RESUMEN
The design of boron-based molecular rotors stems from boron-carbon binary clusters containing multiple planar hypercoordinate carbons (phCs, such as C2B8). However, the design of boron-coordinated phCs is challenging due to boron's tendency to occupy hypercoordinate centers more than carbon. Although this challenge has been addressed, the designed clusters of interest have not exhibited dynamic fluxionality similar to that of the initial C2B8. To address this issue, we report a σ/π doubly aromatic CB2H5 + cluster, the first global minimum containing a boron-coordinated planar tetracoordinate carbon atom with dynamic fluxionality. Dynamics simulations show that two ligand H atoms exhibit alternate rotation, resulting in an intriguing dynamic fluxionality in this cluster. Electronic structure analysis reveals the flexible bonding positions of the ligand H atoms because they do not participate in π delocalized bonding nor bond to any other non-carbon atom, highlighting this rotational fluxionality. Unprecedentedly, the fluxional process involves not only the usual conversion of the number of bonding atoms, but also the type of bonding (3c π bonds â4c σ bonds), which is an uncommon fluxional mechanism. The cluster represents an effort to apply phC species to molecular machines.
RESUMEN
A 14-electron ternary anionic CBe2 H5 - cluster containing a planar tetracoordinate carbon (ptC) atom is designed herein. Remarkably, it can be stabilized by only two beryllium atoms with both π-acceptor/σ-donor properties and two hydrogen atoms, which means that the conversion from planar methane (transition state) to ptC species (global minimum) requires the substitution of only two hydrogen atoms. Moreover, two ligand H atoms exhibit alternate rotation, giving rise to interesting dynamic fluxionality in this cluster. The electronic structure analysis reveals the flexible bonding positions of ligand H atoms due to C-H localized bonds, highlighting the rotational fluxionality in the cluster, and two CBe2 3c-2e delocalized bonds endow its rare 2σ/2π double aromaticity. Unprecedentedly, the fluxional process exhibits a conversion in the type of bonding (σ bondâπ bond), which is an uncommon fluxional mechanism. The cluster can be seen as an attempt to apply planar hypercoordinate carbon species to molecular motors.
RESUMEN
Planar tetracoordinate carbon (ptC) species are scarce and exotic. Introducing four peripheral Te/Po auxiliary atoms is an effective strategy to flatten the tetrahedral structure of CAl4 (Td, 1A1). Neutral CAl4X4 (X = Te, Po) clusters possess quadrangular star structures containing perfect ptC centers. Unbiased density functional theory (DFT) searches and high-level CCSD(T) calculations suggest that these ptC species are the global minima on the potential energy surfaces. Bonding analyses indicate that 40 valence-electron (VE) is ideal for the ptC CAl4X4 (X = Te, Po): one delocalized π and three σ bonds for the CAl4 core; four lone pairs (LPs) of four X atoms, eight localized Al-X σ bonds, and four delocalized Al-X-Al π bonds for the periphery. Thus, the ptC CAl4X4 (X = Te, Po) clusters possess the stable eight electron structures and 2π + 6σ double aromaticity. Born-Oppenheimer molecular dynamics (BOMD) simulations indicate that neutral ptC CAl4X4 (X = Te, Po) clusters are robust.
RESUMEN
Density functional theory (DFT) is used to explore the structure, stability, and bonding in CSiGaAl2 -/0 and CGeGaAl2 -/0 systems having planar tetracoordinate carbon (ptC). The neutral systems have 17 valence electrons and the mono-anionic systems have 18 valence electrons. The ab initio molecular dynamics simulations for 2000 fs time at two different temperatures (300 and 500 K) supported the kinetic stability of the systems. From the natural bond orbital (NBO) analysis it is shown that there is a strong electron donation from the ligand atoms to the ptC atom. We have used Li+ ion for the neutralization of the mono-anionic systems and more interestingly it does not disrupt the planar structure. The most preferable site for binding of Li+ ion is along the AlAl bond in both of the mono-anionic systems. All the systems in this work have both σ and π aromaticity which is predicted from the computations of nucleus independent chemical shift (NICS). Although the anionic species obey the 18 valence electronic rule, the neutral systems break the rule with 17 valence electrons. However, both sets of systems are stable in the planar form. The bonding analysis of the systems includes molecular orbital, adaptive natural density partitioning (AdNDP), quantum theory of atoms in molecules (QTAIM), electron localization function (ELF) basin, and aromaticity analyses. The energy decomposition analysis (EDA) determines the interaction of Li+ ion with CSiGaAl2 - and CGeGaAl2 - in Li@SiGaAl2 and Li@GeGaAl2 , respectively.
RESUMEN
Herein, the first global minima containing a planar hexacoordinate carbon (phC) atom are reported. The fifteen structures belong to the CE3 M3 + (E=S-Te and M=Li-Cs) series and satisfy both geometric and electronic criteria to be considered as a true phC. The design strategy consisted of replacing oxygen in the D3h â CO3 Li3 + structure with heavy and less electronegative chalcogens, inducing a negative charge on the Câ atom and an attractive electrostatic interaction between C and the alkali-metal cations. The chemical bonding analyses indicate that carbon is covalently bonded to three chalcogens and ionically connected to the three alkali metals.
RESUMEN
In cluster studies, the isoelectronic replacement strategy has been successfully used to introduce new elements into a known structure while maintaining the desired topology. The well-known penta-atomic 18 valence electron (ve) species C Al 4 2 - and its Al- /Si or Al/Si+ isoelectronically replaced clusters CAl3 Si- , CAl2 Si2 , C AlSi 3 - , and C Si 4 2 + , all possess the same anti-van't Hoff/Le Bel skeletons, that is, nontraditional planar tetracoordinate carbon (ptC) structure. In this article, however, we found that such isoelectronic replacement between Si and Al does not work for the 16ve-CAl4 with the traditional van't Hoff/Le Bel tetrahedral carbon (thC) and its isoelectronic derivatives CAl3 X (X = Ga/In/Tl). At the level of CCSD(T)/def2-QZVP//B3LYP/def2-QZVP, none of the global minima of the 16ve mono-Si-containing clusters CAl2 SiX+ (X = Al/Ga/In/Tl) maintains thC as the parent CAl4 does. Instead, X = Al/Ga globally favors an unusual ptC structure that has one long CâX distance yet with significant bond index value, and X = In/Tl prefers the planar tricoordinate carbon. The frustrated formation of thC in these clusters is ascribed to the CSi bonding that prefers a planar fashion. Inclusion of chloride ion would further stabilize the ptC of CAl2 SiAl+ and CAl2 SiGa+ . The unexpectedly disclosed CAl2 SiAl+ and CAl2 SiGa+ represent the first type of 16ve-cationic ptCs with multiple bonds. © 2019 Wiley Periodicals, Inc.
RESUMEN
Density functional theory computations (B3LYP) have been used to explore the chemistry of titanium-aromatic carbon "edge complexes" with 1,3-metal-carbon (1,3-MC) bonding between Ti and planar tetracoordinate Cß . The titanium-coordinated, end-capping chlorides are replaced with OH or SH groups to afford two series of difunctional monomers that can undergo condensation to form oxide- and sulfide-bridged oligomers. The sulfide-linked oligomers have less molecular strain and are more exergonic than the corresponding oxide-linked oligomers. The HOMO-LUMO gap of the oligomers varies with their composition and decreases with growing oligomer chain. This theoretical study is intended to enrich 1,3-MC bonding and planar tetracoordinate carbon chemistry and provide interesting ideas to experimentalists. Organometallic complexes with the TiE2 (E = OH and SH) decoration on the edge of aromatic hydrocarbons have been computationally designed, which feature 1,3-metal-carbon (1,3-MC) bonding between titanium and planar tetracoordinate ß-carbon. Condensation of these difunctional monomers by eliminating small molecules (H2O and H2S) produce chain-like oligomers. The HOMO-LUMO gaps of the oligomers decreases with growing oligomer chain, a trend that suggests possible semiconductor properties for oligomers with longer chains.
RESUMEN
This computational study identifies the rhombic D2hC2 (BeH)4 (2a) to be a species featuring double planar tetracoordinate carbons (ptCs). Aromaticity and the peripheral BeBeBeBe bonding around CC core contribute to the stabilization of the ptC structure. Although the ptC structure is not a global minimum, its high kinetic stability and its distinct feature of having a bonded C2 core from having two separated carbon atoms in the global minimum and other low-lying minima could make the ptC structure to be preferred if the carbon source is dominated by C2 species. The electron deficiency of the BeH group allows the ptC species to serve as building blocks to construct large/nanostructures, such as linear chains, planar sheets, and tubes, via intermolecular hydrogen-bridged bonds (HBBs). Formation of one HBB bond releases more than 30.0 kcal/mol of energy, implying the highly exothermic formation processes and the possibility to synthesize these nano-size structures.
RESUMEN
Fenestranes are an intriguing class of highly strained molecules possessing a quaternary carbon with bonds that deviate from the canonical tetrahedral geometry. Herein we report the discovery that the natural product pleuromutilin can be used as a structurally complex starting material for the synthesis of a series of bridged cis,cis,cis,cis-[4.5.5.5]- and cis,cis,cis,cis-[4.5.7.5]oxafenestranes through a carbocation rearrangement cascade. X-ray crystallographic analysis of several cis,cis,cis,cis-[4.5.5.5]oxafenestranes shows a significant planarization of the central tetracoordinate carbon atom and demonstrates the influence of bridgehead substituents and bridging rings on planarity.
Asunto(s)
Productos Biológicos/química , Diterpenos/química , Modelos Moleculares , Estructura Molecular , Compuestos Policíclicos , Estereoisomerismo , PleuromutilinasRESUMEN
The scaffold of fenestranes is quite unique, as it contains four condensed cycles and a distorted tetracoordinated central carbon atom with bond angles greater than the regular 109°28". In this Minireview, a detailed overview on the developments regarding this compound class, including their synthesis, is given for the time period since 2006. In the past years, natural products that belong to the class of heterofenestranes have been isolated and their syntheses will also be discussed.