Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; 30(43): e202400977, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693865

RESUMEN

We describe early and recent advances in the fascinating field of combined magnetic and optical properties of inorganic coordination compounds and in particular of 3d-4f single molecule magnets. We cover various applied techniques which allow for the correlation of results obtained in the frequency and time domain in order to highlight the specific properties of these compounds and the future challenges towards multidimensional spectroscopic tools. An important point is to understand the details of the interplay of magnetic and optical properties through performing time-resolved studies in the presence of external fields especially magnetic ones. This will enable further exploration of this fundamental interactions i. e. the two components of electromagnetic radiation influencing optical properties.

2.
Angew Chem Int Ed Engl ; : e202417605, 2024 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-39468954

RESUMEN

Designing solid polymer electrolytes (SPEs) with high ionic conductivity for room-temperature operation is essential for advancing flexible all-solid-state energy storage devices. Innovative strategies are urgently required to develop SPEs that are safe, stable, and high-performing. In this work, we introduce photoexcitation-modulated heterojunctions as catalytically active fillers within SPEs, guided by photocatalytic design principles, and employ natural bacterial cellulose to enhance the mechanical properties of the inorganic-filled SPEs. In-situ photothermal experiments and theoretical calculations reveal that the strong photogenerated electric field produced by trace heterojunctions within poly(ethylene oxide) electrolytes under photoexcitation significantly enhances lithium salt dissociation, increasing the concentration of mobile Li+. This results in a substantial increase in ionic conductivity, reaching 0.135 mS cm-1 at 25 °C, with a Li+ transference number as high as 0.46. The flexible all-solid-state lithium-metal pouch cells exhibit an impressive discharge capacity of 178.8 mAh g-1 even after repeated bending and folding, and demonstrate exceptional long-term cycling stability, retaining 86.7% of their initial capacity after 250 cycles at 1 C (25 °C). This research offers a novel approach to developing high-performance flexible lithium-metal batteries.

3.
Cell Physiol Biochem ; 57(2): 123-136, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37074918

RESUMEN

BACKGROUND/AIMS: Alzheimer's disease is a progressive neurological disorder characterized by the intracellular accumulation of Tau protein aggregates. In the present work, we studied the effect of Toluidine Blue and photo-excited Toluidine Blue on the aggregation of repeat Tau using in vitro assays. METHODS: The in vitro experiments were carried out on recombinant repeat Tau which was purified by cation exchange chromatography. The ThS fluorescence analysis was used to study the aggregation kinetics of Tau. CD spectroscopy and electron microscopy were used to study the secondary structure and morphology of Tau respectively. The actin cytoskeleton modulation was studied in Neuro2a cells with help of immunofluorescent microscopy. RESULTS: Results showed that Toluidine Blue efficiently inhibited the formation of higher-order aggregates, which was evidenced by Thioflavin S fluorescence assay, SDS-PAGE, and TEM. Immunofluorescence studies on the cytoskeleton of Neuro2a cells showed that Toluidine Blue and photo-excited Toluidine Blue treatment at a non-toxic concentration of 0.5 µM stimulated the formation of actin-rich lamellipodia and filopodia structures. Tubulin networks were also differentially modulated after the treatment of Toluidine Blue and photo-excited Toluidine Blue. End-binding protein 1 (EB1) levels were observed to increase after Toluidine Blue and photo-excited Toluidine Blue treatment indicating accelerated microtubule polymerization. CONCLUSION: The overall study suggested that Toluidine Blue inhibited the aggregation of soluble Tau and photo-excited Toluidine Blue disaggregated the pre-formed Tau filaments. In our study, TB and PE-TB were observed to be potent against Tau aggregation. We observed a distinctive modulation of actin, tubulin networks, and EB1 levels after TB and PE-TB treatment, which suggested that TB and PE-TB have potency against cytoskeleton deformities.


Asunto(s)
Enfermedad de Alzheimer , Cloruro de Tolonio , Humanos , Cloruro de Tolonio/farmacología , Tubulina (Proteína)/metabolismo , Actinas/metabolismo , Proteínas Portadoras , Citoesqueleto/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo
4.
Nano Lett ; 22(11): 4294-4300, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35612522

RESUMEN

Optical excitation leads to ultrafast stress generation in the prototypical multiferroic BiFeO3. The time scales of stress generation are set by the dynamics of the population of excited electronic states and the coupling of the electronic configuration to the structure. X-ray free-electron laser diffraction reveals high-wavevector subpicosecond-time scale stress generation following ultraviolet excitation of a BiFeO3 thin film. Stress generation includes a fast component with a 1/e rise time with an upper limit of 300 fs and longer-rise time components extending to 1.5 ps. The contributions of the fast and delayed components vary as a function of optical fluence, with a reduced a fast-component contribution at high fluence. The results provide insight into stress-generation mechanisms linked to the population of excited electrons and point to new directions in the application of nanoscale multiferroics and related ferroic complex oxides. The fast component of the stress indicates that structural parameters and properties of ferroelectric thin film materials can be optically modulated with 3 dB bandwidths of at least 0.5 THz.

5.
Angew Chem Int Ed Engl ; 62(32): e202306191, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37306066

RESUMEN

Considering the prevalence of alcohols and carboxylic acids, their fragment cross-coupling reactions could hold significant implications in organic synthesis. Herein, we report a versatile method for synthesizing a diverse range of ketones from alcohols and carboxylic acid derivatives via N-heterocyclic carbene (NHC) catalysis. Mechanistic investigations revealed that photoexcited xanthates and acyl azoliums undergo single electron transfer (SET) under photocatalyst-free conditions, generating NHC-derived ketyl radicals and alkyl radicals. These open-shell intermediates subsequently undergo the radical-radical cross-coupling reaction, yielding valuable ketones. Furthermore, this approach can be employed in three-component reactions involving alkenes and enynes, resulting in structurally diverse cross-coupled ketones. The unified strategy offers a unique opportunity for the fragment coupling of a diverse range of alcohols and carboxylic acid derivatives, accommodating diverse functional groups even in complex settings.

6.
Proc Natl Acad Sci U S A ; 116(11): 4816-4821, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30796185

RESUMEN

Chemical systems with external control capability and self-recoverability are promising since they can avoid additional chemical or energy imposition during the working process. However, it remains challenging to employ such a nonequilibrium method for the engineering of optoelectronic function and for visualization. Here, we report a functional molecule that can undergo intense conformational regulation upon photoexcitation. It enables a dynamical change in hydrophobicity and a follow-up molecular aggregation in aqueous media, accordingly leading to an aggregation-induced phosphorescence (AIP) behavior. This successive performance is self-recoverable, allowing a rapid (second-scale cycle) and long-standing (>103 cycles) flicker ability under rhythmical control of the AIP. Compared with traditional bidirectional manipulations, such monodirectional photocontrol with spontaneous reset profoundly enhances the operability while mostly avoiding possible side reactions and fatigue accumulation. Furthermore, this material can serve as a type of luminescent probe for dynamically strengthening visualization in bioimaging.


Asunto(s)
Luminiscencia , Dispersión Dinámica de Luz , Células HeLa , Humanos , Conformación Molecular
7.
Nano Lett ; 21(17): 7332-7338, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34406014

RESUMEN

Step edges are an important and prevalent topological feature that influence catalytic, electronic, vibrational, and structural properties arising from modulation of atomic-scale force fields due to edge-atom relaxation. Direct probing of ultrafast atomic-to-nanoscale lattice dynamics at individual steps poses a particularly significant challenge owing to demanding spatiotemporal resolution requirements. Here, we achieve such resolutions with femtosecond 4D ultrafast electron microscopy and directly image nanometer-variant softening of photoexcited phonons at individual surface steps. We find large degrees of softening precisely at the step position, with a thickness-dependent, strain-induced frequency modulation extending tens of nanometers laterally from the atomic-scale discontinuity. The effect originates from anisotropic bond dilation and photoinduced incoherent atomic displacements delineated by abrupt molecular-layer cessation. The magnitude and spatiotemporal extent of softening is quantitatively described with a finite-element transient-deformation model. The high spatiotemporal resolutions demonstrated here enable uncovering of new insights into atomic-scale structure-function relationships of highly defect-sensitive, functional materials.


Asunto(s)
Fonones , Microscopía Electrónica
8.
Angew Chem Int Ed Engl ; 61(39): e202208771, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-35906869

RESUMEN

Using light as a local heat source to induce a temporary pyroelectric current is widely recognized as an effective way to control the polarization of crystalline materials. In contrast, harnessing light directly to modulate the polarization of a crystal via excitation of the electronic bands remains less explored. In this study, we report an FeII spin crossover crystal that exhibits photoinduced macroscopic polarization change upon excitation by green light. When the excited crystal relaxes to the ground state, the corresponding pyroelectric current can be detected. An analysis of the structures, magnetic properties and the Mössbauer and infrared spectra of the complex, supported by calculations, revealed that the polarization change is dictated by the directional relative movement of ions during the spin transition process. The spin transition and polarization change occur simultaneously in response to light stimulus, which demonstrates the enormous potential of polar spin crossover systems in the field of optoelectronic materials.

9.
Angew Chem Int Ed Engl ; 60(32): 17440-17445, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34081388

RESUMEN

2D metal-organic framework (MOF) film as the active layer show promising application prospects in various fields including sensors, catalysis, and electronic devices. However, exploring the application of 2D MOF film in the field of artificial synapses has not been implemented yet. In this work, we fabricated a novel 2D MOF film (Cu-THPP, THPP=5,10,15,20-Tetrakis(4-hydroxyphenyl)-21H,23H-porphine), and further used it as an active layer to explore the application in the simulation of human brain synapses. It shows excellent light-stimulated synaptic plasticity properties, and exhibits the foundation function of synapses such as long-term plasticity (LTP), short-term plasticity (STP), and the conversion of STP to LTP. Most critically, the MOF based artificial synaptic device exhibits an excellent stability in atmosphere. This work opens the door for the application of 2D MOF film in the simulation of human brain synapses.


Asunto(s)
Materiales Biomiméticos/química , Membranas Artificiales , Estructuras Metalorgánicas/química , Materiales Biomiméticos/efectos de la radiación , Biomimética/métodos , Cobre/química , Cobre/efectos de la radiación , Luz , Estructuras Metalorgánicas/efectos de la radiación , Plasticidad Neuronal , Porfirinas/química , Porfirinas/efectos de la radiación , Sinapsis/química
10.
Small ; 16(31): e2001909, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32597019

RESUMEN

Single-component multicolor luminescence, particularly phosphorescence materials are highly attractive both in numerous applications and in-depth understanding the light-emission processes, but formidable challenges still exist for preparing such materials. Herein, a very facile approach is reported to synthesize carbon dots (CDs) (named MP-CDs) that exhibit multicolor fluorescence (FL), and more remarkably, multicolor long-lived room temperature phosphorescence (RTP) under ambient conditions. The FL and RTP colors of the CDs powder are observed to change from blue to green and cyan to yellow, respectively, with the excitation wavelength shifting from 254 to 420 nm. Further studies demonstrate that the multicolor emissions can be attributed to the existence of multiple emitting centers in the CDs and the relatively higher reaction temperature plays a critical role for achieving RTP. Given the unique optical properties, a preliminary application of MP-CDs in advanced anti-counterfeiting is presented. This study not only proposes a strategy to prepare photo-stimulated multicolor RTP materials, but also reveals great potentials of CDs in exploiting novel optical materials with unique properties.

11.
Molecules ; 25(11)2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32517154

RESUMEN

We present a comprehensive femtosecond (fs) transient absorption study of the [Ge9(Hyp)3]- (Hyp = Si(SiMe3)3) cluster solvated in tetrahydrofuran (THF) with special emphasis on intra- and intermolecular charge transfer mechanisms which can be tuned by exchange of the counterion and by dimerization of the cluster. The examination of the visible and the near infrared (NIR) spectral range reveals four different processes of cluster dynamics after UV (267/258 nm) photoexcitation related to charge transfer to solvent and localized excited states in the cluster. The resulting transient absorption is mainly observed in the NIR region. In the UV-Vis range transient absorption of the (neutral) cluster core with similar dynamics can be observed. By transferring concepts of: (i) charge transfer to the solvent known from solvated Na- in THF and (ii) charge transfer in bulk-like materials on metalloid cluster systems containing [Ge9(Hyp)3]- moieties, we can nicely interpret the experimental findings for the different compounds. The first process occurs on a fs timescale and is attributed to localization of the excited electron in the quasi-conduction band/excited state which competes with a charge transfer to the solvent. The latter leads to an excess electron initially located in the vicinity of the parent cluster within the same solvent shell. In a second step, it can recombine with the cluster core with time constants in the picosecond (ps) timescale. Some electrons can escape the influence of the cluster leading to a solvated electron or after interaction with a cation to a contact pair both with lifetimes exceeding our experimentally accessible time window of 1 nanosecond (ns). An additional time constant on a tens of ps timescale is pronounced in the UV-Vis range which can be attributed to the recombination rate of the excited state or quasi conduction band of Ge9-. In the dimer, the excess electron cannot escape the molecule due to strong trapping by the Zn cation that links the two cluster cores.


Asunto(s)
Cationes/química , Complejos de Coordinación/química , Electrones , Furanos/química , Germanio/química , Teoría Cuántica , Luz , Modelos Químicos
12.
Angew Chem Int Ed Engl ; 59(47): 21216-21223, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-32767516

RESUMEN

Photoassisted steam reforming and dry (CO2 ) reforming of methane (SRM and DRM) at room temperature with high syngas selectivity have been achieved in the gas-phase catalysis for the first time. The catalysts used are bimetallic rhodium-vanadium oxide cluster anions of Rh2 VO1-3 - . Both the oxidation of methane and reduction of H2 O/CO2 can take place efficiently in the dark while the pivotal step to govern syngas selectivity is photo-excitation of the reaction intermediates Rh2 VO2,3 CH2 - to specific electronically excited states that can selectively produce CO and H2 . Electronic excitation over Rh2 VO2,3 CH2 - to control the syngas selectivity is further confirmed from the comparison with the thermal excitation of Rh2 VO2,3 CH2 - , which leads to diversity of products. The atomic-level mechanism obtained from the well-controlled cluster reactions provides insight into the process of selective syngas production from the photocatalytic SRM and DRM reactions over supported metal oxide catalysts.

13.
Mikrochim Acta ; 186(4): 237, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30868242

RESUMEN

Multifunctional nanodots represent an emerging platform for overcoming the delivery challenges of poorly water-soluble drugs for use in the diagnosis and treatment of cancer. The authors describe the preparation of nanocrystallites composed of the water-insoluble photosensitizer zinc(II)-phthalocyanine in the form of nanodots by applying a cryodesiccation-driven crystallization approach. Modification of the surface of the nanodots with Pluronic F127 and folic acid endows them with excellent water solubility and stealth properties in blood. Under near-infrared (NIR) photoexcitation at 808 nm, the nanodots are shown to produce singlet oxygen, which is widely used in photodynamic therapy of cancer. The nanodots exhibit strong NIR absorbance at 808 nm and can be used as a non-toxic contrast agent for photoacoustic imaging of tissue. Graphical abstract Schematic presentation of the preparation of ZnPcNDs by droplet-confined/cryodesiccation-driven crystallization.


Asunto(s)
Medios de Contraste/uso terapéutico , Portadores de Fármacos/uso terapéutico , Indoles/uso terapéutico , Compuestos Organometálicos/uso terapéutico , Fármacos Fotosensibilizantes/uso terapéutico , Puntos Cuánticos/uso terapéutico , Animales , Línea Celular Tumoral , Medios de Contraste/efectos de la radiación , Medios de Contraste/toxicidad , Cristalización , Portadores de Fármacos/efectos de la radiación , Portadores de Fármacos/toxicidad , Ácido Fólico/química , Humanos , Indoles/efectos de la radiación , Indoles/toxicidad , Rayos Infrarrojos , Isoindoles , Ratones Endogámicos BALB C , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Compuestos Organometálicos/efectos de la radiación , Compuestos Organometálicos/toxicidad , Técnicas Fotoacústicas/métodos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/efectos de la radiación , Fármacos Fotosensibilizantes/toxicidad , Poloxámero/química , Puntos Cuánticos/efectos de la radiación , Puntos Cuánticos/toxicidad , Oxígeno Singlete/uso terapéutico , Compuestos de Zinc
14.
Nano Lett ; 18(1): 455-459, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29215286

RESUMEN

Strong correlations between electrons and holes can drive the existence of an electron-hole liquid (EHL) state, typically at high carrier densities and low temperatures. The recent emergence of quasi-two-dimensional (2D) monolayer transition metal dichalcogenides (TMDCs) provides ideal systems to explore the EHL state since ineffective screening of the out-of-plane field lines in these quasi-2D systems allows for stronger charge carrier correlations in contrast to conventional 3D bulk semiconductors and enables the existence of the EHL at high temperatures. Here we construct the phase diagram for the photoinduced first-order phase transition from a plasma of electron-hole pairs to a correlated EHL state in suspended monolayer MoS2. We show that the quasi-2D nature of monolayer TMDCs and the ineffective screening of the out-of-plane field lines allow for this phase transition to occur at and above room temperature, thereby opening avenues for studying many-body phenomena without the constraint of cryogenics.

15.
Lasers Med Sci ; 33(1): 135-139, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29067617

RESUMEN

According to the calculated results on the charge distribution of oxygenated heme and deoxygenated heme, and based on the theory of electron excitations in photo-acceptor molecules and the absorption spectra of hemoglobin, it is found that low-level laser within the waveband of about 800-1060 nm can promote the release of oxygen from oxyhemoglobin and improve the oxygen supply of capillaries to surrounding tissues. Furthermore, the reasons have been explained that why the low-level laser at a wavelength of 830 nm is better in the treatment on burn injury and stimulation of hair growth. We also explained why the near-infrared laser of 1064 nm is applied to the forehead to improve cerebral oxygenation in healthy humans. Finally, according to comparison of atomic charge distribution in heme before and after bound to small molecule of carbon monoxide or nitric oxide, it could be inferred that the low-level laser with an appropriate wavelength can promote the carbon monoxide hemoglobin and nitric oxide hemoglobin to dissociate the carbon monoxide molecules and the nitric oxide molecules. This may be used for adjuvant therapy of carbon monoxide poisoning or nitric oxide poisoning.


Asunto(s)
Hemoglobinas/metabolismo , Luz , Terapia por Luz de Baja Intensidad , Oxígeno/metabolismo , Intoxicación por Monóxido de Carbono/radioterapia , Hemoglobina Glucada/metabolismo , Hemo/metabolismo , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico/envenenamiento , Oxihemoglobinas/metabolismo , Análisis Espectral
16.
Mikrochim Acta ; 185(9): 429, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30141108

RESUMEN

The preparation of air-stable black phosphorus (BP) is challenging because atomic layers of BP degrade rapidly on exposure to oxygen. A strategy is presented for the synthesis of BP functionalized with polydopamine (PDA/BP). Dopamine was self-polymerized to yield polydopamine (PDA) which then was used to coat the surface of BP. PDA can be easily reduced and this prevents BP degradation. PDA/BP also is a viable matrix for the adsorption of proteins due to the presence of functional groups. Without any chemical activation, diethylstilbestrol (DES)-specific monoclonal antibody was adsorbed on the PDA/BP surface. PDA/BP quenches the fluorescence antigen-modified NaYF4:Yb,Ho,Nd upconversion nanoparticles (UCNPs; photoexcited at 808 nm) via specific immuno recognition. Exposure to DES causes the dissociation of UCNP from the PDA/BP surface and fluorescence at 475, 525, 545 and 660 nm to recover. This is due to the DES competition with antigen for binding to the antibody. Based on this competitive immuno mechanism, a turn-on fluorometric immunoassay was constructed. It has a response that covers the 0.1 to 1000 ng mL-1 DES concentration range with a detection limit of 83 pg mL-1. This method was successfully applied to the determination of DES in spiked food and human urine samples. Graphical abstract Air-stable polydopamine-functionalized black phosphorus was obtained by modification of black phosphorus with polydopamine and then was coupled with specific monoclonal antibody. Combined with antigen-modified upconversion nanoparticles, a turn-on fluorometric immunoassay was constructed to detect diethylstilbestrol.

17.
Biomed Microdevices ; 18(2): 37, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27106025

RESUMEN

Indian spice curcumin is known for its anticancer properties, but the anticancer mechanisms of nanoparticulate curcumin have not been completely elucidated. We here investigated the in vitro anticancer effect of blue light (470 nm, 1 W)-irradiated curcumin nanoparticles prepared by tetrahydrofuran/water solvent exchange, using U251 glioma, B16 melanoma, and H460 lung cancer cells as targets. The size of curcumin nanocrystals was approximately 250 nm, while photoexcitation induced their oxidation and partial agglomeration. Although cell membrane in the absence of light was almost impermeable to curcumin nanoparticles, photoexcitation stimulated their internalization. While irradiation with blue light (1-8 min) or nanocurcumin (1.25-10 µg/ml) alone was only marginally toxic to tumor cells, photoexcited nanocurcumin displayed a significant cytotoxicity depending both on the irradiation time and nanocurcumin concentration. Photoexcited nanocurcumin induced phosphorylation of c-Jun N-terminal kinase (JNK), mitochondrial depolarization, caspase-3 activation, and cleavage of poly (ADP-ribose) polymerase, indicating apoptotic cell death. Accordingly, pharmacologial inhibition of JNK and caspase activity rescued cancer cells from photoexcited nanocurcumin. On the other hand, antioxidant treatment did not reduce photocytotoxicity of nanocurcumin, arguing against the involvement of oxidative stress. By demonstrating the ability of photoexcited nanocurcumin to induce oxidative-stress independent, JNK- and caspase-dependent apoptosis, our results support its further investigation in cancer therapy.


Asunto(s)
Apoptosis/efectos de los fármacos , Curcumina/química , Curcumina/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Luz , Nanopartículas/química , Solventes/química , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Transporte Biológico/efectos de la radiación , Caspasa 3/metabolismo , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/efectos de la radiación , Curcumina/metabolismo , Activación Enzimática/efectos de los fármacos , Activación Enzimática/efectos de la radiación , Humanos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/efectos de la radiación , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Tamaño de la Partícula
18.
Nano Lett ; 15(7): 4483-7, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26099362

RESUMEN

We present the first direct observation of two-step photon absorption in an InAs/GaAs single quantum dot (QD) using photocurrent spectroscopy with two lasers. The sharp peaks of the photocurrent are shifted due to the quantum confined Stark effect, indicating that the photocurrent from a single QD is obtained. In addition, the intensity of the peaks depends on the power of the secondary laser. These results reveal the direct demonstration of the two-step photon absorption in a single QD. This is an essential result for both the fundamental operation and the realization of ultrahigh solar-electricity energy conversion in quantum dot intermediate-band solar cells.

19.
Angew Chem Int Ed Engl ; 55(4): 1364-7, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26663199

RESUMEN

The dynamics of the local electronic and geometric structures of WO3 following photoexcitation were studied by femtosecond time-resolved X-ray absorption fine structure (XAFS) spectroscopy using an X-ray free electron laser (XFEL). We found that the electronic state was the first to change followed by the local structure, which was affected within 200 ps of photoexcitation.

20.
Mass Spectrom Rev ; 33(6): 501-22, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24285407

RESUMEN

Tandem mass spectrometry (MS-MS) is a generic term evoking techniques dedicated to structural analysis, detection or quantification of molecules based on dissociation of a precursor ion into fragments. Searching for the most informative fragmentation patterns has led to the development of a vast array of activation modes that offer complementary ion reactivity and dissociation pathways. Collisional activation of ions using atoms, molecules or surface resulting in unimolecular dissociation of activated ions still plays a key role in tandem mass spectrometry. The discovery of electron capture dissociation (ECD) and then the development of other electron-ion or ion/ion reaction methods, constituted a significant breakthrough, especially for structural analysis of large biomolecules. Similarly, photon activation opened promising new frontiers in ion fragmentation owing to the ability of tightly controlled internal energy deposition and easy implementation on commercial instruments. Ion activation by photons includes slow heating methods such as infrared multiple photon dissociation (IRMPD) and black-body infrared radiative dissociation (BIRD) and higher energy methods like ultra-violet photodissociation (UVPD) and electron photo detachment dissociation (EPD). EPD occurs after UV irradiation of multiply negatively charged ions resulting in the formation of oxidized radical anions. The present paper reviews the hypothesis regarding the mechanisms of electron photo-detachment, radical formation and direct or activated dissociation pathways that support the observation of odd and even electron product ions. Finally, the value of EPD as a complementary structural analysis tool is illustrated through selected examples of synthetic polymers, oligonucleotides, polypeptides, lipids, and polysaccharides.


Asunto(s)
Aniones/química , Biopolímeros/química , Fotoquímica/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Aniones/análisis , Aniones/efectos de la radiación , Biopolímeros/análisis , Biopolímeros/efectos de la radiación , Electrones , Luz , Conformación Molecular/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA