Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(5): e2306101, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37759427

RESUMEN

Polyvinyl pyrrolidone is blended in PbI2 with varied concentration, so as to study the coarsening dynamics of perovskite during the two-step growth method. It is observed that polyvinyl pyrrolidone hinders the crystallization of PbI2 and helps to form a more amorphous PbI2 matrix, which then improves perovskite crystallization. As the blending concentration increases from 0 to 2 mM, average crystallite/grain size of perovskite increases from 40.29 nm/0.79 µm to 84.35 nm/1.02 µm while surface fluctuation decreases slightly from 25.64 to 23.96 nm. The observations are caused by the "confinement effect" brought by polyvinyl pyrrolidone on PbI2 . Elevating blending concentration of polyvinyl pyrrolidone results in smaller PbI2 crystallites and more amorphous PbI2 matrix, thus reducing the diffusion/reaction barrier between PbI2 and organic salt and favoring perovskite crystallization. As blending concentration increases from 0 to 2 mM, the device efficiency rises from 19.76 (± 0.60) % to 20.50 (± 0.89) %, with the optimized value up to 22.05%, which is further improved to 24.48% after n-Octylammonium iodide (OAI)-basing surface modification. The study enlarges the scope of "confinement effect" brought by polymer molecules, which is beneficial for efficient and stable perovskite solar cell fabrication.

2.
Pharm Res ; 41(6): 1183-1199, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38849712

RESUMEN

AIM: This study aimed to fabricate dexamethasone sodium phosphate loaded microneedle arrays (MNA) and investigate their efficiency in combination with iontophoresis for the treatment of hind paw oedema in rats. METHODS: Drug loaded polyvinyl alcohol, polyvinyl pyrrolidone and D-sorbitol-based MNA11 were fabricated by vacuum micromolding. Physicochemical, morphological, thermal, in-silico, in-vitro insertion ability (on parafilm) and drug release studies were performed. Ex-vivo permeation, in-vivo insertion and anti-inflammatory studies were performed in combination with iontophoresis. RESULTS: MNA11 displayed sharp-tipped projections and acceptable physicochemical features. Differential scanning calorimetry results indicated that drug loaded MNA11 were amorphous solids. Drug interacted with PVP and PVA predominately via hydrogen bonding. Parafilm displayed conspicuously engraved complementary structure of MNA11. Within 60 min, 91.50 ± 3.1% drug released from MNA11. A significantly higher i.e., 95.06 ± 2.5% permeation of drug was observed rapidly (within 60 min) from MNA11-iontophoresis combination than MNA11 i.e., 84.07 ± 3.5% within 240 min. Rat skin treated using MNA11 and MNA11-iontophoresis showed disruptions / microchannels in the epidermis without any damage to underlying anatomical structures. MNA11-iontophoresis combination led to significant reduction (83.02 ± 3.9%) in paw oedema as compared to MNA11 alone (72.55 ± 4.1%). CONCLUSION: MNA11-iontophoresis combination can act as a promising candidate to deliver drugs transcutaneously for treating inflammatory diseases.


Asunto(s)
Administración Cutánea , Antiinflamatorios , Dexametasona , Sistemas de Liberación de Medicamentos , Edema , Iontoforesis , Agujas , Absorción Cutánea , Piel , Animales , Iontoforesis/métodos , Dexametasona/administración & dosificación , Dexametasona/farmacocinética , Dexametasona/análogos & derivados , Ratas , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacocinética , Edema/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Piel/metabolismo , Piel/efectos de los fármacos , Masculino , Liberación de Fármacos , Inflamación/tratamiento farmacológico , Ratas Sprague-Dawley
3.
Small ; 19(25): e2207848, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36929269

RESUMEN

Polyvinyl pyrrolidone (PVP) is doped to PbI2 and organic salt during two-step growth of halideperovskite. It is observed that PVP molecules can interact with both PbI2 and organic salt, reduce the aggregation and crystallization of the two, and then slow down the coarsening rate of perovskite. As doping concentration increases from 0 to 1 mM in organic salt, average crystallite size of perovskite decreases monotonously from 90 to 34 nm; Surface fluctuation reduces from 259.9 to 179.8 nm at first, and then increases; Similarly, surface roughness decreases from 45.55 to 26.64 nm at first, and then rises. Accordingly, a kind of "confinement effect" is resolved to crystallite growth and surface fluctuation/roughness, which helps to build compact and uniform perovskite film. Density of trap states (t-DOS) is cut down by ≈60% at moderate doping  (0.2 mM). Due to the "confinement effect", power conversion efficiency of perovskite solar cells is improved from 19.46 (±2.80) % to 21.50 (±0.99) %, and further improved to 24.11% after surface modification. Meanwhile, "confinement effect" strengthens crystallite/grain boundaries and improves thermal stability of both film and device. T80 of device increases to 120 h, compared to 50 h for reference ones.

4.
Pharm Res ; 40(8): 2039-2049, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37186072

RESUMEN

AIM: This study was aimed to develop rabies vaccine incorporated microneedle (MN) patches and evaluate the immunogenicity of prepared formulations in combination with iontophoresis. METHODS: Patches comprising of polyvinyl pyrrolidone, hyaluronic acid and polyethylene glycol 400 were engineered by vacuum micromolding technique. Physical evaluation of patches included determination of folding endurance, % swelling and morphological features. In vitro release study was performed in skin simulant agarose gel using model drug (methylene blue) loaded patches. In vitro insertion ability was assessed using stratum corneum simulant parafilm. In vivo insertion study was performed in rats. Immunogenicity was evaluated in dogs by determining immunoglobulin G (IgG) and rabies virus neutralizing antibodies (RVNA) titer. RESULTS: Patches displayed uniformly distributed microprojections with pointed tips and smooth surface, ~ 70% swelling, remained intact for ~ 200 foldings and successfully penetrated the parafilm. The area covered by model drug across agarose gel was almost double following treatment with MN-iontophoresis combination (MNdi) compared to MN alone (MNdo). Histological examination of rat skin treated with vaccine laden MN (MNvo) and MN-iontophoresis combination (MNvi) confirmed the formation of grooves in epidermis without any damage to the deep vasculature. A ~ 73% and ~ 206% increase (compared to untreated counterpart) was observed in the IgG titer of MNvo and MNvi treated dogs, respectively. The RVNA titer was increased by ~ 1.2 and ~ 2.2 times (compared to threshold value) after MNvo and MNvi treatment, respectively. CONCLUSION: MN-iontophoresis combination provided relatively potent immunogenic response over the conventional intramuscular injection, hence, can be used for administering vaccines transcutaneously.


Asunto(s)
Vacunas Antirrábicas , Ratas , Animales , Perros , Iontoforesis/métodos , Parafina , Sefarosa , Administración Cutánea , Piel , Sistemas de Liberación de Medicamentos , Agujas , Inmunoglobulina G
5.
Small ; 18(4): e2105045, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34841652

RESUMEN

A route is developed for directly growing 2D Au polyhedron arrays with controllable exposed facets of polyhedron by utilizing the substrate-supported 2D Au quasi-spherical nanoparticle arrays as the Au seed arrays, which cannot be realized by traditional lithography. In the reaction system, polyvinyl pyrrolidone (PVP) plays a vital role in guiding the reduced Au atoms and stabilizing the substrate-supported Au seeds. More importantly, by thermodynamic control, PVP as a capping agent can further direct the formation of {111} facets. The key to guarantee the integrity and periodicity of array is a proper reduction of Au ions and low growth rate of crystal. Benefiting from the higher electric field intensity near the sharp vertexes and edges of Au polyhedra and the exposed {110} facets with high energy, the Au polyhedron array with {110} facets encasing polyhedron exhibits good, stable surface enhanced Raman scattering activity toward 4-aminothiophenol among the involved arrays. The proposed fabrication approach tremendously enriches the structural diversity of Au nanoarrays on substrates and greatly overcomes the shortcoming of traditional lithography.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/química , Nanopartículas del Metal/química , Povidona/química , Espectrometría Raman , Termodinámica
6.
J Biochem Mol Toxicol ; 36(10): e23167, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35861501

RESUMEN

The present research was designed to investigate the potential effects of zinc oxide nanoparticles synthesized by both chemical and green method in caprine testis. In this study, rod-shaped zinc oxide nanoparticles (ZnONPs) with diameter less than 100 nm were prepared by chemical and green method using polyvinyl pyrrolidone (PVP) and Ocimum sanctum leaf extract as stabilizing agents respectively. X-ray diffraction, Fourier transform infrared spectroscopy, LCMS, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and EDX were utilized to characterize the synthesized zinc oxide nanoparticles. The histomorphological alterations of both chemically synthesized and biosynthesized zinc oxide nanoparticles were evaluated after administration of two doses (10 µg/ml and 20 µg/ml) for exposure duration of 4 h and 8 h. Chemically synthesized zinc oxide nanoparticles induced significant damage in testicular cells in dose and time-dependent manner. The Histomorphological changes included desquamation in germinal epithelium, pyknosis in germ cells, increased vacuolization, loss of mature spermatozoa from lumen and wide interstitial space between seminiferous tubules. Protective effects of biosynthesized zinc oxide nanoparticles were recorded at lower dose whereas some alterations were observed when treated with 20 µg/ml for 4 h and 8 h culture duration. The results confirmed that phytochemicals present in leaf extract of O. sanctum mitigated the zinc oxide nanoparticles induced toxicity, proving biosynthesized nanoparticles are better than chemically synthesized nanoparticles.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Animales , Antibacterianos/farmacología , Excipientes , Cabras , Masculino , Nanopartículas del Metal/química , Nanopartículas/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polivinilos , Pirrolidinonas , Espectroscopía Infrarroja por Transformada de Fourier , Testículo , Óxido de Zinc/química , Óxido de Zinc/toxicidad
7.
Molecules ; 24(23)2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31779169

RESUMEN

The solid dispersion technique, which is widely used in the medical field, was applied to prepare a pesticide dosage form of emamectin benzoate (EM). The preparation, physicochemical characterization, aqueous solubility, release dynamics, photolytic degradation, bioactivity, and sustained-release effects of the prepared EM solid dispersions were studied by a solvent method, using polymer materials as the carriers. Water-soluble polyvinyl pyrrolidone (PVP) K30 and water-insoluble polyacrylic resin (PR)III were used as the carriers. The influence of various parameters, such as different EM:PVP-K30 and EM:PRIII feed ratios, solvent and container choices, rotational speed and mixing time effects on pesticide loading, and the entrapment rate of the solid dispersions were investigated. The optimal conditions for the preparation of EM-PVP-K30 solid dispersions required the use of methanol and a feed ratio between 1:1 and 1:50, along with a rotational speed and mixing time of 600 rpm and 60 min, respectively. For the preparation of EM-PRIII solid dispersions, the use of methanol and a feed ratio between 1:4 and 1:50 were required, in addition to the use of a porcelain mortar for carrying out the process. Under optimized conditions, the prepared EM-PVP-K30 solid dispersions resembled potato-like, round, and irregular structures with a jagged surface. In contrast, the EM-PRIII solid dispersions were irregular solids with a microporous surface structure. The results of X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), ultraviolet (UV) spectrometry, and infrared (IR) spectrometry showed that the solid dispersions were formed by intermolecular hydrogen bonding. The solid dispersion preparation in PVP-K30 significantly improved the solubility and dissolution rate of EM, particularly the aqueous solubility, which reached a maximum of 37.5-times the EM technical solubility, when the feed ratio of 1:10 was employed to prepare the dispersion. Importantly, the wettable powder of EM-PVP-K30 solid dispersion enhanced the insecticidal activity of EM against the Plutella xylostella larvae. Furthermore, the solid dispersion preparation in PRIII afforded a significant advantage by prolonging the EM technical release in water at a pH below 7.0, especially when the PRIII content in solid dispersions was high. While the amplified toxicity of the wettable powder of EM-PRIII solid dispersions against the P. xylostella larvae showed no significant differences from that of the EM technical, the long-term toxicity under the field condition was much better than that of the commercially available EM 1.5% emulsifiable concentrate. Notably, solid dispersions with both the PVP-K30 and PRIII carriers reduced the effect of UV photolysis.


Asunto(s)
Preparaciones de Acción Retardada/química , Ivermectina/análogos & derivados , Tecnología Farmacéutica/métodos , Rastreo Diferencial de Calorimetría/métodos , Química Farmacéutica/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Ivermectina/química , Polímeros/química , Polivinilos/química , Polvos/química , Pirrolidinas/química , Solubilidad , Solventes/química , Espectrofotometría Infrarroja/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Rayos Ultravioleta , Difracción de Rayos X/métodos
8.
Drug Dev Ind Pharm ; 43(9): 1501-1509, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28425323

RESUMEN

CONTEXT: Piperine alkaloid, an important constituent of black pepper, exhibits numerous therapeutic properties, whereas its usage as a drug is limited due to its poor solubility in aqueous medium, which leads to poor bioavailability. OBJECTIVE: Herein, a new method has been developed to improve the solubility of this drug based on the development of solid dispersions with improved dissolution rate using hydrophilic carriers such as sorbitol (Sor), polyethylene glycol (PEG) and polyvinyl pyrrolidone K30 (PVP) by solvent method. Physical mixtures of piperine and carriers were also prepared for comparison. METHODS: The physicochemical properties of the prepared solid dispersions were examined using SEM, TEM, DSC, XRD and FT-IR. In vitro dissolution profile of the solid dispersions was recorded and compared with that of the pure piperine and physical mixtures. The effect of these carriers on the aqueous solubility of piperine has been investigated. RESULTS: The solid dispersions of piperine with Sor, PEG and PVP exhibited superior performance for the dissolution of piperine with a drug release of 70%, 76% and 89%, respectively after 2 h compared to physical mixtures and pure piperine, which could be due to its transformation from crystalline to amorphous form as well as the attachment of hydrophilic carriers to the surface of poorly water-soluble piperine. CONCLUSION: Results suggest that the piperine solid dispersions prepared with improved in vitro release exhibit potential advantage in delivering poorly water-soluble piperine as an oral supplement.


Asunto(s)
Alcaloides/química , Benzodioxoles/química , Portadores de Fármacos/química , Piperidinas/química , Polietilenglicoles/química , Alcamidas Poliinsaturadas/química , Povidona/química , Disponibilidad Biológica , Rastreo Diferencial de Calorimetría , Química Farmacéutica , Composición de Medicamentos , Interacciones Hidrofóbicas e Hidrofílicas , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier
9.
Saudi Pharm J ; 22(6): 570-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25561871

RESUMEN

Gastroretentive levofloxacin (LVF) floating mini-tablets for the eradication of Helicobacter pylori (H. pylori) were prepared using the matrix forming polymer hydroxypropyl methylcellulose (HPMC K100M), alone or with Carbopol 940P in different ratios by wet granulation technique. Buoyancy of mini-tablets was achieved by an addition of an effervescent mixture consisting of sodium bicarbonate and anhydrous citric acid to some formulations. The prepared mini-tablets were evaluated for weight variation, thickness, friability, hardness, drug content, in vitro buoyancy, water uptake and in vitro release. The optimized formula was subjected to further studies: FT-IR, DSC analysis and in vivo examination in healthy volunteers. The prepared mini-tablets exhibited satisfactory physicochemical characteristics. Incorporation of gas-generating agent improved the floating parameters. HPMC K100M mini-tablet formulation (F1) offered the best controlled drug release (>8 h) along with floating lag time <1 s and total floating time >24 h. The obtained DSC thermograms and FT-IR charts indicated that there is no positive evidence for the interaction between LVF and ingredients of the optimized formula. The in vivo test confirmed the success of the optimized formula F1 in being retained in the stomach of the volunteers for more than 4 h. LVF floating mini-tablets based on HPMC K100M is a promising formulation for eradication of H. pylori.

10.
Int J Pharm ; 660: 124289, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38825171

RESUMEN

The transdermal delivery of naloxone for opioid overdose emergency purposes is a challenge due to its poor rate of diffusion through the layers of skin. This results in delayed delivery of an insufficient amount of the drug within minimal time as is desired to save lives. The ability of dissolving polymeric microneedles to shorten the lag time significantly has been explored and shown to have prospects in terms of the transdermal delivery of naloxone. This is an option that offers critical advantages to the ongoing opioid crisis, including ease of distribution and easy administration, with little to no need for intervention by clinicians. Nonetheless, this approach by itself needs augmentation to meet pharmacokinetic delivery attributes desired for a viable clinical alternative to existing market dosage forms. In this study, we report the success of an optimized iontophoresis-coupled naloxone loaded dissolving microneedle patch which had facilitated a 12- fold increase in average cumulative permeation and a 6-fold increase in drug flux over a conventional dissolving microneedle patch within 60 min of application (p < 0.05). This translates to a 30 % decrease in dose requirement in a mechanistically predicted microneedle patch established to be able to achieve the desired early plasma concentration time profile needed in an opioid overdose emergency. Applying a predictive mathematical model, we describe an iontophoresis-coupled microneedle patch design capable of meeting the desired pharmacokinetic profile for a viable naloxone delivery form through skin.


Asunto(s)
Administración Cutánea , Iontoforesis , Naloxona , Antagonistas de Narcóticos , Agujas , Absorción Cutánea , Parche Transdérmico , Naloxona/administración & dosificación , Naloxona/farmacocinética , Iontoforesis/métodos , Antagonistas de Narcóticos/administración & dosificación , Antagonistas de Narcóticos/farmacocinética , Animales , Sistemas de Liberación de Medicamentos , Polímeros/química , Microinyecciones/métodos , Masculino , Piel/metabolismo , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/farmacocinética
11.
Surv Ophthalmol ; 69(2): 211-223, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37944600

RESUMEN

Polyvinyl pyrrolidone or povidone-iodine (PVP-I) is a water-soluble complex formed by the combination of iodine and a water-soluble polymer, polyvinyl pyrrolidone. This complex exerts bactericidal, fungicidal, and virucidal action by gradually releasing free iodine at the site of application to react with pathogens. In ophthalmology, PVP-I is used as a disinfectant and antiseptic agent for preoperative preparation of the skin and mucous membranes and for treating contaminated wounds. PVP-I has been shown to reduce effectively the risk of endophthalmitis in various ocular procedures, including cataract surgery and intravitreal injections; however, it has also been used in the treatment of conjunctivitis, keratitis, and endophthalmitis, with promising results especially in low-resource situations. PVP-I has been associated with complications such as postoperative eye pain, persistent corneal epithelial defects, ocular inflammation, and an attendant risk of keratitis. In cases of poor PVP-I tolerance, applying PVP-I at lower concentrations or using alternative antiseptics such as chlorhexidine should be considered. We provide an update on the efficacy of PVP-I in the prophylaxis and treatment of conjunctivitis, keratitis, and endophthalmitis and a comprehensive analysis of the current literature regarding the use of PVP-I in the management of these ocular conditions. Also, PVP-I-related adverse effects and toxicities and its alternatives are discussed. The goal is to present a thorough evaluation of the available evidence and to offer practical recommendations for clinicians regarding the therapeutic usage of PVP-I in ophthalmology.


Asunto(s)
Antiinfecciosos Locales , Extracción de Catarata , Conjuntivitis , Endoftalmitis , Yodo , Queratitis , Oftalmología , Humanos , Povidona Yodada/farmacología , Povidona Yodada/uso terapéutico , Polivinilos , Antiinfecciosos Locales/farmacología , Antiinfecciosos Locales/uso terapéutico , Yodo/uso terapéutico , Endoftalmitis/tratamiento farmacológico , Endoftalmitis/prevención & control , Povidona , Conjuntivitis/inducido químicamente , Conjuntivitis/tratamiento farmacológico , Queratitis/tratamiento farmacológico , Agua
12.
Food Chem Toxicol ; 186: 114581, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460669

RESUMEN

To investigate the underlying resistance mechanisms of Saccharomyces cerevisiae against Ag-NPs with different particle sizes and coatings, transcriptome sequencing (RNA-seq) technology was used to characterize the transcriptomes from S. cerevisiae exposed to 20-PVP-Ag, 100-PVP-Ag, 20-CIT-Ag and 100-CIT-Ag, respectively. The steroid biosynthesis was found as a general pathway for Ag-NPs stress responding, in which ERG6 and ERG3 were inhibited and ERG11, ERG25 and ERG5 were significantly up-regulated to resist the stress by supporting the later mutation and resistance and modulate drug efflux indirectly. The resistance mechanism of S. cerevisiae to 20-PVP-Ag seems different from that of 100-PVP-Ag, 20-CIT-Ag and 100-CIT-Ag. Under the 20-PVP-Ag, transmembrane transporter activity, transition metal ion homeostasis and oxidative phosphorylation pathway were main resistance pathways to enhance cell transport processes. While 100-PVP-Ag, 20-CIT-Ag and 100-CIT-Ag mainly impacted RNA binding, structural constituent of ribosome and ribosome pathway which can provide more energy to maintain the number and function of protein in cells. This study reveals the differences in resistance mechanisms of S. cerevisiae to Ag-NPs with different particle sizes and coatings, and explains several main regulatory mechanisms used to respond to silver stress. It will provide theoretical basis for the study of chemical risk assessment.


Asunto(s)
Nanopartículas del Metal , Plata , Plata/farmacología , Plata/química , Saccharomyces cerevisiae/genética , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Transporte Biológico
13.
Int J Pharm ; 666: 124767, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39332456

RESUMEN

One concern that has been considered potentially fatal is bacterial infection. In addition to the development of biocompatible antibacterial dressings, the screening and combination of new antibiotics effective against antibiotic resistance are crucial. In this study, designing hemostasis electrospun composite nanofibers containing chitosan (CS), polyvinyl pyrrolidone (PVP) and Gelatin (G) as the major components of hydrogel and natural nanofibrillated sodium alginate (SA)/polyvinyl alcohol (PVA) and ZnO nanoparticles (ZnONPs) combination as the nanofiller ingredient, has been investigated which demonstrated significant potential for accelerating wound healing. The hydrogels were developed for the delivery of the amikacin and cefepime antibiotics, along with zinc oxide nanoparticles that were applied to an electrospun layer. Amikacin is a highly effective aminoglycoside antibiotic, particularly for hospital-acquired infections, but its use is limited due to its toxicity. By utilizing it in low concentrations in the form of nanofibers and combining it with cefepime, which exhibits synergistic effects, enhanced efficacy against bacterial pathogens is achieved while potentially minimizing cytotoxicity compared to individual antibiotics. This dressing demonstrated efficient drug release, flexibility, and good swelling properties, indicating its suitable mechanical properties for therapeutic applications. After applying the biocompatible hydrogel to wounds, a significant acceleration in wound closure was observed within 14 days compared to the control group. Furthermore, the notable antibiotic and anti-inflammatory properties underscore its effectiveness in wound healing, making it a promising candidate for medical applications.

14.
Environ Sci Pollut Res Int ; 31(35): 47789-47800, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39007970

RESUMEN

Silver nanoparticles (AgNPs) have garnered significant global attention from researchers due to their unique physicochemical properties and wide-ranging applications in industry and medicine. However, their release into aquatic ecosystems has raised concerns regarding potential ecotoxicological consequences. The present study investigated the effects of polyvinyl pyrrolidone-coated silver nanoparticles on Labeo rohita fingerlings, focusing on behavioural reactions, genotoxic effects, histological changes and bioaccumulation. L. rohita fingerlings were exposed to polyvinyl pyrrolidone-coated silver nanoparticles with sizes ranging from 18 to 29 nm for 7 days at concentrations of 100, 200, 400 and 800 ug/l. The nanoparticle zeta potential was found to be extremely negative, measuring - 55.5 mV for 18 nm and - 31.4 mV for 29 nm. Behavioural abnormalities, including respiratory distress, reduced responsiveness and erratic swimming, were observed in exposed groups compared to controls, with severity increasing with higher nanoparticle concentrations. Genotoxicity assessment revealed significantly higher DNA damage in kidney cells compared to gill cells. Histological examination of gill tissues showed clogging in primary and secondary lamellae, along with distorted anatomy, necrosis and vacuolar atrophy in peripheral tubules of the kidneys. The kidneys exhibited greater nanoparticle accumulation than the gills with prolonged exposure. Moreover, 18 nm AgNPs induced more pronounced DNA damage and histological alterations in the kidney and gill tissues compared to 29 nm nanoparticles. This study elucidates the critical role of monitoring AgNPs in aquatic systems, providing essential data on their behaviour and environmental impacts. The findings highlight the need for improved detection techniques and effective management of AgNP contamination. Future research should focus on developing more sensitive analytical methods, understanding long-term ecological effects and exploring innovative remediation strategies.


Asunto(s)
Cyprinidae , Daño del ADN , Nanopartículas del Metal , Plata , Animales , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Contaminantes Químicos del Agua/toxicidad , Branquias/efectos de los fármacos
15.
Sci Rep ; 14(1): 18346, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112728

RESUMEN

In this study, rapid expansion of a supercritical solution into a Liquid Solvent (RESOLV) was used for the first time to produce pharmaceutical nanoparticles of Prazosin hydrochloride (PRH). The Taguchi method (robust design) was utilized to design the experiments and ensure obtaining the optimal process conditions. The pressure (15-25 MPa), temperature (308-328 K) and nozzle diameter (300-700 µm) effects on the morphology and size distribution of the resulting particles were also examined. The size of the particles decreased from about 40 µm to the range of (252-418 nm). FTIR, DLS, FESEM, XRD, DSC were used to characterize the primary and processed PRH particles. According to DSC investigations, RESOLV-produced PRH showed lower crystallinity than original PRH.

16.
Int J Biol Macromol ; 280(Pt 4): 136051, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39332562

RESUMEN

Ethyl cellulose (EC), polyvinylpyrrolidone (PVP), and phosphomolybdic acid (PMoA) were the components of a new photochromic hybrid film composed of heteropoly acids (abbreviated EC-PVP/PMoA), created by solvent evaporation. The EC-PVP/PMoA mechanism, visible light photochromic behaviors, and microstructure were closely studied by transmission electron microscopy (TEM), atomic force microscopy (AFM), ultraviolet-visible (UV-visible) spectroscopy, X-ray photo electronics (XPS), and Fourier transmission infrared spectroscopy (FTIR). FTIR spectra show that neither the core structures of EC, PVP, nor the Keggin structure of PMoA in the EC-PVP/PMoA composite hybrid film were damaged during fabrication. In the presence of oxygen, the yellowish transparent hybrid film exhibited reversible photochromism and significant photochromic reactivity, becoming blue in the presence of visible light. Upon heating the film at 90 °C for 1 h its photoresponsive properties were enhanced, making the blue color more vibrant and stable due to polyethylene glycol (PEG). The XPS spectra demonstrated a proton transfer procedure during the photochromic process, and the presence of Mo+5 species indicated a photoreduction interaction between the PMoA particles and the EC-PVP matrix. To the best of our knowledge, this is the first EC-PVP combined hybrid film with POMs with promising prospects for solar UV detection and smart glass windows applications.


Asunto(s)
Celulosa , Povidona , Compuestos de Tungsteno , Povidona/química , Celulosa/química , Celulosa/análogos & derivados , Compuestos de Tungsteno/química , Luz , Espectroscopía Infrarroja por Transformada de Fourier , Molibdeno/química , Procesos Fotoquímicos , Ácidos Fosforosos/química , Ácidos Fosfóricos
17.
Polymers (Basel) ; 16(20)2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39458747

RESUMEN

Loratadine (LOR) is a second-generation antihistamine that exhibits a low and variable oral bioavailability (10-40%) and delayed onset owing to poor solubility and an extensive first-pass effect. Therefore, in light of the clinical need, the main goal of the present study was to develop sublingual fast-dissolving thin films of LOR-citric acid co-amorphous systems (LOR-CAs) with the aim of eliciting a faster onset and improving the bioavailability. We formulated sublingual fast-dissolving thin films of LOR by a film-casting technique using hydrophilic polymers like hydroxypropyl methylcellulose (HPMC E15), polyvinyl pyrrolidone K30 (PVP K30), and hydroxypropyl cellulose EL (HPC-EF) and citric acid as a pH modulator, while glycerin served as a plasticizer. The sublingual fast-dissolving thin films were characterized by FTIR, SEM, DSC, and XRD and evaluated for in vitro dissolution and ex vivo mucoadhesion. The best formulation (F1) developed using HPMC E15 as a polymer, glycerin as a plasticizer, and citric acid as a pH modulator was found to be the optimized formulation as it was smooth, clear, flexible, and displayed good mucoadhesion (11.27 ± 0.418 gm/cm2) and uniform thickness (0.25 ± 0.02 mm). The formulation F1 was found to display a significantly shorter DT (30.30 ± 0.6 s) and rapid release of LOR (92.10 ± 2.3% in 60 min) compared to other formulations (ANOVA, p < 0.001). The results indicated that the prepared sublingual films are likely to elicit a faster therapeutic effect, avoid first-pass metabolism, and improve the bioavailability.

18.
Talanta ; 277: 126406, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38901193

RESUMEN

An electrochemical free chlorine sensor was developed by modifying a lab-made screen-printed carbon electrode (SPCE) with gold nanoparticles synthesized with polyvinylpyrrolidone (AuNPs-PVP). The electrode was made by screen printing carbon ink on a waste digital versatile disc (SPC-wDVD). PVP was used to stabilize AuNPs. Scanning electron microscopy showed that AuNPs aggregated without the stabilizer. The electrochemical behavior of the SPC-wDVD was evaluated by comparison with commercial SPCEs from two companies. Electrochemical characterization involved cyclic voltammetry and electrochemical impedance spectroscopy. The detection of free chlorine in water samples was continuous, facilitated by a flow-injection system. In the best condition, the developed sensor exhibited linearity from 0.25 to 3.0 and 3.0 to 500 mg L-1. The limit of detection was 0.1 mg L-1. The stability of the sensor enabled the detection of free chlorine at least 475 times with an RSD of 3.2 %. The AuNPs-PVP/SPC-wDVD was able to detect free chlorine in drinking water, tap water and swimming pool water. The agreement between the results obtained with the proposed method and the standard spectrophotometric method confirmed the precision of the developed sensor.

19.
Biotechnol Genet Eng Rev ; : 1-18, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36703548

RESUMEN

Polymer polyvinylpyrrolidone (PVP) can be described as the main coating. After heating and curing, it is able to build a strong adhesion to the latex catheter for creating a durable and effective hydrophilic coating. In this study, we aim to explore the advantages and disadvantages of the new super lubricath latex catheter PVP coating compared with the common latex catheter. 148 patients who participated in the study were completely randomly divided into two groups, the observation group and the control group. When the urinary catheter was incubated, indwelling in subjects' body, and removed from the subjects, the researchers accordingly recorded the subjects' comfort feedback, device safety evaluation and the patient's vital signs, relevant blood and urine examination index, electrocardiogram (ECG) changes and recorded various adverse events. PVP super lubricath coating latex catheter offered better comfort, less damage to the urethra, and no significant disadvantage in safety compared to regular latex catheters, improving quality of care and patient satisfaction compared to regular latex urinary catheters.

20.
Int J Biol Macromol ; 241: 124563, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37100333

RESUMEN

In this work, we prepared polyvinyl pyrrolidone (PVP) microfibers incorporated water-in-oil (W/O) emulsions. The W/O emulsions were fabricated by hexadecyl konjac glucomannan (HKGM, emulsifier), corn oil (oil phase) and purple corn anthocyanins (PCAs, water phase). The structures and functions of emulsions and microfibers were characterized by confocal laser scanning (CLSM) and scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), Raman and nuclear magnetic resonance (NMR) spectroscopy. The results showed that W/O emulsions exhibited good storage stability for 30 d. Microfibers presented ordered and uniform arrays. Compared with pure PVP microfiber films, the addition of W/O emulsions with PCAs improved the water resistance (WVP from 1.28 to 0.76 g mm/m2 day kPa), mechanical strength (Elongation at break from 18.35 % to 49.83 %), antioxidation (free radical scavenging rate from 2.58 % to 16.37 %), and antibacterial activity (inhibition zone against E. coli: 27.33 mm and inhibition zone against S. aureus: 28.33 mm) of microfiber films. Results showed that microfiber film exhibited controlled release of PCAs in W/O emulsions, and about 32 % of the PCAs were released from the microfiber film after 340 min. The as-prepared microfiber films exhibited potential applications for food packaging.


Asunto(s)
Microfluídica , Povidona , Emulsiones/química , Polivinilos , Espectroscopía Infrarroja por Transformada de Fourier , Escherichia coli , Staphylococcus aureus , Antocianinas , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA