Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.783
Filtrar
Más filtros

Intervalo de año de publicación
1.
Brain ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696728

RESUMEN

Multiple System Atrophy is characterized pathologically by the accumulation of alpha-synuclein (aSyn) into glial cytoplasmic inclusions (GCIs). The mechanism underlying the formation of GCIs is not well understood. In this study, correlative light and electron microscopy was employed to investigate aSyn pathology in the substantia nigra and putamen of post-mortem multiple system atrophy brain donors. Three distinct types of aSyn immuno-positive inclusions were identified in oligodendrocytes, neurons and dark cells presumed to be dark microglia. Oligodendrocytes contained fibrillar GCIs that were consistently enriched with lysosomes and peroxisomes, supporting the involvement of the autophagy pathway in aSyn aggregation in multiple system atrophy. Neuronal cytoplasmic inclusions exhibited ultrastructural heterogeneity resembling both fibrillar and membranous inclusions, linking multiple systems atrophy and Parkinson's disease. The novel aSyn pathology identified in the dark cells, displayed GCI-like fibrils or non-GCI-like ultrastructures suggesting various stages of aSyn accumulation in these cells. The observation of GCI-like fibrils within dark cells suggests these cells may be an important contributor to the origin or spread of pathological aSyn in multiple system atrophy. Our results suggest a complex interplay between multiple cell types that may underlie the formation of aSyn pathology in multiple system atrophy brain and highlight the need for further investigation into cell-specific disease pathologies in multiple system atrophy.

2.
Cereb Cortex ; 34(13): 121-128, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696601

RESUMEN

Previous studies in autism spectrum disorder demonstrated an increased number of excitatory pyramidal cells and a decreased number of inhibitory parvalbumin+ chandelier interneurons in the prefrontal cortex of postmortem brains. How these changes in cellular composition affect the overall abundance of excitatory and inhibitory synapses in the cortex is not known. Herein, we quantified the number of excitatory and inhibitory synapses in the prefrontal cortex of 10 postmortem autism spectrum disorder brains and 10 control cases. To identify excitatory synapses, we used VGlut1 as a marker of the presynaptic component and postsynaptic density protein-95 as marker of the postsynaptic component. To identify inhibitory synapses, we used the vesicular gamma-aminobutyric acid transporter as a marker of the presynaptic component and gephyrin as a marker of the postsynaptic component. We used Puncta Analyzer to quantify the number of co-localized pre- and postsynaptic synaptic components in each area of interest. We found an increase in the number of excitatory synapses in upper cortical layers and a decrease in inhibitory synapses in all cortical layers in autism spectrum disorder brains compared with control cases. The alteration in the number of excitatory and inhibitory synapses could lead to neuronal dysfunction and disturbed network connectivity in the prefrontal cortex in autism spectrum disorder.


Asunto(s)
Proteínas de la Membrana , Corteza Prefrontal , Sinapsis , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Humanos , Masculino , Femenino , Sinapsis/patología , Sinapsis/metabolismo , Adulto , Persona de Mediana Edad , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/patología , Adulto Joven , Adolescente , Niño , Trastorno Autístico/metabolismo , Trastorno Autístico/patología , Inhibición Neural/fisiología , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
3.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38236742

RESUMEN

The segregation of the cortical mantle into cytoarchitectonic areas provides a structural basis for the specialization of different brain regions. In vivo neuroimaging experiments can be linked to this postmortem cytoarchitectonic parcellation via Julich-Brain. This atlas embeds probabilistic maps that account for inter-individual variability in the localization of cytoarchitectonic areas in the reference spaces targeted by spatial normalization. We built a framework to improve the alignment of architectural areas across brains using cortical folding landmarks. This framework, initially designed for in vivo imaging, was adapted to postmortem histological data. We applied this to the first 14 brains used to establish the Julich-Brain atlas to infer a refined atlas with more focal probabilistic maps. The improvement achieved is significant in the primary regions and some of the associative areas. This framework also provides a tool for exploring the relationship between cortical folding patterns and cytoarchitectonic areas in different cortical regions to establish new landmarks in the remainder of the cortex.


Asunto(s)
Encéfalo , Neuroimagen , Autopsia , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos
4.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38760318

RESUMEN

Cortical parvalbumin interneurons (PV+) are major regulators of excitatory/inhibitory information processing, and their maturation is associated with the opening of developmental critical periods (CP). Recent studies reveal that cortical PV+ axons are myelinated, and that myelination along with perineuronal net (PNN) maturation around PV+ cells is associated with the closures of CP. Although PV+ interneurons are susceptible to early-life stress, their relationship between their myelination and PNN coverage remains unexplored. This study compared the fine features of PV+ interneurons in well-characterized human post-mortem ventromedial prefrontal cortex samples (n = 31) from depressed suicides with or without a history of child abuse (CA) and matched controls. In healthy controls, 81% of all sampled PV+ interneurons displayed a myelinated axon, while a subset (66%) of these cells also displayed a PNN, proposing a relationship between both attributes. Intriguingly, a 3-fold increase in the proportion of unmyelinated PV+ interneurons with a PNN was observed in CA victims, along with greater PV-immunofluorescence intensity in myelinated PV+ cells with a PNN. This study, which is the first to provide normative data on myelination and PNNs around PV+ interneurons in human neocortex, sheds further light on the cellular and molecular consequences of early-life adversity on cortical PV+ interneurons.


Asunto(s)
Interneuronas , Parvalbúminas , Corteza Prefrontal , Humanos , Corteza Prefrontal/patología , Corteza Prefrontal/metabolismo , Parvalbúminas/metabolismo , Interneuronas/patología , Interneuronas/metabolismo , Masculino , Femenino , Adulto , Persona de Mediana Edad , Vaina de Mielina/patología , Vaina de Mielina/metabolismo , Suicidio , Anciano , Autopsia , Maltrato a los Niños/psicología , Adulto Joven
5.
Mol Cell Neurosci ; 130: 103949, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38906341

RESUMEN

Recent advances in immunotherapeutic approaches to the treatment of Alzheimer's disease (AD) have increased the importance of understanding the exact binding preference of each amyloid-beta (Aß) antibody employed, since this determines both efficacy and risk for potentially serious adverse events known as amyloid-related imaging abnormalities. Lecanemab is a humanized IgG1 antibody that was developed to target the soluble Aß protofibril conformation. The present study prepared extracts of post mortem brain samples from AD patients and non-demented elderly controls, characterized the forms of Aß present, and investigated their interactions with lecanemab. Brain tissue samples were homogenized and extracted using tris-buffered saline. Aß levels and aggregation states in soluble and insoluble extracts, and in fractions prepared using size-exclusion chromatography or density gradient ultracentrifugation, were analyzed using combinations of immunoassay, immunoprecipitation (IP), and mass spectrometry. Lecanemab immunohistochemistry was also conducted in temporal cortex. The majority of temporal cortex Aß (98 %) was in the insoluble extract. Aß42 was the most abundant form present, particularly in AD subjects, and most soluble Aß42 was in soluble aggregated protofibrillar structures. Aß protofibril levels were much higher in AD subjects than in controls. Protofibrils captured by lecanemab-IP contained high levels of Aß42 and lecanemab bound to large, medium, and small Aß42 protofibrils in a concentration-dependent manner. Competitive IP showed that neither Aß40 monomers nor Aß40-enriched fibrils isolated from cerebral amyloid angiopathy reduced lecanemab's binding to Aß42 protofibrils. Immunohistochemistry showed that lecanemab bound readily to Aß plaques (diffuse and compact) and to intraneuronal Aß in AD temporal cortex. Taken together, these findings indicate that while lecanemab binds to Aß plaques, it preferentially targets soluble aggregated Aß protofibrils. These are largely composed of Aß42, and lecanemab binds less readily to the Aß40-enriched fibrils found in the cerebral vasculature. This is a promising binding profile because Aß42 protofibrils represent a key therapeutic target in AD, while a lack of binding to monomeric Aß and cerebral amyloid deposits should reduce peripheral antibody sequestration and minimize risk for adverse events.

6.
Mol Cell Neurosci ; : 103954, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032719

RESUMEN

BACKGROUND: Tau post-translational modifications (PTMs) result in the gradual build-up of abnormal tau and neuronal degeneration in tauopathies, encompassing variants of frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD). Tau proteolytically cleaved by active caspases, including caspase-6, may be neurotoxic and prone to self-aggregation. Also, our recent findings show that caspase-6 truncated tau represents a frequent and understudied aspect of tau pathology in AD in addition to phospho-tau pathology. In AD and Pick's disease, a large percentage of caspase-6 associated cleaved-tau positive neurons lack phospho-tau, suggesting that many vulnerable neurons to tau pathology go undetected when using conventional phospho-tau antibodies and possibly will not respond to phospho-tau based therapies. Therefore, therapeutic strategies against caspase cleaved-tau pathology could be necessary to modulate the extent of tau abnormalities in AD and other tauopathies. METHODS: To understand the timing and progression of caspase activation, tau cleavage, and neuronal death, we created two mAbs targeting caspase-6 tau cleavage sites and probed postmortem brain tissue from an individual with FTLD due to the V337M MAPT mutation. We then assessed tau cleavage and apoptotic stress response in cortical neurons derived from induced pluripotent stem cells (iPSCs) carrying the FTD-related V337M MAPT mutation. Finally, we evaluated the neuroprotective effects of caspase inhibitors in these iPSC-derived neurons. RESULTS: FTLD V337M MAPT postmortem brain showed positivity for both cleaved tau mAbs and active caspase-6. Relative to isogenic wild-type MAPT controls, V337M MAPT neurons cultured for 3 months post-differentiation showed a time-dependent increase in pathogenic tau in the form of caspase-cleaved tau, phospho-tau, and higher levels of tau oligomers. Accumulation of toxic tau species in V337M MAPT neurons was correlated with increased vulnerability to pro-apoptotic stress. Notably, this mutation-associated cell death was pharmacologically rescued by the inhibition of effector caspases. CONCLUSIONS: Our results suggest an upstream, time-dependent accumulation of caspase-6 cleaved tau in V337M MAPT neurons promoting neurotoxicity. These processes can be reversed by caspase inhibition. These results underscore the potential of developing caspase-6 inhibitors as therapeutic agents for FTLD and other tauopathies. Additionally, they highlight the promise of using caspase-cleaved tau as biomarkers for these conditions.

7.
J Infect Dis ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900910

RESUMEN

BACKGROUND: Central nervous system (CNS) compartmentalization provides opportunity for HIV persistence and resistance development. Differences between cerebrospinal fluid (CSF) and cerebral matter regarding HIV persistence are well described. However, CSF is often used as surrogate for CNS drug exposure, and knowledge from solid brain tissue is rare. METHODS: Dolutegravir, tenofovir, lamivudine and efavirenz concentrations were measured across 13 CNS regions plus plasma in samples collected during autopsy in 49 Ugandan decedents. Median time from death to autopsy was 8 (IQR 5,15) hours. To evaluate postmortem redistribution, a time course study was performed in a mouse model. RESULTS: Regions with the highest penetration ratios were choroid plexus/arachnoid (dolutegravir and tenofovir), CSF (lamivudine), and cervical spinal cord/meninges (efavirenz); the lowest were corpus callosum (dolutegravir and tenofovir), frontal lobe (lamivudine), and parietal lobe (efavirenz). On average, brain concentrations were 84%, 87%, and 76% of CSF for dolutegravir, tenofovir, and lamivudine respectively. Postmortem redistribution was observed in the mouse model, with tenofovir and lamivudine concentration increased by 350% and efavirenz concentration decreased by 24% at 24-hours post-mortem. CONCLUSION: Analysis of postmortem tissue provides a unique opportunity to investigate CNS antiretroviral penetration. Regional differences were observed paving the way to identify mechanisms of viral compartmentalization and/or neurotoxicity.

8.
Proteomics ; 24(12-13): e2200335, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38683823

RESUMEN

Recent advancements in omics techniques have revolutionised the study of biological systems, enabling the generation of high-throughput biomolecular data. These innovations have found diverse applications, ranging from personalised medicine to forensic sciences. While the investigation of multiple aspects of cells, tissues or entire organisms through the integration of various omics approaches (such as genomics, epigenomics, metagenomics, transcriptomics, proteomics and metabolomics) has already been established in fields like biomedicine and cancer biology, its full potential in forensic sciences remains only partially explored. In this review, we have presented a comprehensive overview of state-of-the-art analytical platforms employed in omics research, with specific emphasis on their application in the forensic field for the identification of the cadaver and the cause of death. Moreover, we have conducted a critical analysis of the computational integration of omics approaches, and highlighted the latest advancements in employing multi-omics techniques for forensic investigations.


Asunto(s)
Ciencias Forenses , Genómica , Metabolómica , Proteómica , Humanos , Proteómica/métodos , Metabolómica/métodos , Ciencias Forenses/métodos , Genómica/métodos , Epigenómica/métodos , Biología Computacional/métodos , Metagenómica/métodos , Multiómica
9.
Neuroimage ; 296: 120680, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38857819

RESUMEN

Magnetic Resonance Imaging (MRI) can provide the location and signal characteristics of pathological regions within a postmortem tissue block, thereby improving the efficiency of histopathological studies. However, such postmortem-MRI guided histopathological studies have so far only been performed on fixed samples as imaging tissue frozen at the time of extraction, while preserving its integrity, is significantly more challenging. Here we describe the development of cold-postmortem-MRI, which can preserve tissue integrity and help target techniques such as transcriptomics. As a first step, RNA integrity number (RIN) was used to determine the rate of tissue biomolecular degradation in mouse brains placed at various temperatures between -20 °C and +20 °C for up to 24 h. Then, human tissue frozen at the time of autopsy was immersed in 2-methylbutane, sealed in a bio-safe tissue chamber, and cooled in the MRI using a recirculating chiller to determine MRI signal characteristics. The optimal imaging temperature, which did not show significant RIN deterioration for over 12 h, at the same time giving robust MRI signal and contrast between brain tissue types was deemed to be -7 °C. Finally, MRI was performed on human tissue blocks at this optimal imaging temperatures using a magnetization-prepared rapid gradient echo (MPRAGE, isotropic resolution between 0.3-0.4 mm) revealing good gray-white matter contrast and revealing subpial, subcortical, and deep white matter lesions. RINs measured before and after imaging revealed no significant changes (n = 3, p = 0.18, paired t-test). In addition to improving efficiency of downstream processes, imaging tissue at sub-zero temperatures may also improve our understanding of compartment specificity of MRI signal.


Asunto(s)
Autopsia , Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Ratones , Autopsia/métodos , Animales , Congelación , Masculino , Femenino , Ratones Endogámicos C57BL , Neuroimagen/métodos
10.
Neurobiol Dis ; 191: 106394, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176569

RESUMEN

BACKGROUND: Dorsolateral prefrontal cortex (DLPFC) dysfunction in schizophrenia appears to reflect alterations in layer 3 pyramidal neurons (L3PNs), including smaller cell bodies and lower expression of mitochondrial energy production genes. However, prior somal size studies used biased strategies for identifying L3PNs, and somal size and levels of energy production markers have not been assessed in individual L3PNs. STUDY DESIGN: We combined fluorescent in situ hybridization (FISH) of vesicular glutamate transporter 1 (VGLUT1) mRNA and immunohistochemical-labeling of NeuN to determine if the cytoplasmic distribution of VGLUT1 mRNA permits the unbiased identification and somal size quantification of L3PNs. Dual-label FISH for VGLUT1 mRNA and cytochrome C oxidase subunit 4I1 (COX4I1) mRNA, a marker of energy production, was used to assess somal size and COX4I1 transcript levels in individual DLPFC L3PNs from schizophrenia (12 males; 2 females) and unaffected comparison (13 males; 1 female) subjects. STUDY RESULTS: Measures of L3PN somal size with NeuN immunohistochemistry or VGLUT1 mRNA provided nearly identical results (ICC = 0.96, p < 0.0001). Mean somal size of VGLUT1-identified L3PNs was 8.7% smaller (p = 0.004) and mean COX4I1 mRNA levels per L3PN were 16.7% lower (p = 0.01) in schizophrenia. These measures were correlated across individual L3PNs in both subject groups (rrm = 0.81-0.86). CONCLUSIONS: This preliminary study presents a novel method for combining unbiased neuronal identification with quantitative assessments of somal size and mRNA levels. We replicated findings of smaller somal size and lower COX4I1 mRNA levels in DLPFC L3PNs in schizophrenia. The normal scaling of COX4I1 mRNA levels with somal size in schizophrenia suggests that lower markers of energy production are secondary to L3PN morphological alterations in the illness.


Asunto(s)
Esquizofrenia , Masculino , Humanos , Femenino , Hibridación Fluorescente in Situ , Corteza Prefrontal , Células Piramidales , ARN Mensajero
11.
Neurobiol Dis ; 199: 106577, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38914171

RESUMEN

Proper topographically organized neural connections between the thalamus and the cerebral cortex are mandatory for thalamus function. Thalamocortical (TC) fiber growth begins during the embryonic period and completes by the third trimester of gestation, so that human neonates at birth have a thalamus with a near-facsimile of adult functional parcellation. Whether congenital neocortical anomaly (e.g., lissencephaly) affects TC connection in humans is unknown. Here, via diffusion MRI fiber-tractography analysis of long-term formalin-fixed postmortem fetal brain diagnosed as lissencephaly in comparison with an age-matched normal one, we found similar topological patterns of thalamic subregions and of internal capsule parcellated by TC fibers. However, lissencephaly fetal brain showed white matter structural changes, including fewer/less organized TC fibers and optic radiations, and much less cortical plate invasion by TC fibers - particularly around the shallow central sulcus. Diffusion MRI fiber tractography of normal fetal brains at 15, 23, and 26 gestational weeks (GW) revealed dynamic volumetric change of each parcellated thalamic subregion, suggesting coupled developmental progress of the thalamus with the corresponding cortex. Moreover, from GW23 and GW26 normal fetal brains, TC endings in the cortical plate could be delineated to reflect cumulative progressive TC invasion of cortical plate. By contrast, lissencephaly brain showed a dramatic decrease in TC invasion of the cortical plate. Our study thus shows the feasibility of diffusion MRI fiber tractography in postmortem long-term formalin-fixed fetal brains to disclose the developmental progress of TC tracts coordinating with thalamic and neocortical growth both in normal and lissencephaly fetal brains at mid-gestational stage.

12.
Small ; : e2404063, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004857

RESUMEN

Gel polymer electrolytes (GPEs) present a promising alternative to standard liquid electrolytes (LE) for Lithium-ion Batteries (LIBs) and Lithium Metal Batteries bridging the advantages of both liquid and solid polymer electrolytes. However, their cycle life still lags behind that of standard LIBs, and their degradation mechanisms remain poorly understood. A significant challenge is the need for specific diagnostic protocols to systematically study the degradation mechanisms of GPE-based cells. Challenges include the separation of cell components and effective washing, as well as the study of the solid electrolyte interfaces, all complicated by the semi-solid nature of GPEs. This paper provides a brief review of existing literature and proposes a comprehensive set of diagnostic tools for dismantling and evaluating the degradation of GPE-based LIBs. Finally, these methods and recommendations are applied to LiNi0.5Mn1.5O4 (LNMO)-graphite cells, revealing electrolyte oxidation as a major source of cell degradation.

13.
Small ; 20(26): e2311047, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38269475

RESUMEN

Anion exchange membrane water electrolysis (AEMWE) is an attractive method for green hydrogen production. It allows the use of non-platinum group metal catalysts and can achieve performance comparable to proton exchange membrane water electrolyzers due to recent technological advances. While current systems already show high performances with available materials, research gaps remain in understanding electrode durability and degradation behavior. In this study, the performance and degradation tracking of a Ni3Fe-LDH-based single-cell is implemented and investigated through the correlation of electrochemical data using chemical and physical characterization methods. A performance stability of 1000 h, with a degradation rate of 84 µV h-1 at 1 A cm-2 is achieved, presenting the Ni3Fe-LDH-based cell as a stable and cost-attractive AEMWE system. The results show that the conductivity of the formed Ni-Fe-phase is one key to obtaining high electrolyzer performance and that, despite Fe leaching, change in anion-conducting binder compound, and morphological changes inside the catalyst bulk, the Ni3Fe-LDH-based single-cells demonstrate high performance and durability. The work reveals the importance of longer stability tests and presents a holistic approach of electrochemical tracking and post-mortem analysis that offers a guideline for investigating electrode degradation behavior over extended measurement periods.

14.
Histochem Cell Biol ; 161(6): 539-547, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582805

RESUMEN

Proteins can be successfully localized in post-mortem (PM) brain tissue sections if the time until PM tissue sampling is not too long. In this study, we show that this also applies to the localization of RNA and in particular to the RNA of microglia-specific receptor proteins using the probes and the RNAscope™ Multiplex Fluorescent Detection Kit v2 from Advanced Cell Diagnostics. Brains were removed from killed mice after different PM delays and processed into paraffin sections. In sections of brains from animals whose cadavers had been kept at room temperature (21 °C) before tissue removal, ubiquitously expressed RNAs of genes with low to high expression levels (Polr2a, PPIB, and UBC) were reliably detected in the brain sections even if tissue removal was delayed by up to 48 h. In addition, microglia-specific G protein-coupled receptor RNA (Gpr34, P2ry12) could be reliably assigned to microglia by simultaneous labeling of the microglia with microglia-specific antibodies (Iba1 or P2ry12). Only after a delay of 48 h until tissue removal were the receptor RNA signals significantly lower. The reduction in receptor RNA signals could be delayed if the animal cadavers were stored at 4 °C until the brains were removed. Tissue sections of PM brain samples allow the spatial and cellular localization of specific RNA, at least if the sampling takes place within the first 24 h of PM.


Asunto(s)
Hipocampo , Hibridación Fluorescente in Situ , ARN , Animales , Ratones , Hipocampo/metabolismo , Hipocampo/química , Hipocampo/citología , ARN/análisis , ARN/aislamiento & purificación , ARN/metabolismo , Ratones Endogámicos C57BL , Factores de Tiempo , Microglía/metabolismo , Microglía/citología , Masculino
15.
Int J Med Microbiol ; 314: 151608, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38335886

RESUMEN

Measles and rubella are targeted for elimination in the WHO region Europe. To reach the elimination goal, vaccination coverage of 95% must be achieved and sustained, the genotype information has to be provided for 80% of all outbreaks and transmission chains of a certain variant must not be detected for >12 months. The latter information is collected at Germany's National Reference Center Measles, Mumps, Rubella (NRC MMR). We describe here an outbreak of measles occurring in Hildesheim. The outbreak comprised 43 cases and lasted 14 weeks. Surprisingly, a high number of vaccination failures was observed since 11 cases had received two doses of the MMR vaccine and 4 additional cases were vaccinated once. A 33-year-old woman passed away during the outbreak. She was the mother of 5 children between 4 and 16 years of age. Two schoolchildren contracted measles and passed it on to the rest of the family. Due to delivery bottlenecks, the vaccination of the mother was delayed. She developed measles-like symptoms 3 days after vaccination and was found dead on the morning of day 8 after vaccination. A post-mortem examination was done to identify the cause of death. Moreover, molecular characterization of the virus was performed to analyze whether she was infected by the wildtype virus circulating at that time in Hildesheim or whether the vaccine may have been a concomitant and aggravating feature of her death. The result showed that the samples taken from her at the time of death and during necropsy contained the wildtype measles virus variant corresponding to MVs/Gir Somnath.IND/42.16 (WHO Seq-ID D8-4683) that fueled the Hildesheim outbreak and circulated in Germany from March 2018 to March 2020. The vaccine virus was not detected. Moreover, two aspects uncovered by the post-mortem examination were remarkable; the woman died from giant cell pneumonia, which is a complication seen in immune-suppressed individuals and she was actively using cannabis. THC is known to influence the immune system, but literature reports describing the effects are limited.


Asunto(s)
Sarampión , Paperas , Rubéola (Sarampión Alemán) , Humanos , Niño , Femenino , Lactante , Adulto , Sarampión/prevención & control , Sarampión/diagnóstico , Sarampión/epidemiología , Rubéola (Sarampión Alemán)/epidemiología , Rubéola (Sarampión Alemán)/prevención & control , Vacuna contra el Sarampión-Parotiditis-Rubéola , Vacunación , Paperas/epidemiología , Paperas/prevención & control , Brotes de Enfermedades , Alemania/epidemiología
16.
Neuropathol Appl Neurobiol ; 50(1): e12965, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38374720

RESUMEN

AIMS: In Alzheimer's disease (AD), the locus coeruleus (LC) undergoes early and extensive neuronal loss, preceded by abnormal intracellular tau aggregation, decades before the onset of clinical disease. Neuromelanin-sensitive MRI has been proposed as a method to image these changes during life. Surprisingly, human post-mortem studies have not examined how changes in LC during the course of the disease relate to cerebral pathology following the loss of the LC projection to the cortex. METHODS: Immunohistochemistry was used to examine markers for 4G8 (pan-Aß) and AT8 (ptau), LC integrity (neuromelanin, dopamine ß-hydroxylase [DßH], tyrosine hydroxylase [TH]) and microglia (Iba1, CD68, HLA-DR) in the LC and related temporal lobe pathology of 59 post-mortem brains grouped by disease severity determined by Braak stage (0-II, III-IV and V-VI). The inflammatory environment was assessed using multiplex assays. RESULTS: Changes in the LC with increasing Braak stage included increased neuronal loss (p < 0.001) and microglial Iba1 (p = 0.005) together with a reduction in neuromelanin (p < 0.001), DßH (p = 0.002) and TH (p = 0.041). Interestingly in LC, increased ptau and loss of neuromelanin were detected from Braak stage III-IV (p = 0.001). At Braak stage V/VI, the inflammatory environment was different in the LC vs TL, highlighting the anatomical heterogeneity of the inflammatory response. CONCLUSIONS: Here, we report the first quantification of neuromelanin during the course of AD and its relationship to AD pathology and neuroinflammation in the TL. Our findings of neuromelanin loss early in AD and before the neuroinflammatory reaction support the use of neuromelanin-MRI as a sensitive technique to identify early changes in AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Locus Coeruleus/metabolismo , Proteínas tau/metabolismo , Encéfalo/patología , Autopsia
17.
NMR Biomed ; : e5171, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757603

RESUMEN

Magnetic resonance spectroscopy (MRS) thermometry offers a noninvasive, localized method for estimating temperature by leveraging the temperature-dependent chemical shift of water relative to a temperature-stable reference metabolite under suitable calibration. Consequentially, this technique has significant potential as a tool for postmortem MR examinations in forensic medicine and pathology. In these examinations, the deceased are examined at a wide range of body temperatures, and MRS thermometry may be used for the temperature adjustment of magnetic resonance imaging (MRI) protocols or for corrections in the analysis of MRI or MRS data. However, it is not yet clear to what extent postmortem changes may influence temperature estimation with MRS thermometry. In addition, N-acetylaspartate, which is commonly used as an in vivo reference metabolite, is known to decrease with increasing postmortem interval (PMI). This study shows that lactate, which is not only present in significant amounts postmortem but also has a temperature-stable chemical shift, can serve as a suitable reference metabolite for postmortem MRS thermometry. Using lactate, temperature estimation in postmortem brain tissue of severed sheep heads was accurate up to 60 h after death, with a mean absolute error of less than 0.5°C. For this purpose, published calibrations intended for in vivo measurements were used. Although postmortem decomposition resulted in severe metabolic changes, no consistent deviations were observed between measurements with an MR-compatible temperature probe and MRS thermometry with lactate as a reference metabolite. In addition, MRS thermometry was applied to 84 deceased who underwent a MR examination as part of the legal examination. MRS thermometry provided plausible results of brain temperature in comparison with rectal temperature. Even for deceased with a PMI well above 60 h, MRS thermometry still provided reliable readings. The results show a good suitability of MRS thermometry for postmortem examinations in forensic medicine.

18.
Am J Obstet Gynecol ; 230(4): 456.e1-456.e9, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37816486

RESUMEN

BACKGROUND: The diagnosis of corpus callosum anomalies by prenatal ultrasound has improved over the last decade because of improved imaging techniques, scanning skills, and the routine implementation of transvaginal neurosonography. OBJECTIVE: Our aim was to investigate all cases of incomplete agenesis of the corpus callosum and to report the sonographic characteristics, the associated anomalies, and the perinatal outcomes. STUDY DESIGN: We performed a retrospective analysis of cases from January 2007 to December 2017 with corpus callosum anomalies, either referred for a second opinion or derived from the prenatal ultrasound screening program in a single tertiary referral center. Cases with complete agenesis were excluded from the analysis. Standardized investigation included a detailed fetal ultrasound including neurosonogram, fetal karyotyping (standard karyotype or array comparative genomic hybridization) and fetal magnetic resonance imaging. The pregnancy outcome was collected, and pathologic investigation in case of termination of the pregnancy or fetal or neonatal loss was compared with the prenatal findings. The pregnancy and fetal or neonatal outcomes were reported. The neurologic assessment was conducted by a pediatric neurologist using the Bayley Scales of Infant Development-II and the standardized Child Development Inventory when the Bayley investigation was unavailable. RESULTS: Corpus callosum anomalies were diagnosed in 148 cases during the study period, 62 (41.9%) of which were excluded because of complete agenesis, and 86 fetuses had partial agenesis (58.1%). In 20 cases, partial agenesis (23.2%) was isolated, whereas 66 (76.7%) presented with different malformations among which 29 cases (43.9%) were only central nervous system lesions, 21 cases (31.8%) were non-central nervous system lesions, and 16 cases (24.3%) had a combination of central nervous system and non-central nervous system lesions. The mean gestational age at diagnosis for isolated and non-isolated cases was comparable (24.29 [standard deviation, 5.05] weeks and 24.71 [standard deviation, 5.35] weeks, respectively). Of the 86 pregnancies with partial agenesis, 46 patients opted for termination of the pregnancy. Neurologic follow-up data were available for 35 children. The overall neurologic outcome was normal in 21 of 35 children (60%); 3 of 35 (8.6%) showed mild impairment and 6 of 35 (17.1%) showed moderate impairment. The remaining 5 of 35 (14.3%) had severe impairment. The median duration of follow-up for the isolated form was 45.6 months (range, 36-52 months) and 73.3 months (range, 2-138 months) for the nonisolated form. CONCLUSION: Partial corpus callosum agenesis should be accurately investigated by neurosonography and fetal magnetic resonance imaging to describe its morphology and the associated anomalies. Genetic anomalies are frequently present in nonisolated cases. Efforts must be taken to improve ultrasound diagnosis of partial agenesis and to confirm its isolated nature to enhance parental counseling. Although 60% of children with prenatal diagnosis of isolated agenesis have a favorable prognosis later in life, they often have mild to severe disabilities including speech disorders at school age and behavior and motor deficit disorders that can emerge at a later age.


Asunto(s)
Agenesia del Cuerpo Calloso , Cuerpo Calloso , Femenino , Recién Nacido , Niño , Embarazo , Humanos , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/patología , Estudios Retrospectivos , Hibridación Genómica Comparativa , Agenesia del Cuerpo Calloso/diagnóstico por imagen , Diagnóstico Prenatal , Ultrasonografía Prenatal/métodos , Imagen por Resonancia Magnética/métodos
19.
Exp Mol Pathol ; 137: 104907, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38820762

RESUMEN

Congenital Heart Diseases (CHDs) are a group of structural abnormalities or defects of the heart that are present at birth. CHDs could be connected to sudden death (SD), defined by the WHO (World Health Organization) as "death occurring within 24 h after the onset of the symptoms" in an apparently "healthy" subject. These conditions can range from relatively mild defects to severe, life-threatening anomalies. The prevalence of CHDs varies across populations, but they affect millions of individuals worldwide. This article aims to discuss the post-mortem investigation of death related to CHDs, exploring the forensic approach, current methodologies, challenges, and potential advancements in this challenging field. A further goal of this article is to provide a guide for understanding these complex diseases, highlighting the pivotal role of autopsy, histopathology, and genetic investigations in defining the cause of death, and providing evidence about the translational use of autopsy reports. Forensic investigations play a crucial role in understanding the complexities of CHDs and determining the cause of death accurately. Through collaboration between medical professionals and forensic experts, meticulous examinations, and analysis of evidence, valuable insights can be gained. These insights not only provide closure to the families affected but also contribute to the prevention of future tragedies.


Asunto(s)
Autopsia , Causas de Muerte , Cardiopatías Congénitas , Humanos , Cardiopatías Congénitas/patología , Cardiopatías Congénitas/mortalidad , Cardiopatías Congénitas/genética , Medicina Legal/métodos
20.
Int J Legal Med ; 138(3): 1093-1107, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37999765

RESUMEN

The estimation of postmortem interval (PMI) is a complex and challenging problem in forensic medicine. In recent years, many studies have begun to use machine learning methods to estimate PMI. However, research combining postmortem computed tomography (PMCT) with machine learning models for PMI estimation is still in early stages. This study aims to establish a multi-tissue machine learning model for PMI estimation using PMCT data from various tissues. We collected PMCT data of seven tissues, including brain, eyeballs, myocardium, liver, kidneys, erector spinae, and quadriceps femoris from 10 rabbits after death. CT images were taken every 12 h until 192 h after death, and HU values were extracted from the CT images of each tissue as a dataset. Support vector machine, random forest, and K-nearest neighbors were performed to establish PMI estimation models, and after adjusting the parameters of each model, they were used as first-level classification to build a stacking model to further improve the PMI estimation accuracy. The accuracy and generalized area under the receiver operating characteristic curve of the multi-tissue stacking model were able to reach 93% and 0.96, respectively. Results indicated that PMCT detection could be used to obtain postmortem change of different tissue densities, and the stacking model demonstrated strong predictive and generalization abilities. This approach provides new research methods and ideas for the study of PMI estimation.


Asunto(s)
Experimentación Animal , Imágenes Post Mortem , Animales , Conejos , Autopsia , Cambios Post Mortem , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA