Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.278
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(5): 1177-1190.e18, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38366593

RESUMEN

Phospholipids containing a single polyunsaturated fatty acyl tail (PL-PUFA1s) are considered the driving force behind ferroptosis, whereas phospholipids with diacyl-PUFA tails (PL-PUFA2s) have been rarely characterized. Dietary lipids modulate ferroptosis, but the mechanisms governing lipid metabolism and ferroptosis sensitivity are not well understood. Our research revealed a significant accumulation of diacyl-PUFA phosphatidylcholines (PC-PUFA2s) following fatty acid or phospholipid treatments, correlating with cancer cell sensitivity to ferroptosis. Depletion of PC-PUFA2s occurred in aging and Huntington's disease brain tissue, linking it to ferroptosis. Notably, PC-PUFA2s interacted with the mitochondrial electron transport chain, generating reactive oxygen species (ROS) for initiating lipid peroxidation. Mitochondria-targeted antioxidants protected cells from PC-PUFA2-induced mitochondrial ROS (mtROS), lipid peroxidation, and cell death. These findings reveal a critical role for PC-PUFA2s in controlling mitochondria homeostasis and ferroptosis in various contexts and explain the ferroptosis-modulating mechanisms of free fatty acids. PC-PUFA2s may serve as diagnostic and therapeutic targets for modulating ferroptosis.


Asunto(s)
Grasas de la Dieta , Ferroptosis , Fosfolípidos , Ácidos Grasos , Fosfatidilcolinas , Fosfolípidos/química , Fosfolípidos/metabolismo , Especies Reactivas de Oxígeno , Grasas de la Dieta/metabolismo
2.
Cell ; 186(23): 5028-5040.e14, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37852257

RESUMEN

Wnt proteins are enzymatically lipidated by Porcupine (PORCN) in the ER and bind to Wntless (WLS) for intracellular transport and secretion. Mechanisms governing the transfer of these low-solubility Wnts from the ER to the extracellular space remain unclear. Through structural and functional analyses of Wnt7a, a crucial Wnt involved in central nervous system angiogenesis and blood-brain barrier maintenance, we have elucidated the principles of Wnt biogenesis and Wnt7-specific signaling. The Wnt7a-WLS complex binds to calreticulin (CALR), revealing that CALR functions as a chaperone to facilitate Wnt transfer from PORCN to WLS during Wnt biogenesis. Our structures, functional analyses, and molecular dynamics simulations demonstrate that a phospholipid in the core of Wnt-bound WLS regulates the association and dissociation between Wnt and WLS, suggesting a lipid-mediated Wnt secretion mechanism. Finally, the structure of Wnt7a bound to RECK, a cell-surface Wnt7 co-receptor, reveals how RECKCC4 engages the N-terminal domain of Wnt7a to activate Wnt7-specific signaling.


Asunto(s)
Receptores Acoplados a Proteínas G , Proteínas Wnt , Vía de Señalización Wnt , Barrera Hematoencefálica/metabolismo , Unión Proteica , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Proteínas Wnt/química , Proteínas Wnt/metabolismo
3.
Cell ; 186(13): 2748-2764.e22, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37267948

RESUMEN

Ferroptosis, a cell death process driven by iron-dependent phospholipid peroxidation, has been implicated in various diseases. There are two major surveillance mechanisms to suppress ferroptosis: one mediated by glutathione peroxidase 4 (GPX4) that catalyzes the reduction of phospholipid peroxides and the other mediated by enzymes, such as FSP1, that produce metabolites with free radical-trapping antioxidant activity. In this study, through a whole-genome CRISPR activation screen, followed by mechanistic investigation, we identified phospholipid-modifying enzymes MBOAT1 and MBOAT2 as ferroptosis suppressors. MBOAT1/2 inhibit ferroptosis by remodeling the cellular phospholipid profile, and strikingly, their ferroptosis surveillance function is independent of GPX4 or FSP1. MBOAT1 and MBOAT2 are transcriptionally upregulated by sex hormone receptors, i.e., estrogen receptor (ER) and androgen receptor (AR), respectively. A combination of ER or AR antagonist with ferroptosis induction significantly inhibited the growth of ER+ breast cancer and AR+ prostate cancer, even when tumors were resistant to single-agent hormonal therapies.


Asunto(s)
Ferroptosis , Masculino , Humanos , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Peroxidación de Lípido , Peróxidos , Fosfolípidos
4.
Cell ; 180(1): 135-149.e14, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31883797

RESUMEN

Autophagy is a conserved catabolic homeostasis process central for cellular and organismal health. During autophagy, small single-membrane phagophores rapidly expand into large double-membrane autophagosomes to encapsulate diverse cargoes for degradation. It is thought that autophagic membranes are mainly derived from preformed organelle membranes. Instead, here we delineate a pathway that expands the phagophore membrane by localized phospholipid synthesis. Specifically, we find that the conserved acyl-CoA synthetase Faa1 accumulates on nucleated phagophores and locally activates fatty acids (FAs) required for phagophore elongation and autophagy. Strikingly, using isotopic FA tracing, we directly show that Faa1 channels activated FAs into the synthesis of phospholipids and promotes their assembly into autophagic membranes. Indeed, the first committed steps of de novo phospholipid synthesis at the ER, which forms stable contacts with nascent autophagosomes, are essential for autophagy. Together, our work illuminates how cells spatially tune synthesis and flux of phospholipids for autophagosome biogenesis during autophagy.


Asunto(s)
Autofagia/fisiología , Ácidos Grasos/metabolismo , Fagosomas/metabolismo , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Membrana Celular/metabolismo , Coenzima A Ligasas/metabolismo , Retículo Endoplásmico/metabolismo , Metabolismo de los Lípidos , Proteínas de la Membrana/metabolismo , Fagosomas/fisiología , Fosfolípidos/biosíntesis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Cell ; 177(4): 881-895.e17, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31051106

RESUMEN

Non-alcoholic fatty liver is the most common liver disease worldwide. Here, we show that the mitochondrial protein mitofusin 2 (Mfn2) protects against liver disease. Reduced Mfn2 expression was detected in liver biopsies from patients with non-alcoholic steatohepatitis (NASH). Moreover, reduced Mfn2 levels were detected in mouse models of steatosis or NASH, and its re-expression in a NASH mouse model ameliorated the disease. Liver-specific ablation of Mfn2 in mice provoked inflammation, triglyceride accumulation, fibrosis, and liver cancer. We demonstrate that Mfn2 binds phosphatidylserine (PS) and can specifically extract PS into membrane domains, favoring PS transfer to mitochondria and mitochondrial phosphatidylethanolamine (PE) synthesis. Consequently, hepatic Mfn2 deficiency reduces PS transfer and phospholipid synthesis, leading to endoplasmic reticulum (ER) stress and the development of a NASH-like phenotype and liver cancer. Ablation of Mfn2 in liver reveals that disruption of ER-mitochondrial PS transfer is a new mechanism involved in the development of liver disease.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Proteínas Mitocondriales/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fosfatidilserinas/metabolismo , Animales , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Inflamación/metabolismo , Hígado/patología , Hepatopatías/etiología , Hepatopatías/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Cultivo Primario de Células , Transporte de Proteínas/fisiología , Transducción de Señal , Triglicéridos/metabolismo
6.
Cell ; 171(7): 1532-1544.e15, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29129376

RESUMEN

Transmission represents a population bottleneck in the Plasmodium life cycle and a key intervention target of ongoing efforts to eradicate malaria. Sexual differentiation is essential for this process, as only sexual parasites, called gametocytes, are infective to the mosquito vector. Gametocyte production rates vary depending on environmental conditions, but external stimuli remain obscure. Here, we show that the host-derived lipid lysophosphatidylcholine (LysoPC) controls P. falciparum cell fate by repressing parasite sexual differentiation. We demonstrate that exogenous LysoPC drives biosynthesis of the essential membrane component phosphatidylcholine. LysoPC restriction induces a compensatory response, linking parasite metabolism to the activation of sexual-stage-specific transcription and gametocyte formation. Our results reveal that malaria parasites can sense and process host-derived physiological signals to regulate differentiation. These data close a critical knowledge gap in parasite biology and introduce a major component of the sexual differentiation pathway in Plasmodium that may provide new approaches for blocking malaria transmission.


Asunto(s)
Lisofosfatidilcolinas/metabolismo , Malaria/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Animales , Femenino , Humanos , Malaria/inmunología , Redes y Vías Metabólicas , Ratones , Ratones Endogámicos C57BL , Plasmodium berghei/fisiología , Reproducción
7.
Mol Cell ; 84(7): 1354-1364.e9, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38447580

RESUMEN

Batten disease, the most prevalent form of neurodegeneration in children, is caused by mutations in the CLN3 gene, which encodes a lysosomal transmembrane protein. CLN3 loss leads to significant accumulation of glycerophosphodiesters (GPDs), the end products of glycerophospholipid catabolism in the lysosome. Despite GPD storage being robustly observed upon CLN3 loss, the role of GPDs in neuropathology remains unclear. Here, we demonstrate that GPDs act as potent inhibitors of glycerophospholipid catabolism in the lysosome using human cell lines and mouse models. Mechanistically, GPDs bind and competitively inhibit the lysosomal phospholipases PLA2G15 and PLBD2, which we establish to possess phospholipase B activity. GPDs effectively inhibit the rate-limiting lysophospholipase activity of these phospholipases. Consistently, lysosomes of CLN3-deficient cells and tissues accumulate toxic lysophospholipids. Our work establishes that the storage material in Batten disease directly disrupts lysosomal lipid homeostasis, suggesting GPD clearance as a potential therapeutic approach to this fatal disease.


Asunto(s)
Glicoproteínas de Membrana , Lipofuscinosis Ceroideas Neuronales , Ratones , Animales , Niño , Humanos , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/metabolismo , Lipofuscinosis Ceroideas Neuronales/patología , Lisosomas/metabolismo , Fosfolipasas/metabolismo , Glicerofosfolípidos/metabolismo , Fosfolípidos/metabolismo
8.
Cell ; 166(6): 1436-1444.e10, 2016 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-27610568

RESUMEN

Conjugative pili are widespread bacterial appendages that play important roles in horizontal gene transfer, in spread of antibiotic resistance genes, and as sites of phage attachment. Among conjugative pili, the F "sex" pilus encoded by the F plasmid is the best functionally characterized, and it is also historically the most important, as the discovery of F-plasmid-mediated conjugation ushered in the era of molecular biology and genetics. Yet, its structure is unknown. Here, we present atomic models of two F family pili, the F and pED208 pili, generated from cryoelectron microscopy reconstructions at 5.0 and 3.6 Å resolution, respectively. These structures reveal that conjugative pili are assemblies of stoichiometric protein-phospholipid units. We further demonstrate that each pilus type binds preferentially to particular phospholipids. These structures provide the molecular basis for F pilus assembly and also shed light on the remarkable properties of conjugative pili in bacterial secretion and phage infection.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/fisiología , Factor F/química , Fimbrias Bacterianas/química , Modelos Moleculares , Fosfolípidos/química , Sitios de Ligazón Microbiológica/genética , Microscopía por Crioelectrón , Proteínas de Escherichia coli/metabolismo , Factor F/genética , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Lípidos/química , Mutación , Fosfolípidos/metabolismo , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Sistemas de Secreción Tipo V/química , Sistemas de Secreción Tipo V/metabolismo
9.
Mol Cell ; 81(7): 1397-1410.e9, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33725486

RESUMEN

Phospholipid scrambling in dying cells promotes phosphatidylserine exposure, a critical process for efferocytosis. We previously identified the Xkr family protein Xkr4 as a phospholipid-scrambling protein, but its activation mechanisms remain unknown. Here we show that Xkr4 is activated in two steps: dimer formation by caspase-mediated cleavage and structural change caused by activating factors. To identify the factors, we developed a new screening system, "revival screening," using a CRISPR sgRNA library. Applying this system, we identified the nuclear protein XRCC4 as the single candidate for the Xkr4 activator. Upon apoptotic stimuli, XRCC4, contained in the DNA repair complex, is cleaved by caspases, and its C-terminal fragment with an intrinsically disordered region is released into the cytoplasm. Protein interaction screening showed that the fragment interacts directly with the Xkr4 dimer to activate it. This study demonstrates that caspase-mediated cleavage releases a nuclear protein fragment for direct regulation of lipid dynamics on the plasma membrane.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Caspasas/metabolismo , Membrana Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de la Membrana/metabolismo , Fosfolípidos/metabolismo , Proteolisis , Animales , Proteínas Reguladoras de la Apoptosis/genética , Caspasas/genética , Línea Celular Tumoral , Membrana Celular/genética , Proteínas de Unión al ADN/genética , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Ratones , Fosfolípidos/genética , Multimerización de Proteína
10.
EMBO J ; 42(14): e111790, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37211968

RESUMEN

The mature mammalian brain connectome emerges during development via the extension and pruning of neuronal connections. Glial cells have been identified as key players in the phagocytic elimination of neuronal synapses and projections. Recently, phosphatidylserine has been identified as neuronal "eat-me" signal that guides elimination of unnecessary input sources, but the associated transduction systems involved in such pruning are yet to be described. Here, we identified Xk-related protein 8 (Xkr8), a phospholipid scramblase, as a key factor for the pruning of axons in the developing mammalian brain. We found that mouse Xkr8 is highly expressed immediately after birth and required for phosphatidylserine exposure in the hippocampus. Mice lacking Xkr8 showed excess excitatory nerve terminals, increased density of cortico-cortical and cortico-spinal projections, aberrant electrophysiological profiles of hippocampal neurons, and global brain hyperconnectivity. These data identify phospholipid scrambling by Xkr8 as a central process in the labeling and discrimination of developing neuronal projections for pruning in the mammalian brain.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Proteínas de Transferencia de Fosfolípidos , Animales , Ratones , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Fosfatidilserinas/metabolismo , Axones/metabolismo , Plasticidad Neuronal , Mamíferos , Proteínas de la Membrana/metabolismo
11.
Am J Hum Genet ; 111(6): 1184-1205, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38744284

RESUMEN

Anoctamins are a family of Ca2+-activated proteins that may act as ion channels and/or phospholipid scramblases with limited understanding of function and disease association. Here, we identified five de novo and two inherited missense variants in ANO4 (alias TMEM16D) as a cause of fever-sensitive developmental and epileptic or epileptic encephalopathy (DEE/EE) and generalized epilepsy with febrile seizures plus (GEFS+) or temporal lobe epilepsy. In silico modeling of the ANO4 structure predicted that all identified variants lead to destabilization of the ANO4 structure. Four variants are localized close to the Ca2+ binding sites of ANO4, suggesting impaired protein function. Variant mapping to the protein topology suggests a preliminary genotype-phenotype correlation. Moreover, the observation of a heterozygous ANO4 deletion in a healthy individual suggests a dysfunctional protein as disease mechanism rather than haploinsufficiency. To test this hypothesis, we examined mutant ANO4 functional properties in a heterologous expression system by patch-clamp recordings, immunocytochemistry, and surface expression of annexin A5 as a measure of phosphatidylserine scramblase activity. All ANO4 variants showed severe loss of ion channel function and DEE/EE associated variants presented mild loss of surface expression due to impaired plasma membrane trafficking. Increased levels of Ca2+-independent annexin A5 at the cell surface suggested an increased apoptosis rate in DEE-mutant expressing cells, but no changes in Ca2+-dependent scramblase activity were observed. Co-transfection with ANO4 wild-type suggested a dominant-negative effect. In summary, we expand the genetic base for both encephalopathic sporadic and inherited fever-sensitive epilepsies and link germline variants in ANO4 to a hereditary disease.


Asunto(s)
Anoctaminas , Mutación Missense , Humanos , Anoctaminas/genética , Anoctaminas/metabolismo , Mutación Missense/genética , Masculino , Femenino , Epilepsia/genética , Niño , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Estudios de Asociación Genética , Linaje , Calcio/metabolismo , Genes Dominantes , Preescolar , Células HEK293 , Adolescente
12.
Mol Cell ; 75(5): 1043-1057.e8, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31402097

RESUMEN

The plasma membrane (PM) is composed of a complex lipid mixture that forms heterogeneous membrane environments. Yet, how small-scale lipid organization controls physiological events at the PM remains largely unknown. Here, we show that ORP-related Osh lipid exchange proteins are critical for the synthesis of phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2], a key regulator of dynamic events at the PM. In real-time assays, we find that unsaturated phosphatidylserine (PS) and sterols, both Osh protein ligands, synergistically stimulate phosphatidylinositol 4-phosphate 5-kinase (PIP5K) activity. Biophysical FRET analyses suggest an unconventional co-distribution of unsaturated PS and phosphatidylinositol 4-phosphate (PI4P) species in sterol-containing membrane bilayers. Moreover, using in vivo imaging approaches and molecular dynamics simulations, we show that Osh protein-mediated unsaturated PI4P and PS membrane lipid organization is sensed by the PIP5K specificity loop. Thus, ORP family members create a nanoscale membrane lipid environment that drives PIP5K activity and PI(4,5)P2 synthesis that ultimately controls global PM organization and dynamics.


Asunto(s)
Proteínas Portadoras/metabolismo , Fosfatidilinositol 4,5-Difosfato/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/genética , Fosfatidilinositol 4,5-Difosfato/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
13.
Immunol Rev ; 317(1): 42-70, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37035998

RESUMEN

Among the phospholipase A2 (PLA2 ) superfamily, which typically catalyzes the sn-2 hydrolysis of phospholipids to yield fatty acids and lysophospholipids, the secreted PLA2 (sPLA2 ) family contains 11 isoforms in mammals. Individual sPLA2 s have unique enzymatic specificity toward fatty acids and polar heads of phospholipid substrates and display distinct tissue/cellular distributions, suggesting their distinct physiological functions. Recent studies using knockout and/or transgenic mice for a full set of sPLA2 s have revealed their roles in modulation of immunity and related disorders. Application of mass spectrometric lipidomics to these mice has enabled to identify target substrates and products of individual sPLA2 s in given tissue microenvironments. sPLA2 s hydrolyze not only phospholipids in the plasma membrane of activated, damaged or dying mammalian cells, but also extracellular phospholipids such as those in extracellular vesicles, microbe membranes, lipoproteins, surfactants, and dietary phospholipids, thereby exacerbating or ameliorating various diseases. The actions of sPLA2 s are dependent on, or independent of, the generation of fatty acid- or lysophospholipid-derived lipid mediators according to the pathophysiological contexts. In this review, we make an overview of our current understanding of the roles of individual sPLA2 s in various immune responses and associated diseases.


Asunto(s)
Fosfolipasas A2 Secretoras , Animales , Humanos , Ratones , Fosfolipasas A2 Secretoras/metabolismo , Ácidos Grasos , Ratones Transgénicos , Membrana Celular/metabolismo , Mamíferos/metabolismo
14.
Trends Biochem Sci ; 47(1): 39-51, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34583871

RESUMEN

Lipid droplets (LDs) are the main organelles for lipid storage, and their surfaces contain unique proteins with diverse functions, including those that facilitate the deposition and mobilization of LD lipids. Among organelles, LDs have an unusual structure with an organic, hydrophobic oil phase covered by a phospholipid monolayer. The unique properties of LD monolayer surfaces require proteins to localize to LDs by distinct mechanisms. Here we review the two pathways known to mediate direct LD protein localization: the CYTOLD pathway mediates protein targeting from the cytosol toLDs, and the ERTOLD pathway functions in protein targeting from the endoplasmic reticulum toLDs. We describe the emerging principles for each targeting pathway in animal cells and highlight open questions in the field.


Asunto(s)
Retículo Endoplásmico , Gotas Lipídicas , Animales , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Transporte de Proteínas , Proteínas/metabolismo
15.
Mol Cell ; 70(3): 531-544.e9, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29727621

RESUMEN

While the majority of phosphatidylinositol-4, 5-bisphosphate (PI-4, 5-P2) in mammalian cells is generated by the conversion of phosphatidylinositol-4-phosphate (PI-4-P) to PI-4, 5-P2, a small fraction can be made by phosphorylating phosphatidylinositol-5-phosphate (PI-5-P). The physiological relevance of this second pathway is not clear. Here, we show that deletion of the genes encoding the two most active enzymes in this pathway, Pip4k2a and Pip4k2b, in the liver of mice causes a large enrichment in lipid droplets and in autophagic vesicles during fasting. These changes are due to a defect in the clearance of autophagosomes that halts autophagy and reduces the supply of nutrients salvaged through this pathway. Similar defects in autophagy are seen in nutrient-starved Pip4k2a-/-Pip4k2b-/- mouse embryonic fibroblasts and in C. elegans lacking the PI5P4K ortholog. These results suggest that this alternative pathway for PI-4, 5-P2 synthesis evolved, in part, to enhance the ability of multicellular organisms to survive starvation.


Asunto(s)
Autofagia/fisiología , Ayuno/metabolismo , Metabolismo de los Lípidos/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Autofagosomas/metabolismo , Caenorhabditis elegans/metabolismo , Línea Celular , Fibroblastos/metabolismo , Células HEK293 , Humanos , Hígado/metabolismo , Ratones , Fosfatos de Fosfatidilinositol/metabolismo , Transducción de Señal/fisiología
16.
Bioessays ; 46(6): e2300218, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38616332

RESUMEN

Dietary methionine restriction (MR) is associated with a spectrum of health-promoting benefits. Being conducive to prevention of chronic diseases and extension of life span, MR can activate integrated responses at metabolic, transcriptional, and physiological levels. However, how the mitochondria of MR influence metabolic phenotypes remains elusive. Here, we provide a summary of cellular functions of methionine metabolism and an overview of the current understanding of effector mechanisms of MR, with a focus on the aspect of mitochondria-mediated responses. We propose that mitochondria can sense and respond to MR through a modulatory role of lipoylation, a mitochondrial protein modification sensitized by MR.


Asunto(s)
Lipoilación , Metionina , Mitocondrias , Metionina/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Humanos , Animales , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Adaptación Fisiológica
17.
Proc Natl Acad Sci U S A ; 120(24): e2300784120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37276399

RESUMEN

The Gram-negative bacterial cell envelope is a complex multilayered structure comprising a bilayered phospholipid (PL) membrane that surrounds the cytoplasm (inner membrane or IM) and an asymmetric outer membrane (OM) with PLs in the inner leaflet and lipopolysaccharides in the outer leaflet. Between these two layers is the periplasmic space, which contains a highly cross-linked mesh-like glycan polymer, peptidoglycan (PG). During cell expansion, coordinated synthesis of each of these components is required to maintain the integrity of the cell envelope; however, it is currently not clear how such coordination is achieved. In this study, we show that a cross-link-specific PG hydrolase couples the expansion of PG sacculus with that of PL synthesis in the Gram-negative model bacterium, Escherichia coli. We find that unregulated activity of a PG hydrolytic enzyme, MepS is detrimental for growth of E. coli during fatty acid (FA)-limiting conditions. Further genetic and biochemical analyses revealed that cellular availability of FA or PL alters the post-translational stability of MepS by modulating the proteolytic activity of a periplasmic adaptor-protease complex, NlpI-Prc toward MepS. Our results indicate that loss of OM lipid asymmetry caused by alterations in PL abundance leads to the generation of a signal to the NlpI-Prc complex for the stabilization of MepS, which subsequently cleaves the cross-links to facilitate expansion of PG. In summary, our study shows the existence of a molecular cross-talk that enables coordinated expansion of the PG sacculus with that of membrane synthesis for balanced cell-envelope biogenesis.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Hidrolasas/metabolismo , Pared Celular/metabolismo , Bacterias Gramnegativas/metabolismo , Fosfolípidos/metabolismo , Lipoproteínas/metabolismo , Cisteína Endopeptidasas/metabolismo
18.
Annu Rev Physiol ; 84: 409-434, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34699267

RESUMEN

Cerebral small vessel disease (SVD) is highly prevalent and a common cause of ischemic and hemorrhagic stroke and dementia, yet the pathophysiology is poorly understood. Its clinical expression is highly varied, and prognostic implications are frequently overlooked in clinics; thus, treatment is currently confined to vascular risk factor management. Traditionally, SVD is considered the small vessel equivalent of large artery stroke (occlusion, rupture), but data emerging from human neuroimaging and genetic studies refute this, instead showing microvessel endothelial dysfunction impacting on cell-cell interactions and leading to brain damage. These dysfunctions reflect defects that appear to be inherited and secondary to environmental exposures, including vascular risk factors. Interrogation in preclinical models shows consistent and converging molecular and cellular interactions across the endothelial-glial-neural unit that increasingly explain the human macroscopic observations and identify common patterns of pathology despite different triggers. Importantly, these insights may offer new targets for therapeutic intervention focused on restoring endothelial-glial physiology.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Accidente Cerebrovascular , Enfermedades de los Pequeños Vasos Cerebrales/patología , Humanos , Accidente Cerebrovascular/complicaciones
19.
J Biol Chem ; 300(5): 107214, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522521

RESUMEN

The role of polyunsaturated fatty acid (PUFA) biosynthesis in acute myeloid leukemia (AML) remains largely undefined. A comparative expression analysis of 35 genes encoding fatty acid biosynthesis enzymes showed that fatty acid desaturase 1 (FADS1) was highly expressed across multiple AML subtypes relative to healthy controls and that elevated FADS1 expression correlates with worse overall AML patient survival. Functionally, shRNA-mediated inhibition of FADS1 reduced AML cell growth in vitro and significantly delayed leukemia onset in an AML mouse model. AML cell lines depleted of FADS1 arrested in the G1/S-phase of the cell cycle, acquired characteristics of myeloid maturation and subsequently died. To understand the molecular consequences of FADS1 inhibition, a combination of mass spectrometry-based analysis of complex lipids and gene expression analysis (RNA-seq) was performed. FADS1 inhibition caused AML cells to exhibit significant lipidomic remodeling, including depletion of PUFAs from the phospholipids, phosphatidylserine, and phosphatidylethanolamine. These lipidomic alterations were accompanied by an increase induction of inflammatory and stimulator of interferon genes (STING)-mediated type-1 interferon signaling. Remarkably, genetic deletion of STING largely prevented the AML cell maturation and death phenotypes mediated by FADS1 inhibition. Highlighting the therapeutic implications of these findings, pharmacological blockade of PUFA biosynthesis reduced patient-derived AML cell numbers ex vivo but not that of healthy donor cells. Similarly, STING agonism attenuated patient-derived-AML survival; however, STING activation also reduced healthy granulocyte numbers. Collectively, these data unveil a previously unrecognized importance of PUFA biosynthesis in leukemogenesis and that imbalances in PUFA metabolism can drive STING-mediated AML maturation and death.


Asunto(s)
delta-5 Desaturasa de Ácido Graso , Ácido Graso Desaturasas , Ácidos Grasos Insaturados , Leucemia Mieloide Aguda , Proteínas de la Membrana , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/genética , Animales , Humanos , Ratones , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos Insaturados/biosíntesis , Ácido Graso Desaturasas/metabolismo , Ácido Graso Desaturasas/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Línea Celular Tumoral , Muerte Celular , Transducción de Señal
20.
J Biol Chem ; 300(4): 107143, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458396

RESUMEN

A promising yet clinically unexploited antibiotic target in difficult-to-treat Gram-negative bacteria is LpxC, the key enzyme in the biosynthesis of lipopolysaccharides, which are the major constituents of the outer membrane. Despite the development of dozens of chemically diverse LpxC inhibitor molecules, it is essentially unknown how bacteria counteract LpxC inhibition. Our study provides comprehensive insights into the response against five different LpxC inhibitors. All compounds bound to purified LpxC from Escherichia coli. Treatment of E. coli with these compounds changed the cell shape and stabilized LpxC suggesting that FtsH-mediated proteolysis of the inactivated enzyme is impaired. LpxC inhibition sensitized E. coli to vancomycin and rifampin, which poorly cross the outer membrane of intact cells. Four of the five compounds led to an accumulation of lyso-phosphatidylethanolamine, a cleavage product of phosphatidylethanolamine, generated by the phospholipase PldA. The combined results suggested an imbalance in lipopolysaccharides and phospholipid biosynthesis, which was corroborated by the global proteome response to treatment with the LpxC inhibitors. Apart from LpxC itself, FabA and FabB responsible for the biosynthesis of unsaturated fatty acids were consistently induced. Upregulated compound-specific proteins are involved in various functional categories, such as stress reactions, nucleotide, or amino acid metabolism and quorum sensing. Our work shows that antibiotics targeting the same enzyme do not necessarily elicit identical cellular responses. Moreover, we find that the response of E. coli to LpxC inhibition is distinct from the previously reported response in Pseudomonas aeruginosa.


Asunto(s)
Amidohidrolasas , Inhibidores Enzimáticos , Escherichia coli , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Lipopolisacáridos/biosíntesis , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Farmacorresistencia Bacteriana/efectos de los fármacos , Membrana Celular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA