Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(22): e2219686120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216541

RESUMEN

Polycystins (PKD2, PKD2L1, and PKD2L2) are members of the transient receptor potential family, which form ciliary ion channels. Most notably, PKD2 dysregulation in the kidney nephron cilia is associated with polycystic kidney disease, but the function of PKD2L1 in neurons is undefined. In this report, we develop animal models to track the expression and subcellular localization of PKD2L1 in the brain. We discover that PKD2L1 localizes and functions as a Ca2+ channel in the primary cilia of hippocampal neurons that apically radiate from the soma. Loss of PKD2L1 expression ablates primary ciliary maturation and attenuates neuronal high-frequency excitability, which precipitates seizure susceptibility and autism spectrum disorder-like behavior in mice. The disproportionate impairment of interneuron excitability suggests that circuit disinhibition underlies the neurophenotypic features of these mice. Our results identify PKD2L1 channels as regulators of hippocampal excitability and the neuronal primary cilia as organelle mediators of brain electrical signaling.


Asunto(s)
Trastorno del Espectro Autista , Cilios , Ratones , Animales , Cilios/metabolismo , Trastorno del Espectro Autista/metabolismo , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Neuronas/metabolismo , Hipocampo/metabolismo , Receptores de Superficie Celular/metabolismo , Canales de Calcio/metabolismo
2.
EMBO Rep ; 24(7): e56783, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37158562

RESUMEN

Members of the polycystin family (PKD2 and PKD2L1) of transient receptor potential (TRP) channels conduct Ca2+ and depolarizing monovalent cations. Variants in PKD2 cause autosomal dominant polycystic kidney disease (ADPKD) in humans, whereas loss of PKD2L1 expression causes seizure susceptibility in mice. Understanding structural and functional regulation of these channels will provide the basis for interpreting their molecular dysregulation in disease states. However, the complete structures of polycystins are unresolved, as are the conformational changes regulating their conductive states. To provide a holistic understanding of the polycystin gating cycle, we use computational prediction tools to model missing PKD2L1 structural motifs and evaluate more than 150 mutations in an unbiased mutagenic functional screen of the entire pore module. Our results provide an energetic landscape of the polycystin pore, which enumerates gating sensitive sites and interactions required for opening, inactivation, and subsequent desensitization. These findings identify the external pore helices and specific cross-domain interactions as critical structural regulators controlling the polycystin ion channel conductive and nonconductive states.


Asunto(s)
Canales Catiónicos TRPP , Canales de Potencial de Receptor Transitorio , Humanos , Ratones , Animales , Canales Catiónicos TRPP/química , Transducción de Señal , Transporte Iónico , Canales de Potencial de Receptor Transitorio/genética , Mutación , Receptores de Superficie Celular/metabolismo , Canales de Calcio/metabolismo
3.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37834113

RESUMEN

Autosomal-Dominant Polycystic Kidney Disease (ADPKD) is a monogenic disorder initiated by mutations in either PKD1 or PKD2 genes, responsible for encoding polycystin 1 and polycystin 2, respectively. These proteins are primarily located within the primary cilia. The disease follows an inexorable progression, leading most patients to severe renal failure around the age of 50, and extra-renal complications are frequent. A cure for ADPKD remains elusive, but some measures can be employed to manage symptoms and slow cyst growth. Tolvaptan, a vasopressin V2 receptor antagonist, is the only drug that has been proven to attenuate ADPKD progression. Recently, autophagy, a cellular recycling system that facilitates the breakdown and reuse of aged or damaged cellular components, has emerged as a potential contributor to the pathogenesis of ADPKD. However, the precise role of autophagy in ADPKD remains a subject of investigation, displaying a potentially twofold impact. On the one hand, impaired autophagy may promote cyst formation by inducing apoptosis, while on the other hand, excessive autophagy may lead to fibrosis through epithelial to mesenchymal transition. Promising results of autophagy inducers have been observed in preclinical studies. Clinical trials are warranted to thoroughly assess the long-term safety and efficacy of a combination of autophagy inducers with metabolic and/or aquaferetic drugs. This research aims to shed light on the complex involvement of autophagy in ADPKD, explore the regulation of autophagy in disease progression, and highlight the potential of combination therapies as a promising avenue for future investigations.


Asunto(s)
Quistes , Riñón Poliquístico Autosómico Dominante , Humanos , Anciano , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Riñón Poliquístico Autosómico Dominante/genética , Transición Epitelial-Mesenquimal , Riñón , Autofagia
4.
Proc Natl Acad Sci U S A ; 116(31): 15540-15549, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31315976

RESUMEN

The opening of voltage-gated ion channels is initiated by transfer of gating charges that sense the electric field across the membrane. Although transient receptor potential ion channels (TRP) are members of this family, their opening is not intrinsically linked to membrane potential, and they are generally not considered voltage gated. Here we demonstrate that TRPP2, a member of the polycystin subfamily of TRP channels encoded by the PKD2L1 gene, is an exception to this rule. TRPP2 borrows a biophysical riff from canonical voltage-gated ion channels, using 2 gating charges found in its fourth transmembrane segment (S4) to control its conductive state. Rosetta structural prediction demonstrates that the S4 undergoes ∼3- to 5-Å transitional and lateral movements during depolarization, which are coupled to opening of the channel pore. Here both gating charges form state-dependent cation-π interactions within the voltage sensor domain (VSD) during membrane depolarization. Our data demonstrate that the transfer of a single gating charge per channel subunit is requisite for voltage, temperature, and osmotic swell polymodal gating of TRPP2. Taken together, we find that irrespective of stimuli, TRPP2 channel opening is dependent on activation of its VSDs.


Asunto(s)
Canales de Calcio/metabolismo , Activación del Canal Iónico , Potenciales de la Membrana , Receptores de Superficie Celular/metabolismo , Canales de Calcio/genética , Células HEK293 , Humanos , Dominios Proteicos , Receptores de Superficie Celular/genética
5.
Am J Kidney Dis ; 77(3): 410-419, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33039432

RESUMEN

Primary cilia are specialized sensory organelles that protrude from the apical surface of most cell types. During the past 2 decades, they have been found to play important roles in tissue development and signal transduction, with mutations in ciliary-associated proteins resulting in a group of diseases collectively known as ciliopathies. Many of these mutations manifest as renal ciliopathies, characterized by kidney dysfunction resulting from aberrant cilia or ciliary functions. This group of overlapping and genetically heterogeneous diseases includes polycystic kidney disease, nephronophthisis, and Bardet-Biedl syndrome as the main focus of this review. Renal ciliopathies are characterized by the presence of kidney cysts that develop due to uncontrolled epithelial cell proliferation, growth, and polarity, downstream of dysregulated ciliary-dependent signaling. Due to cystic-associated kidney injury and systemic inflammation, cases result in kidney failure requiring dialysis and transplantation. Of the handful of pharmacologic treatments available, none are curative. It is important to determine the molecular mechanisms that underlie the involvement of the primary cilium in cyst initiation, expansion, and progression for the development of novel and efficacious treatments. This review updates research progress in defining key genes and molecules central to ciliogenesis and renal ciliopathies.


Asunto(s)
Síndrome de Bardet-Biedl/genética , Cilios/metabolismo , Ciliopatías/genética , Enfermedades Renales Poliquísticas/genética , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Anomalías Múltiples/fisiopatología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras del Transporte Vesicular/genética , Síndrome de Bardet-Biedl/metabolismo , Síndrome de Bardet-Biedl/fisiopatología , Cerebelo/anomalías , Cerebelo/metabolismo , Cerebelo/fisiopatología , Chaperoninas/genética , Cilios/fisiología , Trastornos de la Motilidad Ciliar/genética , Trastornos de la Motilidad Ciliar/metabolismo , Trastornos de la Motilidad Ciliar/fisiopatología , Ciliopatías/metabolismo , Ciliopatías/fisiopatología , Proteínas del Citoesqueleto/genética , Encefalocele/genética , Encefalocele/metabolismo , Encefalocele/fisiopatología , Anomalías del Ojo/genética , Anomalías del Ojo/metabolismo , Anomalías del Ojo/fisiopatología , Humanos , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/metabolismo , Enfermedades Renales Quísticas/fisiopatología , Amaurosis Congénita de Leber/genética , Amaurosis Congénita de Leber/metabolismo , Amaurosis Congénita de Leber/fisiopatología , Proteínas de la Membrana/genética , Proteínas Asociadas a Microtúbulos/genética , Atrofias Ópticas Hereditarias/genética , Atrofias Ópticas Hereditarias/metabolismo , Atrofias Ópticas Hereditarias/fisiopatología , Enfermedades Renales Poliquísticas/metabolismo , Enfermedades Renales Poliquísticas/fisiopatología , Proteínas/genética , Retina/anomalías , Retina/metabolismo , Retina/fisiopatología , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/fisiopatología , Canales Catiónicos TRPP/genética
6.
Int J Mol Sci ; 22(24)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34948309

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is mainly caused by deficiency of polycystin-1 (PC1) or polycystin-2 (PC2). Altered autophagy has recently been implicated in ADPKD progression, but its exact regulation by PC1 and PC2 remains unclear. We therefore investigated cell death and survival during nutritional stress in mouse inner medullary collecting duct cells (mIMCDs), either wild-type (WT) or lacking PC1 (PC1KO) or PC2 (PC2KO), and human urine-derived proximal tubular epithelial cells (PTEC) from early-stage ADPKD patients with PC1 mutations versus healthy individuals. Basal autophagy was enhanced in PC1-deficient cells. Similarly, following starvation, autophagy was enhanced and cell death reduced when PC1 was reduced. Autophagy inhibition reduced cell death resistance in PC1KO mIMCDs to the WT level, implying that PC1 promotes autophagic cell survival. Although PC2 expression was increased in PC1KO mIMCDs, PC2 knockdown did not result in reduced autophagy. PC2KO mIMCDs displayed lower basal autophagy, but more autophagy and less cell death following chronic starvation. This could be reversed by overexpression of PC1 in PC2KO. Together, these findings indicate that PC1 levels are partially coupled to PC2 expression, and determine the transition from renal cell survival to death, leading to enhanced survival of ADPKD cells during nutritional stress.


Asunto(s)
Autofagia/fisiología , Muerte Celular/fisiología , Inanición/metabolismo , Canales Catiónicos TRPP/metabolismo , Animales , Línea Celular , Células Epiteliales/metabolismo , Humanos , Túbulos Renales Proximales/metabolismo , Ratones , Riñón Poliquístico Autosómico Dominante/metabolismo
7.
Biochem Biophys Res Commun ; 521(2): 290-295, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31668373

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1 or PKD2, the genes encoding polycystin 1 (PC1) and polycystin 2 (PC2), respectively. PC1 and PC2 localize to the primary cilium and form a protein complex, which is thought to regulate signaling events. PKD1 mutations are associated with a stronger phenotype than PKD2, suggesting the existence of PC1 specific functions in renal tubular cells. However, the evidence for diverging molecular functions is scant. The bending of cilia by fluid flow induces a reduction in cell size through a mechanism that involves the kinase LKB1 but not PC2. Here, using different in vitro approaches, we show that contrary to PC2, PC1 regulates cell size under flow and thus phenocopies the loss of cilia. PC1 is required to couple mechanical deflection of cilia to mTOR in tubular cells. This study pinpoints divergent functions of the polycystins in renal tubular cells that may be relevant to disease severity in ADPKD.


Asunto(s)
Tamaño de la Célula/efectos de los fármacos , Riñón Poliquístico Autosómico Dominante/patología , Canales Catiónicos TRPP/fisiología , Animales , Fenómenos Biomecánicos , Células Cultivadas , Cilios/metabolismo , Humanos , Túbulos Renales/citología , Mutación , Serina-Treonina Quinasas TOR , Canales Catiónicos TRPP/genética
8.
J Am Soc Nephrol ; 30(11): 2103-2111, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31451534

RESUMEN

BACKGROUND: PKD1 or PKD2, the two main causal genes for autosomal dominant polycystic kidney disease (ADPKD), encode the multipass transmembrane proteins polycystin-1 (PC1) and polycystin-2 (PC2), respectively. Polycystins localize to the primary cilium, an organelle essential for cell signaling, including signal transduction of the Hedgehog pathway. Mutations in ciliary genes that build and maintain the cilium also cause renal cystic disease through unknown pathways. Although recent studies have found alterations in Hedgehog signaling in ADPKD-related models and tissues, the relationship between Hedgehog and polycystic kidney disease is not known. METHODS: To examine the potential role of cell-autonomous Hedgehog signaling in regulating kidney cyst formation in vivo in both early- and adult-onset mouse models of ADPKD, we used conditional inactivation of Pkd1 combined with conditional modulation of Hedgehog signaling components in renal epithelial cells, where mutations in Pkd1 initiate cyst formation. After increasing or decreasing levels of Hedgehog signaling in cells that underwent inactivation of Pkd1, we evaluated the effects of these genetic manipulations on quantitative parameters of polycystic kidney disease severity. RESULTS: We found that in Pkd1 conditional mutant mouse kidneys, neither downregulation nor activation of the Hedgehog pathway in epithelial cells along the nephron significantly influenced the severity of the polycystic kidney phenotype in mouse models of developmental or adult-onset of ADPKD. CONCLUSIONS: These data suggest that loss of Pkd1 function results in kidney cysts through pathways that are not affected by the activity of the Hedgehog pathway.


Asunto(s)
Proteínas Hedgehog/fisiología , Riñón Poliquístico Autosómico Dominante/etiología , Animales , Modelos Animales de Enfermedad , Ratones , Transducción de Señal/fisiología , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/fisiología , Proteína con Dedos de Zinc GLI1/fisiología
9.
J Cell Mol Med ; 23(9): 6215-6227, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31251475

RESUMEN

Polycystic Kidney Disease (PKD), which is attributable to mutations in the PKD1 and PKD2 genes encoding polycystin-1 (PC1) and polycystin-2 (PC2) respectively, shares common cellular defects with cancer, such as uncontrolled cell proliferation, abnormal differentiation and increased apoptosis. Interestingly, PC1 regulates many signalling pathways including Jak/STAT, mTOR, Wnt, AP-1 and calcineurin-NFAT which are also used by cancer cells for sending signals that will allow them to acquire and maintain malignant phenotypes. Nevertheless, the molecular relationship between polycystins and cancer is unknown. In this study, we investigated the role of PC1 in cancer biology using glioblastoma (GOS3), prostate (PC3), breast (MCF7), lung (A549) and colorectal (HT29) cancer cell lines. Our in vitro results propose that PC1 promotes cell migration in GOS3 cells and suppresses cell migration in A549 cells. In addition, PC1 enhances cell proliferation in GOS3 cells but inhibits it in MCF7, A549 and HT29 cells. We also found that PC1 up-regulates mTOR signalling and down-regulates Jak signalling in GOS3 cells, while it up-regulates mTOR signalling in PC3 and HT29 cells. Together, our study suggests that PC1 modulates cell proliferation and migration and interacts with mTOR and Jak signalling pathways in different cancer cell lines. Understanding the molecular details of how polycystins are associated with cancer may lead to the identification of new players in this devastating disease.


Asunto(s)
Neoplasias/genética , Enfermedades Renales Poliquísticas/genética , Serina-Treonina Quinasas TOR/genética , Canales Catiónicos TRPP/genética , Células A549 , Apoptosis/genética , Diferenciación Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Células HT29 , Humanos , Quinasas Janus/genética , Células MCF-7 , Neoplasias/clasificación , Neoplasias/patología , Enfermedades Renales Poliquísticas/patología , Transducción de Señal/genética
10.
J Cell Biochem ; 120(5): 6894-6898, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30461048

RESUMEN

Distorted mechanotransduction represents the molecular hallmark of disease mechanobiology and is displayed with common features during the development of various pathophysiologies. Polycystins constitute a family of mechanosensitive proteins that facilitate pathogenic signal transduction mechanisms. The main representatives of the family are polycystin-1 (PC1) and polycystin-2 (PC2), which function as a mechano-induced membrane receptor and a calcium-permeable ion channel, respectively. PC1 and PC2 mediate extracellular mechanical stimulation, induce intracellular molecular signaling and evoke corresponding gene transcription. Recent reports reveal that polycystin-mediated signaling does not occur in polycystic kidney disease only, where it is most prominently studied. It is also present during the development of clinical entities such as endothelial dysfunction and atheromatosis, deregulation of osteoblast differentiation, cancer development, and psoriasis. In this study, we highlight emerging data that support the overall contribution of polycystins to disease mechanobiology and suggest further exploration of this protein family in diseases generated from force-bearing tissue structures.

11.
FASEB J ; 32(8): 4612-4623, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29553832

RESUMEN

Autosomal-dominant polycystic kidney disease (ADPKD) is a devastating disorder that is characterized by a progressive decline in renal function as a result of the development of fluid-filled cysts. Defective flow-mediated [Ca2+]i responses and disrupted [Ca2+]i homeostasis have been repeatedly associated with cyst progression in ADPKD. We have previously demonstrated that the transient receptor potential vanilloid type 4 (TRPV4) channel is imperative for flow-mediated [Ca2+]i responses in murine distal renal tubule cells. To determine whether compromised TRPV4 function contributes to aberrant Ca2+ regulation in ADPKD, we assessed TRPV4 function in primary cells that were cultured from ADPKD and normal human kidneys (NHKs). Single-channel TRPV4 activity and TRPV4-dependent Ca2+ influxes were drastically reduced in ADPKD cells, which correlated with distorted [Ca2+]i signaling. Whereas total TRPV4 protein levels were comparable in NHK and ADPKD cells, we detected a marked decrease in TRPV4 glycosylation in ADPKD cells. Tunicamycin-induced deglycosylation inhibited TRPV4 activity and compromised [Ca2+]i signaling in NHK cells. Overall, we demonstrate that TRPV4 glycosylation and channel activity are diminished in human ADPKD cells compared with NHK cells, and that this contributes significantly to the distorted [Ca2+]i dynamics. We propose that TRPV4 stimulation may be beneficial for restoring [Ca2+]i homeostasis in cyst cells, thereby interfering with ADPKD progression.-Tomilin, V., Reif, G. A., Zaika, O., Wallace, D. P., Pochynyuk, O. Deficient transient receptor potential vanilloid type 4 function contributes to compromised [Ca2+]i homeostasis in human autosomal-dominant polycystic kidney disease cells.


Asunto(s)
Calcio/metabolismo , Homeostasis/fisiología , Riñón Poliquístico Autosómico Dominante/metabolismo , Canales Catiónicos TRPV/deficiencia , Canales Catiónicos TRPV/metabolismo , Animales , Células CHO , Células Cultivadas , Cricetulus , Glicosilación , Humanos , Riñón/metabolismo , Persona de Mediana Edad , Transducción de Señal/fisiología
12.
FASEB J ; 32(5): 2735-2746, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29401581

RESUMEN

Autosomal-dominant polycystic kidney disease (ADPKD) is associated with progressive formation of renal cysts, kidney enlargement, hypertension, and typically end-stage renal disease. In ADPKD, inherited mutations disrupt function of the polycystins (encoded by PKD1 and PKD2), thus causing loss of a cyst-repressive signal emanating from the renal cilium. Genetic studies have suggested ciliary maintenance is essential for ADPKD pathogenesis. Heat shock protein 90 (HSP90) clients include multiple proteins linked to ciliary maintenance. We determined that ganetespib, a clinical HSP90 inhibitor, inhibited proteasomal repression of NEK8 and the Aurora-A activator trichoplein, rapidly activating Aurora-A kinase and causing ciliary loss in vitro. Using conditional mouse models for ADPKD, we performed long-term (10 or 50 wk) dosing experiments that demonstrated HSP90 inhibition caused durable in vivo loss of cilia, controlled cystic growth, and ameliorated symptoms induced by loss of Pkd1 or Pkd2. Ganetespib efficacy was not increased by combination with 2-deoxy-d-glucose, a glycolysis inhibitor showing some promise for ADPKD. These studies identify a new biologic activity for HSP90 and support a cilia-based mechanism for cyst repression.-Nikonova, A. S., Deneka, A. Y., Kiseleva, A. A., Korobeynikov, V., Gaponova, A., Serebriiskii, I. G., Kopp, M. C., Hensley, H. H., Seeger-Nukpezah, T. N., Somlo, S., Proia, D. A., Golemis, E. A. Ganetespib limits ciliation and cystogenesis in autosomal-dominant polycystic kidney disease (ADPKD).


Asunto(s)
Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Triazoles/farmacología , Animales , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Cilios/genética , Cilios/metabolismo , Modelos Animales de Enfermedad , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Ratones , Ratones Noqueados , Quinasas Relacionadas con NIMA/genética , Quinasas Relacionadas con NIMA/metabolismo , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora
13.
Int J Mol Sci ; 20(1)2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30597875

RESUMEN

Cell and extracellular matrix (ECM) biomechanics emerge as a distinct feature during the development and progression of colorectal cancer (CRC). Polycystins are core mechanosensitive protein molecules that mediate mechanotransduction in a variety of epithelial cells. Polycystin-1 (PC1) and polycystin-2 (PC2) are engaged in signal transduction mechanisms and during alterations in calcium influx, which regulate cellular functions such as proliferation, differentiation, orientation, and migration in cancer cells. Recent findings implicate polycystins in the deregulation of such functions and the formation of CRC invasive phenotypes. Polycystins participate in all aspects of the cell's biomechanical network, from the perception of extracellular mechanical cues to focal adhesion protein and nuclear transcriptional complexes. Therefore, polycystins could be employed as novel biomarkers and putative targets of selective treatment in CRC.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Animales , Biomarcadores , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Clasificación del Tumor , Estadificación de Neoplasias , Pronóstico , Relación Estructura-Actividad , Canales Catiónicos TRPP/química
15.
J Am Soc Nephrol ; 27(4): 1135-44, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26271513

RESUMEN

Signaling from the primary cilium regulates kidney tubule development and cyst formation. However, the mechanism controlling targeting of ciliary components necessary for cilium morphogenesis and signaling is largely unknown. Here, we studied the function of class II phosphoinositide 3-kinase-C2α (PI3K-C2α) in renal tubule-derived inner medullary collecting duct 3 cells and show that PI3K-C2α resides at the recycling endosome compartment in proximity to the primary cilium base. In this subcellular location, PI3K-C2α controlled the activation of Rab8, a key mediator of cargo protein targeting to the primary cilium. Consistently, partial reduction of PI3K-C2α was sufficient to impair elongation of the cilium and the ciliary transport of polycystin-2, as well as to alter proliferation signals linked to polycystin activity. In agreement, heterozygous deletion of PI3K-C2α in mice induced cilium elongation defects in kidney tubules and predisposed animals to cyst development, either in genetic models of polycystin-1/2 reduction or in response to ischemia/reperfusion-induced renal damage. These results indicate that PI3K-C2α is required for the transport of ciliary components such as polycystin-2, and partial loss of this enzyme is sufficient to exacerbate the pathogenesis of cystic kidney disease.


Asunto(s)
Cilios/fisiología , Fosfatidilinositol 3-Quinasas Clase II/fisiología , Enfermedades Renales Quísticas , Canales Catiónicos TRPP/fisiología , Animales , Enfermedades Renales Quísticas/etiología , Masculino , Ratones , Transducción de Señal
16.
J Am Soc Nephrol ; 27(5): 1487-94, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26516209

RESUMEN

Although management of multiple myeloma has changed substantially in the last decade, it is unknown whether the burden of ESRD due to multiple myeloma has changed, or whether survival of patients with multiple myeloma on RRT has improved. Regarding ESRD due to multiple myeloma necessitating RRT in the United States, we evaluated temporal trends between 2001 and 2010 for demography-adjusted incidence ratios, relative to rates in 2001-2002, and mortality hazards from RRT initiation, relative to hazards in 2001-2002. In this retrospective cohort study, we used the US Renal Data System database (n=1,069,343), 2001-2010, to identify patients with ESRD due to multiple myeloma treated with RRT (n=12,703). Demography-adjusted incidence ratios of ESRD from multiple myeloma decreased between 2001-2002 and 2009-2010 in the overall population (demography-adjusted incidence ratio 0.82; 95% confidence interval, 0.79 to 0.86) and in most demographic subgroups examined. Mortality rates were 86.7, 41.4, and 34.4 per 100 person-years in the first 3 years of RRT, respectively, compared with 32.3, 20.6, and 21.3 in matched controls without multiple myeloma. Unadjusted mortality hazards ratios declined monotonically after 2004 to a value of 0.72; 95% confidence interval, 0.67 to 0.77 in 2009-2010, and declines between 2001-2002 and 2008-2009 were observed (P<0.05) in most demographic subgroups examined. Findings were similar when adjustment was made for demographic characteristics, comorbidity markers, and laboratory test values. These data suggest the incidence of RRT from multiple myeloma in the United States has decreased in the last decade, and clinically meaningful increases in survival have occurred for these patients.


Asunto(s)
Fallo Renal Crónico/epidemiología , Fallo Renal Crónico/etiología , Mieloma Múltiple/complicaciones , Adulto , Anciano , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Tiempo , Estados Unidos/epidemiología
17.
Semin Cell Dev Biol ; 33: 25-33, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24977333

RESUMEN

The investigation of Caenorhabditis elegans males and the male-specific sensory neurons required for mating behaviors has provided insight into the molecular function of polycystins and mechanisms that are needed for polycystin ciliary localization. In humans, polycystin 1 and polycystin 2 are needed for kidney function; loss of polycystin function leads to autosomal dominant polycystic kidney disease (ADPKD). Polycystins localize to cilia in C. elegans and mammals, a finding that has guided research into ADPKD. The discovery that the polycystins form ciliary receptors in male-specific neurons needed for mating behaviors has also helped to unlock insights into two additional exciting new areas: the secretion of extracellular vesicles; and mechanisms of ciliary specialization. First, we will summarize the studies done in C. elegans regarding the expression, localization, and function of the polycystin 1 and 2 homologs, LOV-1 and PKD-2, and discuss insights gained from this basic research. Molecules that are co-expressed with the polycystins in the male-specific neurons may identify evolutionarily conserved molecular mechanisms for polycystin function and localization. We will discuss the finding that polycystins are secreted in extracellular vesicles that evoke behavioral change in males, suggesting that such vesicles provide a novel form of communication to conspecifics in the environment. In humans, polycystin-containing extracellular vesicles are secreted in urine and can be taken up by cilia, and quickly internalized. Therefore, communication by polycystin-containing extracellular vesicles may also use mechanisms that are evolutionarily conserved from nematode to human. Lastly, different cilia display structural and functional differences that specialize them for particular tasks, despite the fact that virtually all cilia are built by a conserved intraflagellar transport (IFT) mechanism and share some basic structural features. Comparative analysis of the male-specific cilia with the well-studied cilia of the amphid and phasmid neurons has allowed identification of molecules that specialize the male cilia. We will discuss the molecules that shape the male-specific cilia. The cell biology of cilia in male-specific neurons demonstrates that C. elegans can provide an excellent model of ciliary specialization.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Cilios/fisiología , Canales Catiónicos TRPP/fisiología , Animales , Caenorhabditis elegans/citología , Cinesinas/fisiología , Masculino , Neuronas/metabolismo , Transporte de Proteínas , Conducta Sexual Animal , Vesículas Transportadoras/metabolismo
18.
Cell Signal ; 72: 109640, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32305669

RESUMEN

Naturally occurring mutations in two separate genes, PKD1 and PKD2, are responsible for the vast majority of all cases of autosomal dominant polycystic kidney disease (ADPKD), one of the most common genetic diseases affecting 1 in 1000 Americans. The hallmark of ADPKD is the development of epithelial cysts in the kidney, liver, and pancreas. PKD1 encodes a large plasma membrane protein (PKD1, PC1, or Polycystin-1) with a long extracellular domain and has been speculated to function as an atypical G protein coupled receptor. PKD2 encodes an ion channel of the Transient Receptor Potential superfamily (TRPP2, PKD2, PC2, or Polycystin-2). Despite the identification of these genes more than 20 years ago, the molecular function of their encoded proteins and the mechanism(s) by which mutations in PKD1 and PKD2 cause ADPKD remain elusive. Genetic, biochemical, and functional evidence suggests they form a multiprotein complex present in multiple locations in the cell, including the plasma membrane, endoplasmic reticulum, and the primary cilium. Over the years, numerous interacting proteins have been identified using directed and unbiased approaches, and shown to modulate function, cellular localization, and protein stability and turnover of Polycystins. Delineation of the molecular composition of the Polycystin complex can have a significant impact on understanding their cellular function in health and disease states and on the identification of more specific and effective therapeutic targets.


Asunto(s)
Complejos Multiproteicos/metabolismo , Canales Catiónicos TRPP/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Proteínas de Unión al GTP/metabolismo , Humanos , Complejos Multiproteicos/química , Unión Proteica , Transducción de Señal , Canales Catiónicos TRPP/química
19.
Cell Signal ; 66: 109468, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31715259

RESUMEN

Over-activation of the PI3K/Akt/mTOR network is a well-known pathogenic event that leads to hyper-proliferation. Pharmacological targeting of this pathway has been developed for the treatment of multiple diseases, including cancer. In polycystic kidney disease (PKD), the mTOR cascade promotes cyst growth by boosting proliferation, size and metabolism of kidney tubule epithelial cells. Therefore, mTOR inhibition has been tested in pre-clinical and clinical studies, but only the former showed positive results. This review reports recent discoveries describing the activity and molecular mechanisms of mTOR activation in tubule epithelial cells and cyst formation and discusses the evidence of an upstream regulation of mTOR by the PI3K/Akt axis. In particular, the complex interconnections of the PI3K/Akt/mTOR network with the principal signaling routes involved in the suppression of cyst formation are dissected. These interactions include the antagonism and the reciprocal negative regulation between mTOR complex 1 and the proteins whose deletion causes Autosomal Dominant PKD, the polycystins. In addition, the emerging role of phopshoinositides, membrane components modulated by PI3K, will be presented in the context of primary cilium signaling, cell polarization and protection from cyst formation. Overall, studies demonstrate that the activity of various members of the PI3K/Akt/mTOR network goes beyond the classical transduction of mitogenic signals and can impact several aspects of kidney tubule homeostasis and morphogenesis. These properties might be useful to guide the establishment of more effective treatment protocols to be tested in clinical trials.


Asunto(s)
Cilios/patología , Túbulos Renales/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Enfermedades Renales Poliquísticas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Canales Catiónicos TRPP/metabolismo , Proliferación Celular , Humanos , Túbulos Renales/patología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA