Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Theor Biol ; 362: 69-74, 2014 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-24447585

RESUMEN

Cellular replicative capacity is a therapeutic target for regenerative medicine as well as cancer treatment. The mechanism of replicative senescence and cell immortality is still unclear. We investigated the diauxic growth of Saccharomyces cerevisiae and demonstrate that the replicative capacity revealed by the yeast growth curve can be understood by using the dynamical property of the molecular-cellular network regulating S. cerevisiae. The endogenous network we proposed has a limit cycle when pheromone signaling is disabled, consistent with the exponential growth phase with an infinite replicative capacity. In the post-diauxic phase, the cooperative effect of the pheromone activated mitogen-activated protein kinase (MAPK) signaling pathway with the cell cycle leads to a fixed point attractor instead of the limit cycle. The cells stop dividing after several generations counting from the beginning of the post-diauxic growth. By tuning the MAPK pathway, S. cerevisiae therefore programs the number of offsprings it replicates.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/fisiología , Ciclo Celular , Perfilación de la Expresión Génica , Glucosa/química , Sistema de Señalización de MAP Quinasas , Modelos Teóricos , Simulación de Dinámica Molecular , Feromonas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Biología de Sistemas
2.
Cell Cycle ; 14(11): 1643-56, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25839782

RESUMEN

We have previously revealed that exogenously added lithocholic bile acid (LCA) extends the chronological lifespan of the yeast Saccharomyces cerevisiae, accumulates in mitochondria and alters mitochondrial membrane lipidome. Here, we use quantitative mass spectrometry to show that LCA alters the age-related dynamics of changes in levels of many mitochondrial proteins, as well as numerous proteins in cellular locations outside of mitochondria. These proteins belong to 2 regulons, each modulated by a different mitochondrial dysfunction; we call them a partial mitochondrial dysfunction regulon and an oxidative stress regulon. We found that proteins constituting these regulons (1) can be divided into several "clusters", each of which denotes a distinct type of partial mitochondrial dysfunction that elicits a different signaling pathway mediated by a discrete set of transcription factors; (2) exhibit 3 different patterns of the age-related dynamics of changes in their cellular levels; and (3) are encoded by genes whose expression is regulated by the transcription factors Rtg1p/Rtg2p/Rtg3p, Sfp1p, Aft1p, Yap1p, Msn2p/Msn4p, Skn7p and Hog1p, each of which is essential for longevity extension by LCA. Our findings suggest that LCA-driven changes in mitochondrial lipidome alter mitochondrial proteome and functionality, thereby enabling mitochondria to operate as signaling organelles that orchestrate an establishment of an anti-aging transcriptional program for many longevity-defining nuclear genes. Based on these findings, we propose a model for how such LCA-driven changes early and late in life of chronologically aging yeast cause a stepwise development of an anti-aging cellular pattern and its maintenance throughout lifespan.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Ácido Litocólico/farmacología , Longevidad/efectos de los fármacos , Lípidos de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Transducción de Señal/fisiología , Ácido Litocólico/farmacocinética , Espectrometría de Masas , Regulón/genética , Transducción de Señal/genética , Factores de Tiempo
3.
Cell Cycle ; 13(21): 3336-49, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25485579

RESUMEN

Recent findings suggest that evolutionarily distant organisms share the key features of the aging process and exhibit similar mechanisms of its modulation by certain genetic, dietary and pharmacological interventions. The scope of this review is to analyze mechanisms that in the yeast Saccharomyces cerevisiae underlie: (1) the replicative and chronological modes of aging; (2) the convergence of these 2 modes of aging into a single aging process; (3) a programmed differentiation of aging cell communities in liquid media and on solid surfaces; and (4) longevity-defining responses of cells to some chemical compounds released to an ecosystem by other organisms populating it. Based on such analysis, we conclude that all these mechanisms are programs for upholding the long-term survival of the entire yeast population inhabiting an ecological niche; however, none of these mechanisms is a "program of aging" - i.e., a program for progressing through consecutive steps of the aging process.


Asunto(s)
Saccharomycetales/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Fúngicas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomycetales/crecimiento & desarrollo , Respuesta de Proteína Desplegada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA