement pattern (p = 0.004), and spiculated margin (p = 0.049). Necrosis within the tumors was the only feature associated with increased disease recurrence or metastasis (p = 0.006). The developed modelIincluding clinico-pathologic and imaging factors showed good discrimination in predicting disease recurrence or metastasis. Comprehensive model II, which included parts of modelIand pathogenic mutations significantly associated signs, showed significantly more sensitivity and specificity for predicting disease recurrence or metastasis compared to Model I. CONCLUSIONS: The incorporation of pathogenic mutations associated imaging and clinicopathological parameters significantly improved the sensitivity and specificity in predicting disease recurrence or metastasis. The constructed multi-feature fusion model may guide the implementation of prophylactic treatment for breast cancers at high familial risk women.


Asunto(s)
Neoplasias de la Mama , Predisposición Genética a la Enfermedad , Imagen por Resonancia Magnética , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Mutación , Recurrencia Local de Neoplasia/diagnóstico por imagen , Recurrencia Local de Neoplasia/genética , Fenotipo , Estudios Retrospectivos , Metástasis de la Neoplasia/diagnóstico por imagen , Metástasis de la Neoplasia/genética , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/genética , Neoplasias de la Mama/secundario
8.
J Pathol ; 257(5): 593-606, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35358331

RESUMEN

A thickened, white patch - leukoplakia - in the oral cavity is usually benign, but sometimes (in ~9% of individuals) it progresses to malignant tumour. Because the genomic basis of this progression is poorly understood, we undertook this study and collected samples of four tissues - leukoplakia, tumour, adjacent normal, and blood - from each of 28 patients suffering from gingivobuccal oral cancer. We performed multiomics analysis of the 112 collected tissues (four tissues per patient from 28 patients) and integrated information on progressive changes in the mutational and transcriptional profiles of each patient to create this genomic narrative. Additionally, we generated and analysed whole-exome sequence data from leukoplakia tissues collected from 11 individuals not suffering from oral cancer. Nonsynonymous somatic mutations in the CASP8 gene were identified as the likely events to initiate malignant transformation, since these were frequently shared between tumour and co-occurring leukoplakia. CASP8 alterations were also shown to enhance expressions of genes that favour lateral spread of mutant cells. During malignant transformation, additional pathogenic mutations are acquired in key genes (TP53, NOTCH1, HRAS) (41% of patients); chromosomal-instability (arm-level deletions of 19p and q, focal-deletion of DNA-repair pathway genes and NOTCH1, amplification of EGFR) (77%), and increased APOBEC-activity (23%) are also observed. These additional alterations were present singly (18% of patients) or in combination (68%). Some of these alterations likely impact immune-dynamics of the evolving transformed tissue; progression to malignancy is associated with immune suppression through infiltration of regulatory T-cells (56%), depletion of cytotoxic T-cells (68%), and antigen-presenting dendritic cells (72%), with a concomitant increase in inflammation (92%). Patients can be grouped into three clusters by the estimated time to development of cancer from precancer by acquiring additional mutations (range: 4-10 years). Our findings provide deep molecular insights into the evolutionary processes and trajectories of oral cancer initiation and progression. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias de la Boca , Transcriptoma , Transformación Celular Neoplásica/genética , Exoma , Genómica , Humanos , Leucoplasia/genética , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Mutación
9.
Mol Ther ; 30(1): 175-183, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33974999

RESUMEN

A couple diagnosed as carriers for lamellar ichthyosis, an autosomal recessive rare disease, encountered two pregnancy losses. Their blood samples showed the same heterozygous c.607C>T mutation in the TGM1 gene. However, we found that about 98.4% of the sperm had mutations, suggesting possible de novo germline mutation. To explore the probability of correcting this mutation, we used two different adenine base editors (ABEs) combined with related truncated single guide RNA (sgRNA) to repair the pathogenic mutation in mutant zygotes. Our results showed that the editing efficiency was 73.8% for ABEmax-NG combined with 20-bp-length sgRNA and 78.7% for Sc-ABEmax combined with 19-bp-length sgRNA. The whole-genome sequencing (WGS) and deep sequencing analysis demonstrated precise DNA editing. This study reveals the possibility of correcting the genetic mutation in embryos with the ABE system.


Asunto(s)
Adenina , Edición Génica , Transglutaminasas , Edición Génica/métodos , Heterocigoto , Humanos , Mutación , ARN Guía de Kinetoplastida , Transglutaminasas/genética
10.
Lipids Health Dis ; 22(1): 175, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853441

RESUMEN

BACKGROUND: Familial hypercholesterolemia (FH) is an autosomal dominant genetic disorder. The primary objective of this study was to identify the major pathogenic mutations in a Chinese family with FH. METHODS: Whole-genome sequencing (WGS) was used to identify variants of FH-related genes, including low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), and proprotein convertase subtilisin/kexin 9 (PCSK9). Bioinformatics software was used to predict signal peptides, transmembrane structures, and spatial construction information of the mutated sequences. Western blotting was performed on the mutant protein to determine the presence of the major structural domains of the LDLR. The PCSK9 and APOB genes were screened and analyzed. Moreover, the proband and his brother were treated with a PCSK9 inhibitor for 1 year, and the effect of the treatment on lipid levels was assessed. RESULTS: WGS revealed two potentially pathogenic mutations in the LDLR gene. One was a novel mutation, c.497delinsGGATCCCCCAGCTGCATCCCCCAG (p. Ala166fs), and the other was a known pathogenic mutation, c.2054C>T (p. Pro685Leu). Bioinformatics prediction and in vitro experiments revealed that the novel mutation could not be expressed on the cell membrane. Numerous gene variants were identified in the APOB gene that may have a significant impact on the family members with FH. Thus, it is suggested that the severe manifestation of FH in the proband primarily resulted from the cumulative genetic effects of variants in both LDLR and APOB. However, a subsequent study indicated that treatment with a PCSK9 inhibitor (Evolocumab) did not significantly reduce the blood lipid levels in the proband or his brother. CONCLUSIONS: The cumulative effect of LDLR and APOB variants was the primary cause of elevated blood lipid levels in this family. However, PCSK9 inhibitor therapy did not appear to be beneficial for the proband. This study emphasizes the importance of genetic testing in determining the most suitable treatment options for patients with FH.


Asunto(s)
Apolipoproteínas B , Hiperlipoproteinemia Tipo II , Proproteína Convertasa 9 , Receptores de LDL , Humanos , Masculino , Apolipoproteínas B/genética , Pueblos del Este de Asia/genética , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/tratamiento farmacológico , Hiperlipoproteinemia Tipo II/genética , Lípidos , Mutación , Proproteína Convertasa 9/genética , Receptores de LDL/genética , Pruebas Genéticas
11.
Clin Exp Immunol ; 210(2): 114-127, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36165533

RESUMEN

Approximately 10% of cancers have a hereditary predisposition. However, no genetic diagnosis is available in 60%-80% of familial cancers. In some of these families, immune dysregulation-mediated disease is frequent. The immune system plays a critical role in identifying and eliminating tumors; thus, dysregulation of the immune system can increase the risk of developing cancer. This review focuses on some of the genes involved in immune dysregulation the promote the risk for cancer. Genetic counseling for patients with cancer currently focuses on known genes that raise the risk of cancer. In missing hereditary familial cases, the history family of immune dysregulation should be recorded, and genes related to the immune system should be analyzed in relevant families. On the other hand, patients with immune disorders diagnosed with a pathogenic mutation in an immune regulatory gene may have an increased risk of cancer. Therefore, those patients need to be under surveillance for cancer. Gene panel and exome sequencing are currently standard methods for genetic diagnosis, providing an excellent opportunity to jointly test cancer and immune genes.


Asunto(s)
Predisposición Genética a la Enfermedad , Neoplasias , Humanos , Secuenciación del Exoma , Neoplasias/genética , Mutación/genética
12.
Biochem Soc Trans ; 50(1): 529-539, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35166320

RESUMEN

Programmed cell death has long been characterised as a key player in the development of human disease. Necroptosis is a lytic form of programmed cell death that is universally mediated by the effector protein mixed lineage kinase domain-like (MLKL), a pseudokinase. MLKL's activating kinase, receptor interacting protein kinase 3 (RIPK3), is itself activated within context specific scaffolds of receptor interacting protein kinase 1 (RIPK1), Z-DNA Binding Protein-1 (ZBP1) or TIR domain-containing adaptor inducing interferon-ß (TRIF). These core necroptosis modulating proteins have been comprehensively revealed as potent drivers and suppressors of disease in inbred mouse strains. However, their roles in human disease within the 'real world' of diverse genetic backgrounds, natural infection and environmental challenges remains less well understood. Over 20 unique disease-associated human germline gene variants in this core necroptotic machinery have been reported in the literature and human clinico-genetics databases like ClinVar to date. In this review, we provide an overview of these human gene variants, with an emphasis on those encoding MLKL. These experiments of nature have the potential to not only enrich our understanding of the basic biology of necroptosis, but offer important population level insights into which clinical indications stand to benefit most from necroptosis-targeted drugs.


Asunto(s)
Necroptosis , Proteínas Quinasas , Animales , Apoptosis/genética , Células Germinativas/metabolismo , Humanos , Ratones , Necroptosis/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal
13.
Breast Cancer Res Treat ; 189(2): 533-539, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34196900

RESUMEN

PURPOSE: Mutations in hereditary breast cancer genes play an important role in the risk for cancer. METHODS: Cancer susceptibility genes were sequenced in 664 unselected breast cancer cases from Guatemala. Variants were annotated with ClinVar and VarSome. RESULTS: A total of 73 out of 664 subjects (11%) had a pathogenic variant in a high or moderate penetrance gene. The most frequently mutated genes were BRCA1 (37/664, 5.6%) followed by BRCA2 (15/664, 2.3%), PALB2 (5/664, 0.8%), and TP53 (5/664, 0.8%). Pathogenic variants were also detected in the moderate penetrance genes ATM, BARD1, CHEK2, and MSH6. The high ratio of BRCA1/BRCA2 mutations is due to two potential founder mutations: BRCA1 c.212 + 1G > A splice mutation (15 cases) and BRCA1 c.799delT (9 cases). Cases with pathogenic mutations had a significantly earlier age at diagnosis (45 vs 51 years, P < 0.001), are more likely to have had diagnosis before menopause, and a higher percentage had a relative with any cancer (51% vs 37%, P = 0.038) or breast cancer (33% vs 15%, P < 0.001). CONCLUSIONS: Hereditary breast cancer mutations were observed among Guatemalan women, and these women are more likely to have early age at diagnosis and family history of cancer. These data suggest the use of genetic testing in breast cancer patients and those at high risk as part of a strategy to reduce breast cancer mortality in Guatemala.


Asunto(s)
Neoplasias de la Mama , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Femenino , Genes BRCA2 , Células Germinativas , Guatemala , Humanos
14.
Rev Neurol (Paris) ; 177(5): 524-535, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33810837

RESUMEN

Due to novel gene therapy opportunities, genetic screening is no longer restricted to familial cases of ALS (FALS) cases but also aplies to the sporadic populations (SALS). Screening of four main genes (C9orf72, SOD1, TARDBP and FUS) identified the causes in 15% of Amyotrophic Lateral Sclerosis (ALS) patients (two third of the familial cases and 8% of the sporadic ones) but their respective contribution to ALS phenotype varies according the age of disease onset. The genetic overlap between ALS and other diseases is expanding and includes frontotemporal dementia, Paget's Disease of Bone, myopathy for adult cases, HSP and CMT for young cases highlighing the importance of retrieving the exhaustive familial history for each indivdual with ALS. Incomplete disease penetrance, diversity of the possible phenotypes, as well as the lack of confidence concerning the pathogenicity of most identified variants and/or possible oligogenic inheritance are burdens of ALS genetic counseling to be delivered to patients and at risk individuals. The multitude of rare ALS genetic causes identifed seems to converge to similar cellular pathways leading to inapropriate response to stress emphacising new potential therapeutic options for the disease.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal , Pruebas Genéticas , Terapia Genética , Humanos , Mutación
15.
Neurochem Res ; 44(10): 2307-2313, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30847858

RESUMEN

Dihydrolipoamide dehydrogenase (LADH, E3) deficiency is a rare (autosomal, recessive) genetic disorder generally presenting with an onset in the neonatal age and early death; the highest carrier rate has been found among Ashkenazi Jews. Acute clinical episodes usually involve severe metabolic decompensation and lactate acidosis that result in neurological, cardiological, and/or hepatological manifestations. Clinical severity is due to the fact that LADH is a common E3 subunit to the alpha-ketoglutarate, pyruvate, alpha-ketoadipate, and branched-chain alpha-keto acid dehydrogenase complexes, and is also a constituent in the glycine cleavage system, thus a loss in LADH function adversely affects multiple key metabolic routes. However, the severe clinical pictures frequently still do not parallel the LADH activity loss, which implies the involvement of auxiliary biochemical mechanisms; enhanced reactive oxygen species generation as well as affinity loss for multienzyme complexes proved to be key auxiliary exacerbating pathomechanisms. This review provides an overview and an up-to-date molecular insight into the pathomechanisms of this disease in light of the structural conclusions drawn from the first crystal structure of a disease-causing hE3 variant determined recently in our laboratory.


Asunto(s)
Acidosis Láctica/metabolismo , Citocromo-B(5) Reductasa/deficiencia , Dihidrolipoamida Deshidrogenasa/metabolismo , Enfermedad de la Orina de Jarabe de Arce/metabolismo , Metahemoglobinemia/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Aminoácido Oxidorreductasas/metabolismo , Citocromo-B(5) Reductasa/metabolismo , Humanos , Complejos Multienzimáticos/metabolismo , Ácido Pirúvico/metabolismo , Transferasas/metabolismo
16.
Mol Ther ; 26(11): 2631-2637, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30166242

RESUMEN

There are urgent demands for efficient treatment of heritable genetic diseases. The base editing technology has displayed its efficiency and precision in base substitution in human embryos, providing a potential early-stage treatment for genetic diseases. Taking advantage of this technology, we corrected a Marfan syndrome pathogenic mutation, FBN1T7498C. We first tested the feasibility in mutant cells, then successfully achieved genetic correction in heterozygous human embryos. The results showed that the BE3 mediated perfect correction at the efficiency of about 89%. Importantly, no off-target and indels were detected in any tested sites in samples by high-throughput deep sequencing combined with whole-genome sequencing analysis. Our study therefore suggests the efficiency and genetic safety of correcting a Marfan syndrome (MFS) pathogenic mutation in embryos by base editing.


Asunto(s)
Fibrilina-1/genética , Edición Génica , Síndrome de Marfan/terapia , Oocitos/crecimiento & desarrollo , Fertilización In Vitro , Feto/metabolismo , Feto/fisiología , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Síndrome de Marfan/genética , Síndrome de Marfan/patología , Mutación , Recuperación del Oocito , Secuenciación Completa del Genoma
17.
BMC Nephrol ; 20(1): 322, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31419955

RESUMEN

BACKGROUND: Glomerulopathy with fibronectin deposits is an autosomal dominant disease associated with proteinuria, hematuria, hypertension and renal function decline. Forty percent of the cases are caused by mutations in FN1, the gene that encodes fibronectin. CASE PRESENTATION: This report describes two cases of Glomerulopathy with fibronectin deposits, involving a 47-year-old father and a 14-year-old son. The renal biopsies showed glomeruli with endocapillary hypercellularity and large amounts of mesangial and subendothelial eosinophilic deposits. Immunohistochemistry for fibronectin was markedly positive. Whole exome sequencing identified a novel FN1 mutation that leads to an amino-acid deletion in both patients (Ile1988del), a variant that required primary amino-acid sequence analysis for assessment of pathogenicity. Our primary sequence analyses revealed that Ile1988 is very highly conserved among relative sequences and is positioned in a C-terminal FN3 domain containing heparin- and fibulin-1-binding sites. This mutation was predicted as deleterious and molecular mechanics simulations support that it can change the tertiary structure and affect the complex folding and its molecular functionality. CONCLUSION: The current report not only documents the occurrence of two GFND cases in an affected family and deeply characterizes its anatomopathological features but also identifies a novel pathogenic mutation in FN1, analyzes its structural and functional implications, and supports its pathogenicity.


Asunto(s)
Fibronectinas/genética , Glomerulonefritis Membranoproliferativa/genética , Mutación , Adolescente , Glomerulonefritis Membranoproliferativa/patología , Humanos , Glomérulos Renales/patología , Masculino , Persona de Mediana Edad , Linaje , Análisis de Secuencia de Proteína
18.
J Pediatr ; 197: 207-213, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29655863

RESUMEN

OBJECTIVE: To evaluate the accuracy of the clinical Curaçao criteria in the diagnosis of hereditary hemorrhagic telangiectasia (HHT) in children and adolescents. STUDY DESIGN: This was a retrospective, multicenter chart review of 673 patients evaluated between 2002 and 2016; 290 were eligible for the study. Genetic testing for a pathogenic mutation was considered the gold standard against which the clinical Curaçao criteria were compared. Patients were divided into 4 age categories: 0-5, 6-10, 11-15, and 16-21-years. Sensitivity and specificity were calculated for each age group, and for the overall population. RESULTS: Overall the Curaçao criteria had a sensitivity of 68% (95% CI 60%-76%) and a specificity of 98% (95% CI 91%-100%). Sensitivity was lowest in the 0- to 5-year group, and increased with advancing age. The Curaçao criteria had the highest sensitivity in the 16- to 21-year-olds. Specificity was 100% in all age groups except for the 11- to 15-year-olds. CONCLUSIONS: This study evaluated the use of the Curaçao criteria for the diagnosis of HHT in the pediatric population with a family history of HHT. In those between the age of 0 and 21 years who meet 1 criterion (unlikely HHT) or 2 criteria (possible HHT), genetic testing is preferred for diagnosis. The Curaçao criteria appear to reliably diagnose HHT in children and adolescents who meet 3 or 4 criteria (definite HHT).


Asunto(s)
Pruebas Genéticas/métodos , Telangiectasia Hemorrágica Hereditaria/diagnóstico , Receptores de Activinas Tipo II/genética , Adolescente , Adulto , Niño , Preescolar , Curazao , Endoglina/genética , Femenino , Genotipo , Humanos , Lactante , Masculino , Mutación , Estudios Retrospectivos , Sensibilidad y Especificidad , Proteína Smad4/genética , Telangiectasia Hemorrágica Hereditaria/genética , Adulto Joven
19.
Am J Med Genet A ; 176(7): 1622-1626, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30160835

RESUMEN

A novel autosomal-dominant in-frame deletion resulting in a nonsense mutation in the desmoplakin (DSP) gene was identified in association with biventricular arrhythmogenic cardiomyopathy across three generations of a large Caucasian family. Mutations that disrupt the function and structure of desmosomal proteins, including desmoplakin, have been extensively linked to familial arrhythmogenic right ventricular cardiomyopathy (ARVC). Analysis of data from 51 individuals demonstrated the previously undescribed variant p.Cys81Stop (c.243_251delCTTGATGCG) in DSP segregates with a pathogenic phenotype exhibiting variable penetrance and expressivity. The mutation's pathogenicity was first established due to two sudden cardiac deaths (SCDs), each with a biventricular cardiomyopathy identified on autopsy. Of the individuals who underwent genetic screening, 27 of 51 were heterozygous for the DSP mutation (29 total with two obligate carriers). Six of these were subsequently diagnosed with arrhythmogenic cardiomyopathy. An additional nine family members have a conduction disorder and/or myocardial structural changes characteristic of an evolving condition. Previous reports from both human patients and mouse studies proposed DSP mutations with a premature stop codon impart mild to no clinical symptoms. Loss of expression from the abnormal allele via the nonsense-mediated mRNA decay pathway has been implicated to explain these findings. We identified an autosomal-dominant DSP nonsense mutation in a large family that led to SCD and phenotypic expression of arrhythmogenic cardiomyopathy involving both ventricles. This evidence demonstrates the pathogenic significance of this type of desmosomal mutation and provides insight into potential clinical manifestations.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica/genética , Codón sin Sentido , Muerte Súbita Cardíaca/patología , Desmoplaquinas/genética , Genes Dominantes , Predisposición Genética a la Enfermedad , Adulto , Displasia Ventricular Derecha Arritmogénica/patología , Femenino , Humanos , Masculino , Linaje , Pronóstico
20.
Biochim Biophys Acta ; 1862(11): 2098-2109, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27544700

RESUMEN

Pathogenic amino acid substitutions of the common E3 component (hE3) of the human alpha-ketoglutarate dehydrogenase and the pyruvate dehydrogenase complexes lead to severe metabolic diseases (E3 deficiency), which usually manifest themselves in cardiological and/or neurological symptoms and often cause premature death. To date, 14 disease-causing amino acid substitutions of the hE3 component have been reported in the clinical literature. None of the pathogenic protein variants has lent itself to high-resolution structure elucidation by X-ray or NMR. Hence, the structural alterations of the hE3 protein caused by the disease-causing mutations and leading to dysfunction, including the enhanced generation of reactive oxygen species by selected disease-causing variants, could only be speculated. Here we report results of an examination of the effects on the protein structure of ten pathogenic mutations of hE3 using hydrogen/deuterium-exchange mass spectrometry (HDX-MS), a new and state-of-the-art approach of solution structure elucidation. On the basis of the results, putative structural and mechanistic conclusions were drawn regarding the molecular pathogenesis of each disease-causing hE3 mutation addressed in this study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA