Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Plant Res ; 135(3): 389-403, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35488138

RESUMEN

Membrane traffic is a fundamental cellular system to exchange proteins and membrane lipids among single membrane-bound organelles or between an organelle and the plasma membrane in order to keep integrity of the endomembrane system. RAB GTPases and SNARE proteins, the key regulators of membrane traffic, are conserved broadly among eukaryotic species. However, genome-wide analyses showed that organization of RABs and SNAREs that regulate the post-Golgi transport pathways is greatly diversified in plants compared to other model eukaryotes. Furthermore, some organelles acquired unique properties in plant lineages. Like in other eukaryotic systems, the trans-Golgi network of plants coordinates secretion and vacuolar transport; however, uniquely in plants, it also acts as a platform for endocytic transport and recycling. In this review, we focus on RAB GTPases and SNAREs that function at the TGN, and summarize how these regulators perform to control different transport pathways at the plant TGN. We also highlight the current knowledge of RABs and SNAREs' role in regulation of plant development and plant responses to environmental stimuli.


Asunto(s)
Proteínas SNARE , Red trans-Golgi , Estudio de Asociación del Genoma Completo , Aparato de Golgi/metabolismo , Plantas/genética , Plantas/metabolismo , Transporte de Proteínas , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Red trans-Golgi/metabolismo
2.
Plant Cell Physiol ; 57(10): 2013-2019, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27649735

RESUMEN

Membrane trafficking is the fundamental system through which proteins are sorted to their correct destinations in eukaryotic cells. Key regulators of this system include RAB GTPases and soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs). Interestingly, the numbers of RAB GTPases and SNAREs involved in post-Golgi transport pathways in plant cells are larger than those in animal and yeast cells, suggesting that plants have evolved unique and complex post-Golgi transport pathways. The trans-Golgi network (TGN) is an important organelle that acts as a sorting station in the post-Golgi transport pathways of plant cells. The TGN also functions as the early endosome, which is the first compartment to receive endocytosed proteins. Several endocytosed proteins on the plasma membrane (PM) are initially targeted to the TGN/EE, then recycled back to the PM or transported to the vacuole for degradation. The recycling and degradation of the PM localized proteins is essential for the development and environmental responses in plant. The present review describes the post-Golgi transport pathways that show unique physiological functions in plants.


Asunto(s)
Membrana Celular/metabolismo , Aparato de Golgi/fisiología , Plantas/metabolismo , Desarrollo de la Planta , Proteínas de Plantas/metabolismo , Transporte de Proteínas
3.
J Cell Sci ; 127(Pt 23): 5079-92, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25278553

RESUMEN

The delivery of newly synthesized soluble lysosomal hydrolases to the endosomal system is essential for lysosome function and cell homeostasis. This process relies on the proper trafficking of the mannose 6-phosphate receptors (MPRs) between the trans-Golgi network (TGN), endosomes and the plasma membrane. Many transmembrane proteins regulating diverse biological processes ranging from virus production to the development of multicellular organisms also use these pathways. To explore how cell signaling modulates MPR trafficking, we used high-throughput RNA interference (RNAi) to target the human kinome and phosphatome. Using high-content image analysis, we identified 127 kinases and phosphatases belonging to different signaling networks that regulate MPR trafficking and/or the dynamic states of the subcellular compartments encountered by the MPRs. Our analysis maps the MPR trafficking pathways based on enzymes regulating phosphatidylinositol phosphate metabolism. Furthermore, it reveals how cell signaling controls the biogenesis of post-Golgi tubular carriers destined to enter the endosomal system through a SRC-dependent pathway regulating ARF1 and RAC1 signaling and myosin II activity.


Asunto(s)
Membrana Celular/enzimología , Endosomas/enzimología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Interferencia de ARN , Receptor IGF Tipo 2/metabolismo , Red trans-Golgi/enzimología , Factor 1 de Ribosilacion-ADP/genética , Factor 1 de Ribosilacion-ADP/metabolismo , Análisis por Conglomerados , Regulación Enzimológica de la Expresión Génica , Redes Reguladoras de Genes , Células HeLa , Humanos , Fosfatos de Fosfatidilinositol/metabolismo , Mapas de Interacción de Proteínas , Transporte de Proteínas/genética , Receptor IGF Tipo 2/genética , Transducción de Señal , Transfección , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
4.
Front Cell Dev Biol ; 7: 7, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30778386

RESUMEN

Loss of function mutations in the FGD1 gene cause a rare X-linked disease, faciogenital dysplasia (FGDY, also known as Aarskog-Skott syndrome), which is associated with bone and urogenital abnormalities. The FGD1 gene encodes à CDC42-specific guanine nucleotide exchange factor. The mutations are frequently located in the DH module of FGD1 preventing its transformation to the active form. We previously reported that Golgi-associated FGD1 regulates post-Golgi transport of some conventional and bone-specific proteins in a CDC42-dependent manner. However, the downstream targets of FGD1/CDC42 signaling that operate to support transport from the Golgi remain elusive. Here, we demonstrate that Golgi-localized CDC42 effectors might be involved in FGD1-mediated post-Golgi transport, probably through coordination of Golgi membrane and cytoskeleton dynamics. Overexpression of effector-specific CDC42 mutants (exhibiting preferential affinities for PAK1, IQGAP1, N-WASP, or PAR6) only partially rescue membrane trafficking in FGD1-deficient cells, indicating that the orchestrated activities of several downstream targets of CDC42 are required to support FGD1-mediated export from the Golgi. Our findings provide new insights into understanding the molecular mechanisms behind FGD1/CDC42-dependent transport events and uncover new targets whose potential might be explored for correction of membrane trafficking in FGDY.

5.
Cells ; 8(6)2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31163688

RESUMEN

The trans-Golgi network (TGN) is responsible for selectively recruiting newly synthesized cargo into transport carriers for delivery to their appropriate destination. In addition, the TGN is responsible for receiving and recycling cargo from endosomes. The membrane organization of the TGN facilitates the sorting of cargoes into distinct populations of transport vesicles. There have been significant advances in defining the molecular mechanism involved in the recognition of membrane cargoes for recruitment into different populations of transport carriers. This machinery includes cargo adaptors of the adaptor protein (AP) complex family, and monomeric Golgi-localized γ ear-containing Arf-binding protein (GGA) family, small G proteins, coat proteins, as well as accessory factors to promote budding and fission of transport vesicles. Here, we review this literature with a particular focus on the transport pathway(s) mediated by the individual cargo adaptors and the cargo motifs recognized by these adaptors. Defects in these cargo adaptors lead to a wide variety of diseases.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Red trans-Golgi/metabolismo , Animales , Humanos , Fosfolípidos/metabolismo , Transporte de Proteínas , Vesículas Transportadoras/metabolismo
6.
Prog Mol Biol Transl Sci ; 132: 227-44, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26055061

RESUMEN

Intracellular trafficking and precise targeting to specific locations of G protein-coupled receptors (GPCRs) control the physiological functions of the receptors. Compared to the extensive efforts dedicated to understanding the events involved in the endocytic and recycling pathways, the molecular mechanisms underlying the transport of the GPCR superfamily from the endoplasmic reticulum (ER) through the Golgi to the plasma membrane are relatively less well defined. Over the past years, we have used α(2B)-adrenergic receptor (α(2B)-AR) as a model to define the factors that control GPCR export trafficking. In this chapter, we will review specific motifs identified to mediate the export of nascent α(2B)-AR from the ER and the Golgi and discuss the possible underlying mechanisms. As these motifs are highly conserved among GPCRs, they may provide common mechanisms for export trafficking of these receptors.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Membrana Celular/metabolismo , Endocitosis , Regulación de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Homología de Secuencia de Aminoácido
7.
J Biophotonics ; 7(10): 788-98, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23606367

RESUMEN

Transforming growth factor ß receptor II (Tß RII) is synthesized in the cytoplasm and then transported to the plasma membrane of cells to fulfil its signalling duty. Here, we applied live-cell fluorescence imaging techniques, in particular quasi-total internal reflection fluorescence microscopy, to imaging fluorescent protein-tagged Tß RII and monitoring its secretion process. We observed punctuate-like Tß RII-containing post-Golgi vesicles formed in MCF7 cells. Single-particle tracking showed that these vesicles travelled along the microtubules at an average speed of 0.51 µm/s. When stimulated by TGF-ß ligand, these receptor-containing vesicles intended to move towards the plasma membrane. We also identified several factors that could inhibit the formation of such post-Golgi vesicles. Although the inhibitory mechanisms still remain unknown, the observed characteristics of Tß RII-containing vesicles provide new information on intracellular Tß RII transportation. It also renders Tß RII a good model system for studying post-Golgi vesicle-trafficking and protein transportation.


Asunto(s)
Microscopía Fluorescente/métodos , Proteínas Serina-Treonina Quinasas/metabolismo , Vesículas Secretoras/metabolismo , Transporte Biológico Activo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Femenino , Glicosilación , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Células MCF-7 , Microscopía Confocal , Microtúbulos/metabolismo , Fosforilación , Potasio/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Transfección , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA