Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.234
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(38): e2401175121, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39250664

RESUMEN

Singlet oxygen (1O2) is important in the environmental remediation field, however, its efficient production has been severely hindered by the ultrafast self-quenching of the as-generated radical precursors in the Fenton-like reactions. Herein, we elaborately designed lamellar anthraquinone-based covalent organic frameworks (DAQ-COF) with sequential localization of the active sites (C═O) at molecular levels for visible-light-assisted peroxymonosulfate (PMS) activation. Theoretical and experimental results revealed that the radical precursors (SO5·-) were formed in the nearby layers with the migration distance less than 0.34 nm, via PMS donating electrons to the photogenerated holes. This interlayer synergistic effect eventually led to ultraefficient 1O2 production (14.8 µM s-1), which is 12 times that of the highest reported catalyst. As an outcome, DAQ-COF enabled the complete degradation of bisphenol A in 5 min with PMS under natural sunlight irradiation. This interlayer synergistic concept represents an innovative and effective strategy to increase the utilization efficiency of ultrashort-lived radical precursors, providing inspirations for subtle structural construction of Fenton-like catalysts.

2.
Proc Natl Acad Sci U S A ; 121(37): e2404965121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39236234

RESUMEN

Peroxymonosulfate-based electrochemical advanced oxidation processes (PMS-EAOPs) have great potential for sustainable water purification, so an in-depth understanding of its catalytic mechanism is imperative to facilitate its practical application. Herein, the performance enhancement and mechanism of electroenhanced PMS activation by single-atom Fe catalyst modified carbon felt was investigated. Compared with the anode, the cathode exhibited faster bisphenol A degradation (kcathode = 0.073 vs. kanode = 0.015 min-1), increased PMS consumption (98.8 vs. 10.3%), and an order of magnitude reduction of Fe dissolution (0.068 vs. 0.787 mg L-1). Mass transfer is a key factor limiting PMS activation, while the electrostriction of water in the hydrophobic region caused by cathode electric field (CEF) significantly increased mass transfer coefficient (km, cathode = 1.49 × 10-4 vs. km, anode = 2.68 × 10-5 m s-1). The enhanced activation of PMS is a synergistic result between electroactivation and catalyst-activation, which is controlled by the applied current density. 1O2 and direct electron transfer are the main active species and activation pathway, which achieve high degradation efficiency over pH 3 to 10. Density functional theory calculations prove CEF increases the adsorption energy, lengthens the O-O bond in PMS, and promotes charge transfer. A flow-through convection unit achieves sustainable operation with high removal efficiency (99.5% to 97.5%), low electrical energy consumption (0.15 kWh log-1 m-3), and low Fe leaching (0.81% of the total single atom Fe). This work reveals the critical role of electric fields in modulating Fenton-like catalytic activity, which may advance the development of advanced oxidation processes and other electrocatalytic applications.

3.
Proc Natl Acad Sci U S A ; 120(34): e2221228120, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37590415

RESUMEN

Developing green heterogeneous catalysts with excellent Fenton-like activity is critical for water remediation technologies. However, current catalysts often rely on toxic transitional metals, and their catalytic performance is far from satisfactory as alternatives of homogeneous Fenton-like catalysts. In this study, a green catalyst based on Zn single-atom was prepared in an ammonium atmosphere using ZIF-8 as a precursor. Multiple characterization analyses provided evidence that abundant intrinsic defects due to the edge sites were created, leading to the formation of a thermally stable edge-hosted Zn-N4 single-atom catalyst (ZnN4-Edge). Density functional theory calculations revealed that the edge sites equipped the single-atom Zn with a super catalytic performance, which not only promoted decomposition of peroxide molecule (HSO5-) but also greatly lowered the activation barrier for •OH generation. Consequently, the as-prepared ZnN4-Edge exhibited extremely high Fenton-like performance in oxidation and mineralization of phenol as a representative organic contaminant in a wide range of pH, realizing its quick detoxification. The atom-utilization efficiency of the ZnN4-Edge was ~104 higher than an equivalent amount of the control sample without edge sites (ZnN4), and the turnover frequency was ~103 times of the typical benchmark of homogeneous catalyst (Co2+). This study opens up a revolutionary way to rationally design and optimize heterogeneous catalysts to homogeneous catalytic performance for Fenton-like application.

4.
Proc Natl Acad Sci U S A ; 120(16): e2219923120, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37040400

RESUMEN

The high-valent cobalt-oxo species (Co(IV)=O) is being increasingly investigated for water purification because of its high redox potential, long half-life, and antiinterference properties. However, generation of Co(IV)=O is inefficient and unsustainable. Here, a cobalt-single-atom catalyst with N/O dual coordination was synthesized by O-doping engineering. The O-doped catalyst (Co-OCN) greatly activated peroxymonosulfate (PMS) and achieved a pollutant degradation kinetic constant of 73.12 min-1 g-2, which was 4.9 times higher than that of Co-CN (catalyst without O-doping) and higher than those of most reported single-atom catalytic PMS systems. Co-OCN/PMS realized Co(IV)=O dominant oxidation of pollutants by increasing the steady-state concentration of Co(IV)=O (1.03 × 10-10 M) by 5.9 times compared with Co-CN/PMS. A competitive kinetics calculation showed that the oxidation contribution of Co(IV)=O to micropollutant degradation was 97.5% during the Co-OCN/PMS process. Density functional theory calculations showed that O-doping influenced the charge density (increased the Bader charge transfer from 0.68 to 0.85 e), optimized the electron distribution of the Co center (increased the d-band center from -1.14 to -1.06 eV), enhanced the PMS adsorption energy from -2.46 to -3.03 eV, and lowered the energy barrier for generation of the key reaction intermediate (*O*H2O) during Co(IV)=O formation from 1.12 to 0.98 eV. The Co-OCN catalyst was fabricated on carbon felt for a flow-through device, which achieved continuous and efficient removal of micropollutants (degradation efficiency of >85% after 36 h operation). This study provides a new protocol for PMS activation and pollutant elimination through single-atom catalyst heteroatom-doping and high-valent metal-oxo formation during water purification.

5.
Proc Natl Acad Sci U S A ; 119(31): e2201607119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35878043

RESUMEN

Nonradical Fenton-like catalysis offers opportunities to overcome the low efficiency and secondary pollution limitations of existing advanced oxidation decontamination technologies, but realizing this on transition metal spinel oxide catalysts remains challenging due to insufficient understanding of their catalytic mechanisms. Here, we explore the origins of catalytic selectivity of Fe-Mn spinel oxide and identify electron delocalization of the surface metal active site as the key driver of its nonradical catalysis. Through fine-tuning the crystal geometry to trigger Fe-Mn superexchange interaction at the spinel octahedra, ZnFeMnO4 with high-degree electron delocalization of the Mn-O unit was created to enable near 100% nonradical activation of peroxymonosulfate (PMS) at unprecedented utilization efficiency. The resulting surface-bound PMS* complex can efficiently oxidize electron-rich pollutants with extraordinary degradation activity, selectivity, and good environmental robustness to favor water decontamination applications. Our work provides a molecule-level understanding of the catalytic selectivity and bimetallic interactions of Fe-Mn spinel oxides, which may guide the design of low-cost spinel oxides for more selective and efficient decontamination applications.


Asunto(s)
Electrones , Óxidos , Catálisis , Óxido de Magnesio/química , Óxidos/química , Peróxidos/química
6.
Proc Natl Acad Sci U S A ; 119(30): e2202682119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858430

RESUMEN

Heterogeneous peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs) have shown a great potential for pollutant degradation, but their feasibility for large-scale water treatment application has not been demonstrated. Herein, we develop a facile coprecipitation method for the scalable production (∼10 kg) of the Cu-Fe-Mn spinel oxide (CuFeMnO). Such a catalyst has rich oxygen vacancies and symmetry-breaking sites, which endorse it with a superior PMS-catalytic capacity. We find that the working reactive species and their contributions are highly dependent on the properties of target organic pollutants. For the organics with electron-donating group (e.g., -OH), high-valent metal species are mainly responsible for the pollutant degradation, whereas for the organics with electron-withdrawing group (e.g., -COOH and -NO2), hydroxyl radical (•OH) as the secondary oxidant also plays an important role. We demonstrate that the CuFeMnO-PMS system is able to achieve efficient and stable removal of the pollutants in the secondary effluent from a municipal wastewater plant at both bench and pilot scales. Moreover, we explore the application prospect of this PMS-based AOP process for large-scale wastewater treatment. This work describes an opportunity to scalably prepare robust spinel oxide catalysts for water purification and is beneficial to the practical applications of the heterogeneous PMS-AOPs.


Asunto(s)
Óxido de Aluminio , Óxido de Magnesio , Peróxidos , Contaminantes del Agua , Purificación del Agua , Óxido de Aluminio/química , Catálisis , Óxido de Magnesio/química , Peróxidos/química , Contaminantes del Agua/química , Purificación del Agua/métodos
7.
Small ; : e2403804, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38973112

RESUMEN

In the pursuit of efficient singlet oxygen generation in Fenton-like catalysis, the utilization of single-atom catalysts (SACs) emerges as a highly desired strategy. Here, a discovery is reported that the single-atom Fe coordinated with five N-atoms on N-doped porous carbon, denoted as Fe-N5/NC, outperform its counterparts, those coordinated with four (Fe-N4/NC) or six N-atoms (Fe-N6/NC), as well as state-of-the-art SACs comprising other transition metals. Thus, Fe-N5/NC exhibits exceptional efficacy in activating peroxymonosulfate for the degradation of organic pollutants. The coordination number of N-atoms can be readily adjusted by pyrolysis of pre-assembly structures consisting of Fe3+ and various isomers of phenylenediamine. Fe-N5/NC displayed outstanding tolerance to environmental disturbances and minimal iron leaching when incorporated into a membrane reactor. A mechanistic study reveals that the axial ligand N reduces the contribution of Fe-3d orbitals in LUMO and increases the LUMO energy of Fe-N5/NC. This, in turn, reduces the oxophilicity of the Fe center, promoting the reactivity of *OO intermediate-a pivotal step for yielding singlet oxygen and the rate-determining step. These findings unveil the significance of manipulating the oxophilicity of metal atoms in single-atom catalysis and highlight the potential to augment Fenton-like catalysis performance using Fe-SACs.

8.
Small ; : e2401970, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770987

RESUMEN

Transition metal compounds (TMCs) have long been potential candidate catalysts in persulfate-based advanced oxidation process (PS-AOPs) due to their Fenton-like catalyze ability for radical generation. However, the mechanism involved in TMCs-catalyzed nonradical PS-AOPs remains obscure. Herein, the growth of FeO on the Fe3O4/carbon precursor is regulated by restricted pyrolysis of MIL-88A template to activate peroxymonosulfate (PMS) for tetracycline (TC) removal. The higher FeO incorporation conferred a 2.6 times higher degradation performance than that catalyzed by Fe3O4 and also a higher interference resistance to anions or natural organic matter. Unexpectedly, the quenching experiment, probe method, and electron paramagnetic resonance quantitatively revealed that the FeO reassigned high nonradical species (1O2 and FeIV═O) generation to replace original radical system created by Fe3O4. Density functional theory calculation interpreted that PMS molecular on strongly-adsorbed (200) and (220) facets of FeO enjoyed unique polarized electronic reception for surface confinement effect, thus the retained peroxide bond energetically supported the production of 1O2 and FeIV═O. This work promotes the mechanism understanding of TMCs-induced surface-catalyzed persulfate activation and enables them better perform catalytic properties in wastewater treatment.

9.
Small ; 20(2): e2306464, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37658488

RESUMEN

Transition metals are excellent active sites to activate peroxymonosulfate (PMS) for water treatment, but the favorable electronic structures governing  reaction mechanism still remain elusive. Herein, the authors construct typical d-orbital configurations on iron octahedral (FeOh ) and tetrahedral (FeTd ) sites in spinel ZnFe2 O4 and FeAl2 O4 , respectively. ZnFe2 O4 (136.58 min-1 F-1 cm2 ) presented higher specific activity than FeAl2 O4 (97.47 min-1 F-1 cm2 ) for tetracycline removal by PMS activation. Considering orbital features of charge amount, spin state, and orbital arrangement by magnetic spectroscopic analysis, ZnFe2 O4 has a larger bond order to decompose PMS. Using this descriptor, high-spin FeOh is assumed to activate PMS mainly to produce nonradical reactive oxygen species (ROS) while high-spin FeTd prefers to induce radical species. This hypothesis is confirmed by the selective predominant ROS of 1 O2 on ZnFe2 O4 and O2 •- on FeAl2 O4 via quenching experiments. Electrochemical determinations reveal that FeOh has superior capability than FeTd for feasible valence transformation of iron cations and fast interfacial electron transfer. DFT calculations further suggest octahedral d-orbital configuration of ZnFe2 O4 is beneficial to enhancing Fe-O covalence for electron exchange. This work attempts to understand the d-orbital configuration-dependent PMS activation to design efficient catalysts.

10.
Small ; : e2402748, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898734

RESUMEN

Defect engineering is considered as a flexible and effective mean to improve the performance of Fenton-like reactions. Herein, a simple method is employed to synthesize Co3O4 catalysts with Co-O vacancy pairs (VP) for peroxymonosulfate (PMS) activation. Multi-scaled characterization, experimental, and simulation results jointly revealed that the cation vacancies-VCo contributed to enhanced conductivity and anion vacancies-VO provided a new active center for the 1O2 generation. Co3O4-VP can optimize the O 2p and Co 3d bands with the strong assistance of synergistic double vacancies to reduce the reaction energy barrier of the "PMS → Co(IV) = O → 1O2" pathway, ultimately triggering the stable transition of mechanism. Co3O4-VP catalysts with radical-nonradical collaborative mechanism achieve the synchronous improvement of activity and stability, and have good environmental robustness to favor water decontamination applications. This result highlights the possibility of utilizing anion and cation vacancy engineering strategies to rational design Co3O4-based materials widely used in catalytic reactions.

11.
Small ; 20(32): e2311642, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38497490

RESUMEN

Singlet oxygen (1O2) species generated in peroxymonosulfate (PMS)-based advanced oxidation processes offer opportunities to overcome the low efficiency and secondary pollution limitations of existing AOPs, but efficient production of 1O2 via tuning the coordination environment of metal active sites remains challenging due to insufficient understanding of their catalytic mechanisms. Herein, an asymmetrical configuration characterized by a manganese single atom coordinated is established with one S atom and three N atoms (denoted as Mn-S1N3), which offer a strong local electric field to promote the cleavage of O─H and S─O bonds, serving as the crucial driver of its high 1O2 production. Strikingly, an enhanced the local electric field caused by the dynamic inter-transformation of the Mn coordination structure (Mn-S1N3 ↔ Mn-N3) can further downshift the 1O2 production energy barrier. Mn-S1N3 demonstrates 100% selective product 1O2 by activation of PMS at unprecedented utilization efficiency, and efficiently oxidize electron-rich pollutants. This work provides an atomic-level understanding of the catalytic selectivity and is expected to guide the design of smart 1O2-AOPs catalysts for more selective and efficient decontamination applications.

12.
Small ; 20(32): e2311552, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38501866

RESUMEN

The activation of persulfates to degrade refractory organic pollutants is a hot issue in advanced oxidation right now. Here, it is reported that single-atom Fe-incorporated carbon nitride (Fe-CN-650) can effectively activate peroxymonosulfate (PMS) for sulfamethoxazole (SMX) removal. Through some characterization techniques and DFT calculation, it is proved that Fe single atoms in Fe-CN-650 exist mainly in the form of Fe-N3O1 coordination, and Fe-N3O1 exhibited better affinity for PMS than the traditional Fe-N4 structure. The degradation rate constant of SMX in the Fe-CN-650/PMS system reached 0.472 min-1, and 90.80% of SMX can still be effectively degraded within 10 min after five consecutive recovery cycles. The radical quenching experiment and electrochemical analysis confirm that the pollutants are mainly degraded by two non-radical pathways through 1O2 and Fe(IV)═O induced at the Fe-N3O1 sites. In addition, the intermediate products of SMX degradation in the Fe-CN-650/PMS system show toxicity attenuation or non-toxicity. This study offers valuable insights into the design of carbon-based single-atom catalysts and provides a potential remediation technology for the optimum activation of PMS to disintegrate organic pollutants.


Asunto(s)
Antibacterianos , Hierro , Peróxidos , Peróxidos/química , Hierro/química , Antibacterianos/química , Antibacterianos/farmacología , Sulfametoxazol/química , Nitrilos/química , Oxidación-Reducción
13.
Nanotechnology ; 35(31)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38663370

RESUMEN

The overuse of antibiotics currently results in the presence of various antibiotics being detected in water bodies, which poses potential risks to human health and the environment. Therefore, it is highly significant to remove antibiotics from water. In this study, we developed novel rod-like NiCo-phyllosilicate hybrid catalysts on calcined natural zeolite (NiCo@C-zeolite) via a facile one-pot process. The presence of the zeolite served as both a silicon source and a support, maintaining a high specific surface area of the NiCo@C-zeolite. Remarkably, NiCo@C-zeolite exhibited outstanding catalytic performance in antibiotic degradation under PMS activation. Within just 5 min, the degradation rate of metronidazole (MNZ) reached 96.14%, ultimately achieving a final degradation rate of 99.28%. Furthermore, we investigated the influence of catalyst dosage, PMS dosage, MNZ concentration, initial pH value, and various inorganic anions on the degradation efficiency of MNZ. The results demonstrated that NiCo@C-zeolite displayed outstanding efficacy in degrading MNZ under diverse conditions and maintained a degradation rate of 94.86% at 60 min after three consecutive cycles of degradation. Free radical quenching experiments revealed that SO•-4played a significant role in the presence of NiCo@C-zeolite-PMS system. These findings indicate that the novel rod-like NiCo-phyllosilicate hybrid catalysts had excellent performance in antibiotic degradation.


Asunto(s)
Antibacterianos , Zeolitas , Zeolitas/química , Antibacterianos/química , Antibacterianos/síntesis química , Catálisis , Contaminantes Químicos del Agua/química , Metronidazol/química , Purificación del Agua/métodos , Silicatos/química
14.
Environ Sci Technol ; 58(14): 6444-6454, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38551318

RESUMEN

Catalyst design with a "Co-N-C" structure at the atomic level has shown great interest for peroxymonosulfate (PMS) activation toward advanced oxidation water treatment. Here, we present an innovative way of producing cobalt hexacyanocobaltate (Co-HCC) with an abundance of atomically isolated CoII-NC sites at the outer surface. This material allows ultraefficient PMS activation to generate plenty of sulfate and hydroxyl radicals, with a turnover frequency much higher than those of most cobalt-based catalysts reported so far and even the homogeneous catalysis by Co2+ ions. We gained fundamental insights on its unprecedently high catalytic performance based on experimental results and computational study. Then, we controlled the growth of Co-HCC on a ceramic membrane to form a confined oxidation environment that utilizes the extended surface area and maximal exposure of short-lived radicals for a fast removal of organic pollutants that enter the pores. As a result, this catalytic membrane achieves complete disruption of micropollutants under a water flux up to 10,000 LMH (merely 0.2 s retention time) and further >90% mineralization of organic pollutants in complex industrial wastewater matrices (<100 s retention time), together with the merits of operational simplicity and great longevity (2 weeks continuous run). Our study elicits a new milestone in "Co-N-C" catalyst structure design for PMS activation and highlights the great interest of producing catalytic membranes for a confined treatment of organic pollutants from partial oxidation to complete mineralization as a new benchmark.


Asunto(s)
Carcinoma Hepatocelular , Contaminantes Ambientales , Neoplasias Hepáticas , Humanos , Cobalto/química , Cianuros , Peróxidos/química , Catálisis
15.
Environ Sci Technol ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276076

RESUMEN

A highly efficient and sustainable water treatment system was developed herein by combining Mn(II), peroxymonosulfate (PMS), and biodegradable picolinic acid (PICA). The micropollutant elimination process underwent two phases: an initial slow degradation phase (0-10 min) followed by a rapid phase (10-20 min). Multiple evidence demonstrated that a PICA-Mn(IV) complex (PICA-Mn(IV)*) was generated, acting as a conductive bridge facilitating the electron transfer between PMS and micropollutants. Quantum chemical calculations revealed that PMS readily oxidized the PICA-Mn(II)* to PICA-Mn(IV)*. This intermediate then complexed with PMS to produce PICA-Mn(IV)-PMS*, elongating the O-O bond of PMS and increasing its oxidation capacity. The primary transformation mechanisms of typical micropollutants mediated by PICA-Mn(IV)-PMS* include oxidation, ring-opening, bond cleavage, and epoxidation reactions. The toxicity assessment results showed that most products were less toxic than the parent compounds. Moreover, the Mn(II)/PICA/PMS system showed resilience to water matrices and high efficiency in real water environments. Notably, PICA-Mn(IV)* exhibited greater stability and a longer lifespan than traditional reactive oxygen species, enabling repeated utilization. Overall, this study developed an innovative, sustainable, and selective oxidation system, i.e., Mn(II)/PICA/PMS, for rapid water decontamination, highlighting the critical role of in situ generated Mn(IV).

16.
Environ Sci Technol ; 58(31): 14005-14012, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39039842

RESUMEN

Significant efforts have recently been exerted toward construction of singlet oxygen (1O2)-dominated catalytic oxidation systems for selective removal of organic contaminants from wastewater, with peroxides serving as the chemical source. However, the relevance of 1O2 in the removal of pollutants remains ambiguous and requires elucidation. In this study, we scrupulously exclude the significant role of 1O2 in contaminant degradation in various peroxymonosulfate (PMS) activation systems. Multiple experimental results indicate that the activation of PMS catalyzed by CuO, MnO2, Fe-doped g-C3N4 (Fe-CN), or N-doped graphite does not predominantly follow the 1O2 pathway. More importantly, the reactivity of 1O2 is remarkably overestimated in the literature, given its inferior capacity in degradation of a range of heterocyclic contaminants and aromatic compounds possessing electron-withdrawing groups. In addition, the strong physical quenching effect of water, coupled with the low oxidizing ability of 1O2, would notably reduce the utilization efficiency of peroxide, which is particularly apparent in the degradation of micropollutants. We reckon that this study is expected to end the long-running dispute associated with the relevance of 1O2 in pollutant removal.


Asunto(s)
Oxidación-Reducción , Oxígeno Singlete , Oxígeno Singlete/química , Peróxidos/química , Contaminantes Químicos del Agua/química , Catálisis , Aguas Residuales/química
17.
Environ Sci Technol ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276341

RESUMEN

Organic contaminants with lower Hammett constants are typically more prone to being attacked by reactive oxygen species (ROS) in advanced oxidation processes (AOPs). However, the interactions of an organic contaminant with catalytic centers and participating ROS are complex and lack an in-depth understanding. In this work, we observed an abnormal phenomenon in AOPs that the degradation of electron-rich phenolics, such as 4-methoxyphenol, acetaminophen, and 4-presol, was unexpectedly slower than electron-deficient phenolics in a Mn(II)/nitrilotriacetic acid/peroxymonosulfate (Mn(II)/NTA/PMS) system. The established quantitative structure-activity relationship revealed a volcano-type dependence of the degradation rates on the Hammett constants of pollutants. Leveraging substantial analytical techniques and modeling analysis, we concluded that the electron-rich phenolics would inhibit the generation of both primary (Mn(III)NTA) and secondary (Mn(V)NTA) high-valent manganese species through complexation and competition effects. Specifically, the electron-rich phenolics would form a hydrogen bond with Mn(II)/NTA/PMS through outer-sphere interactions, thereby reducing the electrophilic reactivity of PMS to accept the electron transfer from Mn(II)NTA, and slowing down the generation of reactive Mn(III)NTA. Furthermore, the generated Mn(III)NTA is more inclined to react with electron-rich phenolics than PMS due to their higher reaction rate constants (8314 ± 440, 6372 ± 146, and 6919 ± 31 M-1 s-1 for 4-methoxyphenol, acetaminophen, and 4-presol, respectively, as compared with 671 M-1 s-1 for PMS). Consequently, the two-stage inhibition impeded the generation of Mn(V)NTA. In contrast, the complexation and competition effects are insignificant for electron-deficient phenolics, leading to declined reaction rates when the Hammett constants of pollutants increase. For practical applications, such complexation and competition effects would cause the degradation of electron-rich phenolics to be more susceptible to water matrixes, whereas the degradation of electron-deficient phenolics remains largely unaffected. Overall, this study elucidated the intricate interaction mechanisms between contaminants and reactive metal species at both the electronic and kinetic levels, further illuminating their implications for practical treatment.

18.
Environ Sci Technol ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190653

RESUMEN

Peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs), as a promising technology for water decontamination, are constrained by low reaction kinetics due to limited reaction selectivity and mass transfer. Herein, we designed a nanoconfined FeCo2O4-embedded ceramic membrane (FeCo2O4-CM) under flow-through pattern for PMS activation. Confining PMS and FeCo2O4 within nanochannels (3.0-4.7 nm) enhanced adsorption interactions (-7.84 eV vs -2.20 eV), thus boosting mass transfer. Nanoconfinement effect regulated electron transfer pathways from PMS to FeCo2O4-CM by modulating the active site transformation to ≡Co(III) in nanoconfined FeCo2O4-CM, enabling selectively generating 1O2. The primary role of 1O2 in the nanoconfined system was confirmed by kinetic solvent isotope experiments and indicative anthracene endoperoxide (DPAO2). The system enabled 100% removal of atrazine (ATZ) within a hydraulic retention time of 2.124 ms, demonstrating a rate constant over 5 orders of magnitude higher than the nonconfined system (3.50 × 103 s-1 vs 0.42 min-1). It also exhibited strong resilience to pH variations (3.3-9.0) and coexisting substances, demonstrating excellent stability indicated by consistent 100% ATZ removal for 14 days. This study sheds light on regulating electron transfer pathways to selectively generate 1O2 through the nanoconfinement effect, boosting the practical application of PMS-based AOPs in environmental remediation and potentially applying them to various other AOPs.

19.
Environ Res ; 257: 119348, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38844027

RESUMEN

In this study, a UV-driven photocatalytic activation of peroxymonosulfate (PMS) system was constructed using bimetallic metal-organic frameworks to degrade pharmaceuticals and personal care products (PPCPs). Mn-MIL-53(Fe) was successfully synthesised by adjusting the doping ratio of Mn using solvothermal method. The removal of ibuprofen (IBP) by UV/Mn-MIL-53(Fe)/PMS process was as high as 79.7% in 30 min with a Mn doping ratio of 1.0 (molar ratio of Mn to Fe), and the reaction rate constant was 26.9% higher than undoped. Mn-MIL-53(Fe) had been systematically characterized in terms of its physical structure, microscopic morphology, surface functional groups and photoelectric properties. The mechanism investigation revealed that the cycling of Mn and Fe accelerated the rate of electron transfer in the system, which significantly increased the activation efficacy of PMS to generate more hydroxyl and sulfate radicals for IBP degradation. A total of 13 transformation products were detected during the degradation of IBP by the UV/Mn-MIL-53(Fe)/PMS process. Theoretical calculations were used to predict the sites on the IBP molecule that were vulnerable to attack, and four possible degradation pathways were deduced. The excellent stability and efficient catalytic properties of Mn-MIL-53(Fe) provided a promising solution to the problem of water treatment contaminated with PPCPs.


Asunto(s)
Ibuprofeno , Peróxidos , Contaminantes Químicos del Agua , Ibuprofeno/química , Peróxidos/química , Contaminantes Químicos del Agua/química , Catálisis , Manganeso/química , Fotólisis , Rayos Ultravioleta , Estructuras Metalorgánicas/química , Hierro/química
20.
Environ Res ; 249: 118362, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38325787

RESUMEN

Sulfate radical-based advanced oxidation processes with (SR-AOPs) are widely employed to degrade organic pollutants due to their high efficiency, cost-effectiveness and safety. In this study, a highly active and stable FeNiP was successfully prepared by reduction and heat treatment. FeNiP exhibited high performance of peroxymonosulfate (PMS) activation for tetracycline hydrochloride (TC) removal. Over a wide pH range, an impressive TC degaradation efficiency 97.86% was achieved within 60 min employing 0.1 g/L FeNiP and 0.2 g/L PMS at room temperature. Both free radicals of SO4·-, ·OH, ·O2- and non-free radicals of 1O2 participated the TC degradation in the FeNiP/PMS system. The PMS activation ability was greatly enhanced by the cycling between Ni and Fe bimetal, and the active site regeneration was achieved due to the existence of the negatively charged Pn-. Moreover, the FeNiP/PMS system exhibited substantial TC degradation levels in both simulated real-world disturbance scenarios and practical water tests. Cycling experiments further affirmed the robust stability of FeNiP catalyst, demonstrating sustained degradation efficiency of approximately 80% even after four cycles. These findings illuminate its promising potential across natural water bodies, presenting an innovative catalyst construction approach for PMS activation in the degradation of antibiotic pollutants.


Asunto(s)
Hierro , Peróxidos , Tetraciclina , Contaminantes Químicos del Agua , Tetraciclina/química , Contaminantes Químicos del Agua/química , Peróxidos/química , Hierro/química , Níquel/química , Antibacterianos/química , Oxidación-Reducción , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA