Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell Endocrinol ; 582: 112140, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38147953

RESUMEN

We investigated the impact of metformin on ACTH secretion and tumorigenesis in pituitary corticotroph tumors. The mouse pituitary tumor AtT20 cell line was treated with varying concentrations of metformin. Cell viability was assessed using the CCK-8 assay, ACTH secretion was measured using an ELISA kit, changes in the cell cycle were analyzed using flow cytometry, and the expression of related proteins was evaluated using western blotting. RNA sequencing was performed on metformin-treated cells. Additionally, an in vivo BALB/c nude xenograft tumor model was established in nude mice, and immunohistochemical staining was conducted for further verification. Following metformin treatment, cell proliferation was inhibited, ACTH secretion decreased, and G1/S phase arrest occurred. Analysis of differentially expressed genes revealed cancer-related pathways, including the MAPK pathway. Western blotting confirmed a decrease in phosphorylated ERK1/2 and phosphorylated JNK. Combining metformin with the ERK1/2 inhibitor Ulixertinib resulted in a stronger inhibitory effect on cell proliferation and POMC (Precursors of ACTH) expression. In vivo studies confirmed that metformin inhibited tumor growth and reduced ACTH secretion. In conclusion, metformin inhibits tumor progression and ACTH secretion, potentially through suppression of the MAPK pathway in AtT20 cell lines. These findings suggest metformin as a potential drug for the treatment of Cushing's disease.


Asunto(s)
Adenoma Hipofisario Secretor de ACTH , Adenoma , Metformina , Neoplasias Hipofisarias , Animales , Ratones , Humanos , Adenoma Hipofisario Secretor de ACTH/tratamiento farmacológico , Adenoma Hipofisario Secretor de ACTH/metabolismo , Hormona Adrenocorticotrópica/metabolismo , Proopiomelanocortina/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Ratones Desnudos , Línea Celular Tumoral , Proliferación Celular , Neoplasias Hipofisarias/patología , Adenoma/genética
2.
Mol Cell Endocrinol ; 478: 53-61, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30025915

RESUMEN

Pituitary corticotroph tumors lead to excess adrenocorticotrophic hormone (ACTH) secretion, resulting in Cushing's disease (CD), which is associated with significant mortality. Standard treatments include neurosurgery, radiotherapy and medical therapy. Both surgery and radiotherapy have undesirable complications and high recurrence rates. At present, there is only one medical option available that targets pituitary adenoma and ACTH secretion, the drug pasireotide. However, hyperglycemia is common during pasireotide treatment. In addition, some patients have discontinued pasireotide treatment because of hyperglycemia-related adverse events or uncontrolled diabetes. New medical treatments directly targeting the corticotroph cells and suppressing ACTH secretion are urgently required. Metformin is a commonly used antidiabetic drug that has been widely used to control the hyperglycemia that occurs in patients with CD, which is secondary to both cortisol excess and pasireotide treatment. Recent studies suggest that metformin has direct anticancer activities against many tumor cell lines. In the present study, we investigated whether metformin exerts an anti-tumor effect by directly targeting pituitary corticotroph tumors and exploring the underlying mechanisms. Using the mouse corticotroph tumor cells, AtT20 cells, we report that metformin inhibited cell proliferation, promoted cell apoptosis and decreased ACTH secretion but did not block the cell cycle in cells. The apoptosis induced by metformin was accompanied by increased caspase-3 activity. Meanwhile, metformin down-regulated the anti-apoptotic protein B cell lymphoma 2 (Bcl-2) but up-regulated the pro-apoptotic protein Bcl2-associated X (BAX), which suggests the involvement of the mitochondrial-mediated apoptosis pathway. Furthermore, metformin promoted AMP-activated protein kinase (AMPK) phosphorylation but inhibited insulin-like growth factor-1 receptor (IGF-1R) expression, protein kinase B (PKB/AKT) phosphorylation and mammalian target of rapamycin (mTOR) phosphorylation. Finally, the IGF-1R inhibitor picropodophyllin (PPP) significantly inhibited the cell proliferation of AtT20 cells. We conclude that metformin inhibits cell proliferation and induces apoptosis in AtT20 cells by activating AMPK/mTOR and inhibiting IGF-1R/AKT/mTOR signaling pathways. Metformin may have direct antitumor activity against pituitary corticotroph tumors.


Asunto(s)
Hormona Adrenocorticotrópica/metabolismo , Corticotrofos/metabolismo , Corticotrofos/patología , Metformina/farmacología , Neoplasias Hipofisarias/metabolismo , Neoplasias Hipofisarias/patología , Adenilato Quinasa/metabolismo , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Corticotrofos/efectos de los fármacos , Humanos , Podofilotoxina/análogos & derivados , Podofilotoxina/farmacología , Receptor IGF Tipo 1/antagonistas & inhibidores , Receptor IGF Tipo 1/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA