Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; 30(21): e202400116, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38318755

RESUMEN

Linearly fused polycyclic piperidines represent common substructures in natural products and biologically active small molecules. We have devised a Pd-catalyzed annulation strategy to these compounds that converts readily available 2-tetralones and indanones into these scaffolds with the potential for control of both enantio- and diastereoselectivity. Importantly, these compounds can be chemoselectively functionalized, providing an efficient and robust methodology to these important nitrogen-containing molecules.

2.
Bioorg Med Chem ; 101: 117649, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401458

RESUMEN

Simple and scalable synthetic approach was used for the preparation of thirteen novel tacrine derivatives consisting of tacrine and N-aryl-piperidine-4-carboxamide moiety connected by a five-methylene group linker. An anti-Alzheimer disease (AD) potential of newly designed tacrine derivatives was evaluated against two important AD targets, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). In vitro pharmacological evaluation showed strong ChE inhibitory activity of all compounds, with IC50 values ranging from 117.5 to 455 nM for AChE and 34 to 324 nM for BuChE. As a representative of the series with the best cytotoxicity / ChE inhibitory activity ratio, expressed as the selectivity index (SI), 2-chlorobenzoyl derivative demonstrated mixed-type inhibition on AChE and BuChE, suggesting binding to both CAS and PAS of the enzymes. It also exhibited antioxidant capacity and neuroprotective potential against amyloid-ß (Aß) toxicity in the culture of neuron-like cells. In-depth computational analysis corroborated well with in vitro ChE inhibition, illuminating that all compounds exhibit significant potential in targeting both enzymes. Molecular dynamics (MD) simulations revealed that 2-chlorobenzoyl derivative, created complexes with AChE and BuChE that demonstrated sufficient stability throughout the observed MD simulation. Computationally predicted ADME properties indicated that these compounds should have good blood-brain barrier (BBB) permeability, an important factor for CNS-targeting drugs. Overall, all tested compounds showed promising pharmacological behavior, highlighting the multi-target potential of 2-chlorobenzoyl derivative which should be further investigated as a new lead in the drug development process.


Asunto(s)
Enfermedad de Alzheimer , Inhibidores de la Colinesterasa , Humanos , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Tacrina/química , Clorobenzoatos/química , Clorobenzoatos/farmacología
3.
Macromol Rapid Commun ; : e2400477, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254528

RESUMEN

Vanadium redox flow batteries (VRFBs) depend on the separator membrane for their efficiency and cycle life. Herein, two amphoteric ion exchange membranes are synthesized, based on sulfonic acid group-grafted poly(p-terphenyl piperidinium), for VRFBs. Using ether-free poly(p-terphenyl piperidine) (PTP) as the polymer matrix, and sodium 2-bromoethanesulphonate (ES) and 1,4-butane sultone (BS) as grafting agents, We achieve quaternization of PTP through an environmentally friendly process without alkaline catalysts. PTP-ES and PTP-BS membranes exhibit low area resistance, high H+ permeability, and significantly reduced vanadium ion permeability, leading to exceptional ion selectivity, which is 3.06 × 106 S min cm-3 and 4.34 × 106 S min cm-3, respectively, three orders of magnitude higher than that of Nafion115 (0.27 × 104 S min cm-3). The VRFB with PTP-BS achieves a self-discharge duration of 190 h, compared to 86 h for Nafion 115. Additionally, under current densities of 40-160 mA cm-2, PTP-BS shows coulombic efficiencies of 98.1-99.1% and energy efficiencies of 92.0-82.1%, outperforming Nafion 115. The VRFB with PTP-BS also demonstrates excellent cycle stability and discharge capacity retention over 300 cycles at 100 mA cm-2. Therefore, the amphoteric PTP-BS membrane shows remarkable performance, offering significant potential for VRFB applications.

4.
Phytochem Anal ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925584

RESUMEN

INTRODUCTION: 2,6-Disubstituted piperidin-3-ols are an important group of piperidine alkaloids found in species such as Senna spectabilis, whose main constituents include cassine and spectaline, compounds with relevant pharmacological activity. The analysis of these compounds is challenging due to the complexity of plant extracts and the absence of chromophores capable of absorbing ultraviolet (UV) radiation. OBJECTIVE: This paper presents a new analytical method to separate and quantify the non-UV-absorbing alkaloids present in ethanol extracts from S. spectabilis flowers using capillary zone electrophoresis (CZE) with indirect UV detection. METHODOLOGY: The optimized CZE method employs a background electrolyte containing 60 mM histidine (His), 15 mM α-cyclodextrin, 20% acetonitrile (ACN), and pH-adjusted to 4.7 with acetic acid (AcOH). RESULTS: The limit of detection (LOD) values was 10.2 and 13.9 mg L-1 for cassine and spectaline, respectively. For both analytes, the precision data were better than 2% of relative standard deviation (RSD) for migration times and peak areas. To evaluate the applicability of the developed method, ethanolic extracts from S. spectabilis flowers were prepared and analyzed. CONCLUSIONS: Thereby, the method proved to be efficient and complementary to conventional techniques, offering a cost-effective alternative in the quantification of the non-UV-absorbing piperidine alkaloids present in plant extracts.

5.
J Asian Nat Prod Res ; : 1-7, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38944841

RESUMEN

Four new alkaloids, arecatines A-D (1-4), were isolated from the peels of Areca catechu. Compound 1 is an unusual piperidine-pyridine hybrid alkaloid, whereas compounds 2-4 feature bis-piperidine alkaloids. Their structures were elucidated by UV, IR, HRESIMS, and NMR spectra analysis. The molecular docking analysis indicated that compound 3 exhibited the best binding affinity with the GABAA receptor, indicating its potential anti-epilepsy activity.

6.
Molecules ; 29(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38998996

RESUMEN

Diabetes mellitus is a severe endocrine disease that affects more and more people every year. Modern medical chemistry sets itself the task of finding effective and safe drugs against diabetes. This review provides an overview of potential antidiabetic drugs based on three heterocyclic compounds, namely morpholine, piperazine, and piperidine. Studies have shown that compounds containing their moieties can be quite effective in vitro and in vivo for the treatment of diabetes and its consequences.


Asunto(s)
Hipoglucemiantes , Morfolinas , Piperazina , Piperidinas , Humanos , Piperidinas/química , Piperidinas/farmacología , Piperidinas/uso terapéutico , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Morfolinas/química , Morfolinas/farmacología , Morfolinas/uso terapéutico , Piperazina/química , Piperazina/farmacología , Animales , Piperazinas/química , Piperazinas/farmacología , Piperazinas/síntesis química , Piperazinas/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Relación Estructura-Actividad
7.
Molecules ; 29(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474609

RESUMEN

Pain and anesthesia are a problem for all physicians. Scientists from different countries are constantly searching for new anesthetic agents and methods of general anesthesia. In anesthesiology, the role and importance of local anesthesia always remain topical. In the present work, a comparative analysis of the results of pharmacological studies on models of the conduction and terminal anesthesia, as well as acute toxicity studies of the inclusion complex of 1-methyl-4-ethynyl-4-hydroxypiperidine (MEP) with ß-cyclodextrin, was carried out. A virtual screening and comparative analysis of pharmacological activity were also performed on a number of the prepared piperidine derivatives and their host-guest complexes of ß-cyclodextrin to identify the structure-activity relationship. Various programs were used to study biological activity in silico. For comparative analysis of chemical and pharmacological properties, data from previous works were used. For some piperidine derivatives, new dosage forms were prepared as beta-cyclodextrin host-guest complexes. Some compounds were recognized as promising local anesthetics. Pharmacological studies have shown that KFCD-7 is more active than reference drugs in terms of local anesthetic activity and acute toxicity but is less active than host-guest complexes, based on other piperidines. This fact is in good agreement with the predicted results of biological activity.


Asunto(s)
Ciclodextrinas , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Relación Estructura-Actividad , Anestésicos Locales , Ciclodextrinas/química
8.
Molecules ; 29(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474691

RESUMEN

Inhibition of glycoside hydrolases has widespread application in the treatment of diabetes. Based on our previous findings, a series of dihydrofuro[3,2-b]piperidine derivatives was designed and synthesized from D- and L-arabinose. Compounds 32 (IC50 = 0.07 µM) and 28 (IC50 = 0.5 µM) showed significantly stronger inhibitory potency against α-glucosidase than positive control acarbose. The study of the structure-activity relationship of these compounds provides a new clue for the development of new α-glucosidase inhibitors.


Asunto(s)
Acarbosa , Inhibidores de Glicósido Hidrolasas , Inhibidores de Glicósido Hidrolasas/farmacología , Relación Estructura-Actividad , Acarbosa/farmacología , alfa-Glucosidasas/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular
9.
Angew Chem Int Ed Engl ; : e202406612, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38924325

RESUMEN

Piperidines are widely present in small molecule drugs and natural products. Despite many methods have been developed for their synthesis, new approaches to polysubstituted piperidines are highly desirable. This work presents a radical (4+2) cycloaddition reaction for synthesis of piperidines featuring dense substituents at 3,4,5-positions that are not readily accessible by known methods. Using commercially available diboron(4) compounds and 4-phenylpyridine as the catalyst precursors, the boronyl radical-catalyzed cycloaddition between 3-aroyl azetidines and various alkenes, including previously unreactive 1,2-di-, tri-, and tetrasubstituted alkenes, has delivered the polysubstituted piperidines in generally high yield and diastereoselectivity. The reaction also features high modularity, atom economy, broad substrate scope, metal-free conditions, simple catalysts and operation. The utilization of the products has been demonstrated by selective transformations. A plausible mechanism, with the ring-opening of azetidine as the rate-limiting step, has been proposed based on the experimental and computational results.

10.
Chemistry ; 29(22): e202204055, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-36683005

RESUMEN

Long-lived polymeric room temperature phosphorescence (RTP) materials have drawn more attention due to their convenient preparation process and equally efficient phosphorescence performance in recent years. As the polymer matrix is sensitive to air and humidity, some non-covalent interactions in the matrix are easily decomposed in water or air, which means that it is difficult for this material to be stored stably for a long time in the atmospheric environment or under harsh conditions. In this work, polymer powder mBPipQ contains aromatic and piperidine rings that are designed and synthesized successfully. Then the polymer is uniformly dispersed into epoxy resin matrix to form long-lived polymeric RTP material with efficient afterglow properties. The stiff backbone structure of mBPip and dense molecular arrangement of epoxy resin provide a rigid environment to stabilize triplet excitons, the RTP performance is greatly enhanced. The lifetime of mBPipQ in epoxy resin is 2 times higher than that of small molecule chromophore in that one. Interestingly, after soaking in strong acid or alkali solution for 10 days, the material can still emit stable and efficient long-lived phosphorescence. It is thanks to the hard matrix after full curing, which can provide a protective layer to prevent external quenchers from interfering with phosphorescence emission. Utilizing the efficient phosphorescence emission and excellent abominable-solvent resistance of this RTP material, multilevel information encryption has been successfully demonstrated. This work broadens the application scope of polymeric RTP materials in harsh environments and provides a new idea for achieving efficient RTP emission.

11.
J Enzyme Inhib Med Chem ; 38(1): 330-342, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36444862

RESUMEN

New spiro-piperidine derivatives were synthesised via the eco-friendly ionic liquids in a one-pot fashion. The in vitro antileishmanial activity against Leishmania major promastigote and amastigote forms highlighted promising antileishmanial activity for most of the derivatives, with superior activity compared to miltefosine. The most active compounds 8a and 9a exhibited sub-micromolar range of activity, with IC50 values of 0.89 µM and 0.50 µM, respectively, compared to 8.08 µM of miltefosine. Furthermore, the antileishmanial activity reversal of these compounds via folic and folinic acids displayed comparable results to the positive control trimethoprim. This emphasises that their antileishmanial activity is through the antifolate mechanism via targeting DHFR and PTR1. The most active compounds showed superior selectivity and safety profile compared to miltefosine against VERO cells. Moreover, the docking experiments of 8a and 9a against Lm-PTR1 rationalised the observed in vitro activities. Molecular dynamics simulations confirmed a stable and high potential binding to Lm-PTR1.


Asunto(s)
Antiprotozoarios , Chlorocebus aethiops , Animales , Células Vero , Antiprotozoarios/farmacología , Fosforilcolina , Piperidinas/farmacología
12.
Molecules ; 28(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37687015

RESUMEN

1,2- and 1,4-dihydropyridines and N-substituted 2-pyridones are very important structural motifs due to their synthetic versatility and vast presence in a variety of alkaloids and bioactive molecules. In this article, we gather and summarize the catalytic and stereoselective synthesis of partially hydrogenated pyridines and pyridones via the dearomative reactions of pyridine derivatives up to mid-2023. The material is fundamentally organized according to the type of reactivity (electrophilic/nucleophilic) of the pyridine nucleus. The material is further sub-divided taking into account the nucleophilic species when dealing with electrophilic pyridines and considering the reactivity manifold of pyridine derivatives behaving as nucleophiles at the nitrogen site. The latter more recent approach allows for an unconventional entry to chiral N-substituted 2- and 4-pyridones in non-racemic form.

13.
Molecules ; 28(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36903376

RESUMEN

Alzheimer's disease (AD) is one of the progressive neurological disorders and the main cause of dementia all over the world. The multifactorial nature of Alzheimer's disease is a reason for the lack of effective drugs as well as a basis for the development of new structural leads. In addition, the appalling side effects such as nausea, vomiting, loss of appetite, muscle cramps, and headaches associated with the marketed treatment modalities and many failed clinical trials significantly limit the use of drugs and alarm for a detailed understanding of disease heterogeneity and the development of preventive and multifaceted remedial approach desperately. With this motivation, we herein report a diverse series of piperidinyl-quinoline acylhydrazone therapeutics as selective as well as potent inhibitors of cholinesterase enzymes. Ultrasound-assisted conjugation of 6/8-methyl-2-(piperidin-1-yl)quinoline-3-carbaldehydes (4a,b) and (un)substituted aromatic acid hydrazides (7a-m) provided facile access to target compounds (8a-m and 9a-j) in 4-6 min in excellent yields. The structures were fully established using spectroscopic techniques such as FTIR, 1H- and 13C NMR, and purity was estimated using elemental analysis. The synthesized compounds were investigated for their cholinesterase inhibitory potential. In vitro enzymatic studies revealed potent and selective inhibitors of AChE and BuChE. Compound 8c showed remarkable results and emerged as a lead candidate for the inhibition of AChE with an IC50 value of 5.3 ± 0.51 µM. The inhibitory strength of the optimal compound was 3-fold higher compared to neostigmine (IC50 = 16.3 ± 1.12 µM). Compound 8g exhibited the highest potency and inhibited the BuChE selectively with an IC50 value of 1.31 ± 0.05 µM. Several compounds, such as 8a-c, also displayed dual inhibitory strength, and acquired data were superior to the standard drugs. In vitro results were further supported by molecular docking analysis, where potent compounds revealed various important interactions with the key amino acid residues in the active site of both enzymes. Molecular dynamics simulation data, as well as physicochemical properties of the lead compounds, supported the identified class of hybrid compounds as a promising avenue for the discovery and development of new molecules for multifactorial diseases, such as Alzheimer's disease (AD).


Asunto(s)
Enfermedad de Alzheimer , Quinolinas , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Colinesterasa/química , Simulación del Acoplamiento Molecular , Acetilcolinesterasa/metabolismo , Colinesterasas/metabolismo , Quinolinas/uso terapéutico , Relación Estructura-Actividad , Estructura Molecular
14.
Molecules ; 28(21)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37959820

RESUMEN

Venous thromboembolism is a serious problem because it significantly increases the risk of developing vascular complications in elderly patients with obesity or immobilization, cancer, and many other diseases. Thus, there is a need to study new therapeutic strategies, including new medicinal agents for the efficient and safe correction of thrombus disorders. In this work, we have synthesized a number of new amides and peptides of 4-amino-5-oxoprolines and studied their antiplatelet and antithrombotic activity in experiments in vitro and in vivo. It has been found that the newly obtained compounds slow down the process of thrombus formation in a model of arterial and venous thrombosis, without affecting plasma hemostasis parameters. (2S,4S)-4-Amino-1-(4-fluorophenyl)-5-oxoprolyl-(S)-phenylalanine proved to be the most efficient among the studied derivatives. The results obtained indicate the advisability of further studies on 5-oxoproline derivatives in order to design pharmaceutical agents for the prevention and treatment of the consequences of thrombosis.


Asunto(s)
Ácido Pirrolidona Carboxílico , Trombosis , Humanos , Anciano , Ácido Pirrolidona Carboxílico/química , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Amidas/farmacología , Trombosis/tratamiento farmacológico , Péptidos/farmacología , Péptidos/uso terapéutico , Inhibidores de Agregación Plaquetaria/química
15.
J Mol Liq ; 382: 121904, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37151376

RESUMEN

In the current study, a hybrid computational approach consisting of different computational methods to explore the molecular electronic structures, bioactivity and therapeutic potential of piperidine compounds against SARS-CoV-2. The quantum chemical methods are used to study electronic structures of designed derivatives, molecular docking methods are used to see the most potential docking interactions for main protease (MPro) of SARS-CoV-2 while molecular dynamic and MMPBSA analyses are performed in bulk water solvation process to mimic real protein like aqueous environment and effectiveness of docked complexes. We designed and optimized piperidine derivatives from experimentally known precursor using quantum chemical methods. The UV-Visible, IR, molecular orbitals, molecular electrostatic plots, and global chemical reactivity descriptors are carried out which illustrate that the designed compounds are kinetically stable and reactive. The results of MD simulations and binding free energy revealed that all the complex systems possess adequate dynamic stability, and flexibility based on their RMSD, RMSF, radius of gyration, and hydrogen bond analysis. The computed net binding free energy ( Δ G b i n d ) as calculated by MMPBSA method for the complexes showed the values of -4.29 kcal.mol-1 for P1, -5.52 kcal.mol-1 for P2, -6.12 kcal.mol-1 for P3, -6.35 kcal.mol-1 for P4, -5.19 kcal.mol-1 for P5, 3.09 kcal.mol-1 for P6, -6.78 kcal.mol-1 for P7, and -6.29 kcal.mol-1 for P8.The ADMET analysis further confirmed that none of among the designed ligands violates the Lipinski rule of five (RO5). The current comprehensive investigation predicts that all our designed compounds are recommended as prospective therapeutic drugs against Mpro of SARS-CoV-2 and it provokes the scientific community to further perform their in-vitro analysis.

16.
Angew Chem Int Ed Engl ; 62(2): e202212528, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36374610

RESUMEN

We disclose herein a catalytic borrowing hydrogen method that enables an unprecedented, economical one-pot access to enantiopure tetrahydropyridines with minimal reagent use or waste formation. This method couples a few classes of readily available substrates with commercially available 1,3-amino alcohols, and delivers the valuable tetrahydropyridines of different substitution patterns free of N-protection. Such transformations are highly challenging to achieve, as multiple redox steps need to be realized in a cascade and numerous side reactions including a facile aromatization have to be overcome. Highly diastereoselective functionalizations of tetrahydropyridines also result in a general access to enantiopure di- and tri-substituted piperidines, which ranks the topmost frequent N-heterocycle in commercial drugs.


Asunto(s)
Piperidinas , Pirrolidinas , Hidrógeno , Estereoisomerismo , Estructura Molecular
17.
Angew Chem Int Ed Engl ; 62(51): e202311583, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37819253

RESUMEN

1-Azaspiro[3.3]heptanes were synthesized, characterized, and validated biologically as bioisosteres of piperidine. The key synthesis step was thermal [2+2] cycloaddition between endocyclic alkenes and the Graf isocyanate, ClO2 S-NCO, to give spirocyclic ß-lactams. Reduction of the ß-lactam ring with alane produced 1-azaspiro[3.3]heptanes. Incorporation of this core into the anesthetic drug bupivacaine instead of the piperidine fragment resulted in a new patent-free analogue with high activity.

18.
Metabolomics ; 18(6): 33, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35608707

RESUMEN

INTRODUCTION: In microbial metabolomics, the use of multivariate data analysis (MDVA) has not been comprehensively explored regarding the different techniques available and the information that each gives about the metabolome. To overcome these limitations, here we show the use of Fusarium oxysporum cultured in the presence of exogenous alkaloids as a model system to demonstrate a comprehensive strategy for metabolic profiling. MATHERIALS AND METHODS: F. oxysporum was harvested on different days of incubation after alkaloidal addition, and the chemical profiles were compared using LC-MS data and MDVA. We show significant innovation to evaluate the chemical production of microbes during their life cycle by utilizing the full capabilities of Partial Least Square (PLS) with microbial-specific modeling that considers incubation days, media culture availability, and growth rate in solid media. RESULTS AND DISCUSSCION: Results showed that the treatment of the Y-data and the use of both PLS regression and discrimination (PLSr and PLS-DA) inferred complemental chemical information. PLSr revealed the metabolites that are produced/consumed during fungal growth, whereas PLS-DA focused on metabolites that are only consumed/produced at a specific period. Both regression and classificatory analysis were equally important to identify compounds that are regulated and/or selectively produced as a response to the presence of the alkaloids. Lastly, we report the annotation of analogs from the piperidine alkaloids biotransformed by F. oxysporum as a defense response to the toxic plant metabolites. These molecules do not show the antimicrobial potential of their precursors in the fungal extracts and were rapidly produced and consumed within 4 days of microbial growth.


Asunto(s)
Metaboloma , Metabolómica , Cromatografía Liquida/métodos , Análisis de los Mínimos Cuadrados , Espectrometría de Masas/métodos
19.
Chemistry ; 28(56): e202201595, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-35815542

RESUMEN

The first useful enantioselective Pd-catalyzed asymmetric allylic alkylation of α-fluoro-ß-ketoesters has been achieved using the Trost family of chiral ligands yielding products in up to 92 % ee. This work provides new insights regarding the typically modest selectivities associated with acyclic α-fluoroenolates and shows experimental evidence that the typically poor levels of enantiocontrol associated with these systems are not necessarily due to the presence of E/Z enolate mixtures. Finally, this methodology allows the easy preparation of useful 3-fluoropiperidine intermediates, and it is demonstrated that these systems are applicable to a range of functionalization reactions leading to new building blocks for the discovery of bioactive products.


Asunto(s)
Paladio , Alquilación , Catálisis , Ligandos , Estereoisomerismo
20.
Chemistry ; 28(42): e202201328, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35522607

RESUMEN

The utility of 2-diphenylphosphoryloxy-1,3-dienes for the construction of substituted six-membered nitrogen heterocycles is presented. These dienes undergo boron trifluoride-promoted aza-Diels-Alder reactions when reacted with imines or related species formed in situ using aldehydes and amine derivatives. The stability of the dienes allows this three-component reaction to be carried out with no special precautions to eliminate water or air. Thirty-one examples of this process are presented. The usefulness of the enol phosphate functional group is highlighted in further reactions after the cycloaddition step to generate functionalized piperidenes or pyridines.


Asunto(s)
Aldehídos , Nitrógeno , Catálisis , Reacción de Cicloadición , Polienos , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA