Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(19)2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39409354

RESUMEN

In order to express the energy flow, motion flow, and control flow in wireless rechargeable sensor networks accurately and intuitively, and to maximize the charging benefit of MVs (mobile vehicles), a type of MTS-HACO (Mobile Transition Sequence Hybrid Ant Colony Optimization) is proposed. Firstly, node places are grouped according to the firing time of node's energy consumption transition to ensure that in each time slot, MV places only enable charging transitions for the node places with lower remaining lifetimes. Then, the FSOMCT (Firing Sequence Optimization of Mobile Charging Transition) problem is formulated under the constraints of MV places capacity, travelling arc weight, charging arc weight, and so on. The elite strategy and the Max-Min Ant Colony system are further introduced to improve the ant colony algorithm, while the improved FWA (fireworks algorithm) optimizes the path constructed by each ant. Finally, the optimal mobile charging transition firing sequence and charging times are obtained, ensuring that MVs have sufficient energy to return to the base station. Simulation results indicate that, compared with the periodic algorithm and the PE-FWA algorithm, the proposed method can improve charging benefit by approximately 48.7% and 26.3%, respectively.

2.
Sensors (Basel) ; 23(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37447834

RESUMEN

This study addresses the pressing issue of energy consumption and efficiency in the Kingdom of Saudi Arabia (KSA), a region experiencing growing demand for energy resources. Temperature control plays a vital role in achieving energy efficiency; however, traditional control systems may struggle to adapt to the non-linear and time-varying characteristics of the problem. To tackle this challenge, a fuzzy petri net (FPN) controller is proposed as a more suitable solution that combines fuzzy logic (FL) and petri nets (PN) to model and simulate complex systems. The main objective of this research is to develop an intelligent energy-saving framework that integrates advanced methodologies and air conditioning (AC) systems to optimize energy utilization and create a comfortable indoor environment. The proposed system incorporates user identification to authorize individuals who can set the temperature, and FL combined with PN is utilized to monitor and transmit their preferred temperature settings to a PID controller for adjustment. The experimental findings demonstrate the effectiveness of integrating the FPN controller with a convertible frequency AC compressor in significantly reducing energy consumption by 94% compared to using the PN controller alone. The utilization of the PN controller alone resulted in a 25% reduction in energy consumption. Conversely, employing a fixed-frequency compressor led to a 40% increase in energy consumption. These results emphasize the advantages of integrating FL into the PN model, as it effectively reduces energy consumption by half, highlighting the potential of the proposed approach for enhancing energy efficiency in AC systems.


Asunto(s)
Lógica Difusa , Humanos , Temperatura , Arabia Saudita
3.
Sensors (Basel) ; 23(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37112150

RESUMEN

Traditional business process-extraction models mainly rely on structured data such as logs, which are difficult to apply to unstructured data such as images and videos, making it impossible to perform process extractions in many data scenarios. Moreover, the generated process model lacks analysis consistency of the process model, resulting in a single understanding of the process model. To solve these two problems, a method of extracting process models from videos and analyzing the consistency of process models is proposed. Video data are widely used to capture the actual performance of business operations and are key sources of business data. Video data preprocessing, action placement and recognition, predetermined models, and conformance verification are all included in a method for extracting a process model from videos and analyzing the consistency between the process model and the predefined model. Finally, the similarity was calculated using graph edit distances and adjacency relationships (GED_NAR). The experimental results showed that the process model mined from the video was better in line with how the business was actually carried out than the process model derived from the noisy process logs.

4.
Sensors (Basel) ; 23(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37299919

RESUMEN

The distribution of wireless network systems challenges the communication security of Internet of Things (IoT), and the IPv6 protocol is gradually becoming the main communication protocol under the IoT. The Neighbor Discovery Protocol (NDP), as the base protocol of IPv6, includes address resolution, DAD, route redirection and other functions. The NDP protocol faces many attacks, such as DDoS attacks, MITM attacks, etc. In this paper, we focus on the communication-addressing problem between nodes in the Internet of Things (IoT). We propose a Petri-Net-based NS flooding attack model for the flooding attack problem of address resolution protocols under the NDP protocol. Through a fine-grained analysis of the Petri Net model and attacking techniques, we propose another Petri-Net-based defense model under the SDN architecture, achieving security for communications. We further simulate the normal communication between nodes in the EVE-NG simulation environment. We implement a DDoS attack on the communication protocol by an attacker who obtains the attack data through the THC-IPv6 tool. In this paper, the SVM algorithm, random forest algorithm (RF) and Bayesian algorithm (NBC) are used to process the attack data. The NBC algorithm is proven to exhibit high accuracy in classifying and identifying data through experiments. Further, the abnormal data are discarded through the abnormal data processing rules issued by the controller in the SDN architecture, to ensure the security of communications between nodes.


Asunto(s)
Internet de las Cosas , Algoritmos , Teorema de Bayes , Comunicación , Internet , Tecnología Inalámbrica , Seguridad Computacional
5.
Acta Clin Croat ; 62(1): 131-140, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38304377

RESUMEN

The aim of the study was to optimize the pre-hospital first aid management strategy for patients with infectious diseases in Huizhou city, which is expected to provide a basis for the epidemic prevention and control, to save lives, and increase the pre-hospital first aid efficiency. At the Department of Emergency, Huizhou Third People's Hospital as the research subject, the common pre-hospital first aid procedure for infectious diseases was identified. The Petri net was used to model and determine the execution time of each link of the pre-hospital first aid process. The isomorphic Markov chain was used to optimize the pre-hospital first aid procedure for infectious diseases. In terms of the emergency path, deep learning was combined with the reinforcement learning model to construct the reinforcement learning model for ambulance path planning. Isomorphic Markov chain analysis revealed that the patient status when returning to the hospital, the time needed for the ambulance to come to designated location, and the on-site treatment were the main problems in the first aid process, and the time needed for the pre-hospital first aid process was reduced by 25.17% after optimization. In conclusion, Petri net and isomorphic Markov chain can optimize the pre-hospital first aid management strategies for patients with infectious diseases, and the use of deep learning algorithm can effectively plan the emergency path, achieving intelligent and informationalized pre-hospital transfer, which provides a basis for reducing the suffering, mortality, and disability rate of patients with infectious diseases.


Asunto(s)
Enfermedades Transmisibles , Aprendizaje Profundo , Humanos , Primeros Auxilios , Hospitales , Algoritmos , Enfermedades Transmisibles/epidemiología , Enfermedades Transmisibles/terapia
6.
BMC Med Inform Decis Mak ; 22(1): 40, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35168629

RESUMEN

INTRODUCTION: Syphilis is a sexually transmitted disease (STD) caused by Treponema pallidum subspecies pallidum. In 2016, it was declared an epidemic in Brazil due to its high morbidity and mortality rates, mainly in cases of maternal syphilis (MS) and congenital syphilis (CS) with unfavorable outcomes. This paper aimed to mathematically describe the relationship between MS and CS cases reported in Brazil over the interval from 2010 to 2020, considering the likelihood of diagnosis and effective and timely maternal treatment during prenatal care, thus supporting the decision-making and coordination of syphilis response efforts. METHODS: The model used in this paper was based on stochastic Petri net (SPN) theory. Three different regressions, including linear, polynomial, and logistic regression, were used to obtain the weights of an SPN model. To validate the model, we ran 100 independent simulations for each probability of an untreated MS case leading to CS case (PUMLC) and performed a statistical t-test to reinforce the results reported herein. RESULTS: According to our analysis, the model for predicting congenital syphilis cases consistently achieved an average accuracy of 93% or more for all tested probabilities of an untreated MS case leading to CS case. CONCLUSIONS: The SPN approach proved to be suitable for explaining the Notifiable Diseases Information System (SINAN) dataset using the range of 75-95% for the probability of an untreated MS case leading to a CS case (PUMLC). In addition, the model's predictive power can help plan actions to fight against the disease.


Asunto(s)
Sífilis Congénita , Sífilis , Brasil/epidemiología , Femenino , Humanos , Sistemas de Información , Embarazo , Atención Prenatal , Sífilis/diagnóstico , Sífilis/epidemiología , Sífilis Congénita/diagnóstico , Sífilis Congénita/epidemiología
7.
Sensors (Basel) ; 22(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35214301

RESUMEN

The detection and defense of malicious attacks are critical to the proper functioning of network security. Due to the diversity and rapid updates of the attack methods used by attackers, traditional defense mechanisms have been challenged. In this context, a more effective method to predict vulnerabilities in network systems is considered an urgent need to protect network security. In this paper, we propose a formal modeling and analysis approach based on Petri net vulnerability exploitation. We used the Common Vulnerabilities and Exposures (CVE)-2021-3711 vulnerability source code to build a model. A patch model was built to address the problems of this model. Finally, the time injected by the actual attacker and the time simulated by the software were calculated separately. The results showed that the simulation time was shorter than the actual attack time, and ultra-real-time simulation could be achieved. By modeling the network system with this method, the model can be found to arrive at an illegitimate state according to the structure of Petri nets themselves and thus discover unknown vulnerabilities. This method provides a reference method for exploring unknown vulnerabilities.


Asunto(s)
Programas Informáticos , Simulación por Computador
8.
Sensors (Basel) ; 22(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35214499

RESUMEN

The spread of the Coronavirus (COVID-19) pandemic across countries all over the world urges governments to revolutionize the traditional medical hospitals/centers to provide sustainable and trustworthy medical services to patients under the pressure of the huge overload on the computing systems of wireless sensor networks (WSNs) for medical monitoring as well as treatment services of medical professionals. Uncertain malfunctions in any part of the medical computing infrastructure, from its power system in a remote area to the local computing systems at a smart hospital, can cause critical failures in medical monitoring services, which could lead to a fatal loss of human life in the worst case. Therefore, early design in the medical computing infrastructure's power and computing systems needs to carefully consider the dependability characteristics, including the reliability and availability of the WSNs in smart hospitals under an uncertain outage of any part of the energy resources or failures of computing servers, especially due to software aging. In that regard, we propose reliability and availability models adopting stochastic Petri net (SPN) to quantify the impact of energy resources and server rejuvenation on the dependability of medical sensor networks. Three different availability models (A, B, and C) are developed in accordance with various operational configurations of a smart hospital's computing infrastructure to assimilate the impact of energy resource redundancy and server rejuvenation techniques for high availability. Moreover, a comprehensive sensitivity analysis is performed to investigate the components that impose the greatest impact on the system availability. The analysis results indicate different impacts of the considered configurations on the WSN's operational availability in smart hospitals, particularly 99.40%, 99.53%, and 99.64% for the configurations A, B, and C, respectively. This result highlights the difference of 21 h of downtime per year when comparing the worst with the best case. This study can help leverage the early design of smart hospitals considering its wireless medical sensor networks' dependability in quality of service to cope with overloading medical services in world-wide virus pandemics.


Asunto(s)
COVID-19 , Rejuvenecimiento , Hospitales , Humanos , Reproducibilidad de los Resultados , SARS-CoV-2
9.
Sensors (Basel) ; 22(3)2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35161968

RESUMEN

Cloud computing has been widely adopted over the years by practitioners and companies with a variety of requirements. With a strong economic appeal, cloud computing makes possible the idea of computing as a utility, in which computing resources can be consumed and paid for with the same convenience as electricity. One of the main characteristics of cloud as a service is elasticity supported by auto-scaling capabilities. The auto-scaling cloud mechanism allows adjusting resources to meet multiple demands dynamically. The elasticity service is best represented in critical web trading and transaction systems that must satisfy a certain service level agreement (SLA), such as maximum response time limits for different types of inbound requests. Nevertheless, existing cloud infrastructures maintained by different cloud enterprises often offer different cloud service costs for equivalent SLAs upon several factors. The factors might be contract types, VM types, auto-scaling configuration parameters, and incoming workload demand. Identifying a combination of parameters that results in SLA compliance directly in the system is often sophisticated, while the manual analysis is prone to errors due to the huge number of possibilities. This paper proposes the modeling of auto-scaling mechanisms in a typical cloud infrastructure using a stochastic Petri net (SPN) and the employment of a well-established adaptive search metaheuristic (GRASP) to discover critical trade-offs between performance and cost in cloud services.The proposed SPN models enable cloud designers to estimate the metrics of cloud services in accordance with each required SLA such as the best configuration, cost, system response time, and throughput.The auto-scaling SPN model was extensively validated with 95% confidence against a real test-bed scenario with 18.000 samples. A case-study of cloud services was used to investigate the viability of this method and to evaluate the adoptability of the proposed auto-scaling model in practice. On the other hand, the proposed optimization algorithm enables the identification of economic system configuration and parameterization to satisfy required SLA and budget constraints. The adoption of the metaheuristic GRASP approach and the modeling of auto-scaling mechanisms in this work can help search for the optimized-quality solution and operational management for cloud services in practice.


Asunto(s)
Algoritmos , Nube Computacional , Carga de Trabajo
10.
Sensors (Basel) ; 22(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36081172

RESUMEN

EnOcean, a commonly used control protocol in smart lighting systems, provides authentication, as well as message integrity verification services, and can resist replay attack and tamper attack. However, since the device identity information transmitted between sensors in smart lighting control systems is easily accessible by malicious attackers, attackers can analyze users' habits based on the intercepted information. This paper analyzed the security of the EnOcean protocol using a formal analysis method based on the colored Petri net (CPN) theory and the Dolev-Yao attacker model and found that the protocol did not anonymize the device identity information and did not have a communication key update mechanism, so an attacker could easily initiate a key compromise impersonation attack (KCIA) after breaking the pre-shared communication key. To address the above security issues, this paper proposed an EnOcean-A protocol with higher security based on the EnOcean protocol. The EnOcean-A protocol introduced a trusted third-party server to send communication keys to communication devices because devices must obtain different communication keys from the trusted third-party server each time they communicated. Thus, this protocol could resist a KCIA and achieve forward security. Meanwhile, the device identity information was anonymized using a homomorphic hash function in the EnOcean-A protocol, and the dynamic update mechanism of the device identity information was added so that an attacker could not obtain the real identity information of the device. Finally, the formal analysis of the EnOcean-A protocol showed that the new protocol could resist a KCIA and ensure the anonymity and untraceability of the communication device, which had higher security compared with the EnOcean protocol.


Asunto(s)
Seguridad Computacional , Telemedicina , Confidencialidad , Sistemas de Información , Confianza
11.
Sensors (Basel) ; 22(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35808161

RESUMEN

Malicious botnets such as Mirai are a major threat to IoT networks regarding cyber security. The Botnet Defense System (BDS) is a network security system based on the concept of "fight fire with fire", and it uses white-hat botnets to fight against malicious botnets. However, the existing white-hat Worm Launcher of the BDS decides the number of white-hat worms, but it does not consider the white-hat worms' placement. This paper proposes a novel machine learning (ML)-based white-hat Worm Launcher for tactical response by zoning in the BDS. The concept of zoning is introduced to grasp the malicious botnet spread with bias over the IoT network. This enables the Launcher to divide the network into zones and make tactical responses for each zone. Three tactics for tactical responses for each zone are also proposed. Then, the BDS with the Launcher is modeled by using agent-oriented Petri nets, and the effect of the proposed Launcher is evaluated. The result shows that the proposed Launcher can reduce the number of infected IoT devices by about 30%.

12.
Sensors (Basel) ; 22(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36146285

RESUMEN

Autonomous components within electric power systems can be successfully specified by interpreted Petri nets. Such a formal specification makes it possible to check some basic properties of the models, such as determinism or deadlock freedom. In this paper, it is shown how these models can also be formally verified against some behavioral user-defined properties that relate to the safety or liveness of a designed system. The requirements are written as temporal logic formulas. The rule-based logical model is used to support the verification process. An interpreted Petri net is first written as an abstract logical model, and then automatically transformed into a verifiable model that is supplemented by appropriate properties for checking. Formal verification is then performed with the nuXmv model checker. Thanks to this the initial specification of autonomous components can be formally verified and any design errors can be identified at an early stage of system development. An electric energy storage (EES) is presented as an application system for the provision of a system service for stabilizing the power of renewable energy sources (RES) or highly variable loads. The control algorithm of EES in the form of an interpreted Petri net is then written as a rule-based logical model and transformed into a verifiable model, allowing automatic checking of user-defined requirements.


Asunto(s)
Algoritmos , Electricidad
13.
Sensors (Basel) ; 22(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35591106

RESUMEN

The UAV industry is developing rapidly and drones are increasingly used for monitoring industrial facilities. When designing such systems, operating companies have to find a system configuration of multiple drones that is near-optimal in terms of cost while achieving the required monitoring quality. Stochastic influences such as failures and maintenance have to be taken into account. Model-based systems engineering supplies tools and methods to solve such problems. This paper presents a method to model and evaluate such UAV systems with coloured Petri nets. It supports a modular view on typical setup elements and different types of UAVs and is based on UAV application standards. The model can be easily adapted to the most popular flight tasks and allows for estimating the monitoring frequency and determining the most appropriate grouping and configuration of UAVs, monitoring schemes, air time and maintenance periods. An important advantage is the ability to consider drone maintenance processes. Thus, the methodology will be useful in the conceptual design phase of UAVs, in monitoring planning, and in the selection of UAVs for specific monitoring tasks.


Asunto(s)
Modelos Biológicos , Dispositivos Aéreos No Tripulados
14.
Eng Appl Artif Intell ; 114: 105154, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35821739

RESUMEN

The control of the pandemic caused by SARS-CoV-2 is a challenge for governments all around the globe. To manage this situation, countries have adopted a bundle of measures, including restrictions to population mobility. As a consequence, drivers face with the problem of obtaining fast routes to reach their destinations. In this context, some recent works combine Intelligent Transportation Systems (ITS) with big data processing technologies taking the traffic information into account. However, there are no proposals able to gather the COVID-19 health information, assist in the decision-making process, and compute fast routes in an all-in-one solution. In this paper, we propose a Pandemic Intelligent Transportation System (PITS) based on Complex Event Processing (CEP), Fuzzy Logic (FL) and Colored Petri Nets (CPN). CEP is used to process the COVID-19 health indicators and FL to provide recommendations about city areas that should not be crossed. CPNs are then used to create map models of health areas with the mobility restriction information and obtain fast routes for drivers to reach their destinations. The application of PITS to Madrid region (Spain) demonstrates that this system provides support for authorities in the decision-making process about mobility restrictions and obtain fast routes for drivers. PITS is a versatile proposal which can easily be adapted to other scenarios in order to tackle different emergency situations.

15.
Sensors (Basel) ; 21(2)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466711

RESUMEN

Wireless charging provides continuous energy for wireless sensor networks. However, it is difficult to replenish enough energy for all sensor nodes with fixed charging alone, and even more unrealistic to charge a large number of nodes within a short time via mobile charging. In order to overcome the above weaknesses, this paper firstly puts forward a Master-Slave Charging mode for the WRSN (Wireless Rechargeable Sensor Network), where fixed charging is the master mode and mobile charging is the slave mode, respectively. However, Master-Slave Charging is a typical hybrid system involving discrete event decision and continuous energy transfer. Therefore, the Hybrid Cyber Petri net system is proposed to build a visual specification with mathematical expression of Master-Slave Charging. Moreover, wireless charging in the WRSN is modeled and evaluated from the perspective of a hybrid system for the first time. Furthermore, a greedy-genetic algorithm is proposed to obtain the deployment of fixed chargers and the path planning of a mobile charger, by maximizing the actual electric quantity of the master charging problem and minimizing the mobile charger's travelling path of the slave charging problem. Finally, the simulation results confirm and verify the Hybrid Cyber Petri net model for Master-Slave Charging. It is worth noting that the proposed model in this paper is highly adaptable to various charging modes in the WRSN.

16.
BMC Bioinformatics ; 21(Suppl 17): 550, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33308135

RESUMEN

BACKGROUND: Multiple Sclerosis (MS) represents nowadays in Europe the leading cause of non-traumatic disabilities in young adults, with more than 700,000 EU cases. Although huge strides have been made over the years, MS etiology remains partially unknown. Furthermore, the presence of various endogenous and exogenous factors can greatly influence the immune response of different individuals, making it difficult to study and understand the disease. This becomes more evident in a personalized-fashion when medical doctors have to choose the best therapy for patient well-being. In this optics, the use of stochastic models, capable of taking into consideration all the fluctuations due to unknown factors and individual variability, is highly advisable. RESULTS: We propose a new model to study the immune response in relapsing remitting MS (RRMS), the most common form of MS that is characterized by alternate episodes of symptom exacerbation (relapses) with periods of disease stability (remission). In this new model, both the peripheral lymph node/blood vessel and the central nervous system are explicitly represented. The model was created and analysed using Epimod, our recently developed general framework for modeling complex biological systems. Then the effectiveness of our model was shown by modeling the complex immunological mechanisms characterizing RRMS during its course and under the DAC administration. CONCLUSIONS: Simulation results have proven the ability of the model to reproduce in silico the immune T cell balance characterizing RRMS course and the DAC effects. Furthermore, they confirmed the importance of a timely intervention on the disease course.


Asunto(s)
Sistema Inmunológico/fisiología , Modelos Biológicos , Esclerosis Múltiple Recurrente-Remitente/inmunología , Interfaz Usuario-Computador , Algoritmos , Daclizumab/uso terapéutico , Humanos , Inmunosupresores/uso terapéutico , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/patología , Procesos Estocásticos
17.
Parasitology ; 147(3): 376-381, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31789140

RESUMEN

Alveolar echinococcosis (AE) is a zoonotic parasitic diseases caused by a cestode parasite known as Echinococcus multilocularis. The parasite has a wildlife cycle with definitive hosts (foxes) and small mammals as intermediate hosts (rodents) while humans are the accidental hosts. Parasite infection pressure relation to time of the year and age dependent infection pressure for parasite abundance also depend on the urbanization. The aim of current work is forecasting the thresholds via the computational analysis of the disease spread which is a useful approach since it can help to design the experimental settings with better planning and efficiency. Network analysis when interlinked with the computational techniques provides better insight into the spatial and temporal heterogeneities. In the present study, a mathematical framework that describes the transmission dynamics and control measures of E. multilocularis in foxes is documented. We used treatment of foxes with baits for the prevention of the E. multilocularis infection. A novel approach of networking, called Petri net (PN), based on density dependent differential equations, is utilized during this research. The accurate description of the transmission of the parasite and the effect of drug on it is provided to the readers in this article. The transitions, which are difficult to analyse theoretically, are presented with the aid of the discrete approach of networking. A discrete mathematical framework can prove to be an accurate and robust tool to analyse and control the parasite dynamics.


Asunto(s)
Equinococosis/veterinaria , Echinococcus multilocularis/fisiología , Zorros , Animales , Equinococosis/prevención & control , Equinococosis/transmisión , Modelos Biológicos
18.
Sensors (Basel) ; 20(2)2020 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-31963954

RESUMEN

A new kind of malware called Mirai is spreading like wildfire. Mirai is characterized by targeting Internet of Things (IoT) devices. Since IoT devices are increasing explosively, it is not realistic to manage their vulnerability by human-wave tactics. This paper proposes a new approach that uses a white-hat worm to fight malware. The white-hat worm is an extension of an IoT worm called Hajime and introduces lifespan and secondary infectivity (the ability to infect a device infected by Mirai). The proposed white-hat worm was expressed as a formal model with agent-oriented Petri nets called PN 2 . The model enables us to simulate a battle between the white-hat worm and Mirai. The result of the simulation evaluation shows that (i) the lifespan successfully reduces the worm's remaining if short; (ii) if the worm has low secondary infectivity, its effect depends on the lifespan; and (iii) if the worm has high secondary infectivity, it is effective without depending on the lifespan.

19.
Sensors (Basel) ; 20(20)2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053690

RESUMEN

Anomaly detection for discrete manufacturing systems is important in intelligent manufacturing. In this paper, we address the problem of anomaly detection for the discrete manufacturing systems with complicated processes, including parallel processes, loop processes, and/or parallel with nested loop sub-processes. Such systems can generate a series of discrete event data during normal operations. Existing methods that deal with the discrete sequence data may not be efficient for the discrete manufacturing systems or methods that are dealing with manufacturing systems only focus on some specific systems. In this paper, we take the middle way and seek to propose an efficient algorithm by applying only the system structure information. Motivated by the system structure information that the loop processes may result in repeated events, we propose two algorithms-centralized pattern relation table algorithm and parallel pattern relation table algorithm-to build one or multiple relation tables between loop pattern elements and individual events. The effectiveness of the proposed algorithms is tested by two artificial data sets that are generated by Timed Petri Nets. The experimental results show that the proposed algorithms can achieve higher AUC and F1-score, even with smaller sized data set compared to the other algorithms and that the parallel algorithm achieves the highest performance with the smallest data set.

20.
Sensors (Basel) ; 20(24)2020 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-33419256

RESUMEN

An appearance of radiometers and dosimeters on free sale made it possible to provide better radiation safety for citizens. The effects of radiation may not appear all at once. They can manifest themselves in decades to come in future generations, in the form of cancer, genetic mutations, etc. For this reason, we have developed in this paper a microcontroller-based radiation monitoring system. The system determines an accumulated radiation dose for a certain period, as well as gives alarm signals when the rate of the equivalent dose exceeds. The high reliability of this system is ensured by a rapid response to emergency situations: excess of the allowable power of the equivalent radiation dose and the accumulator charge control. Further, we have composed a microcontroller electronic circuit for the monitoring radiation system. Additionally, an operation algorithm, as well as software for the ATmega328P microcontroller of the Arduino Uno board, have been developed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA