Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 243(4): 1539-1553, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39021237

RESUMEN

The interactions among plant viruses, insect vectors, and host plants have been well studied; however, the roles of insect viruses in this system have largely been neglected. We investigated the effects of MpnDV infection on aphid and PVY transmission using bioassays, RNA interference (RNAi), and GC-MS methods and green peach aphid (Myzus persicae (Sulzer)), potato virus Y (PVY), and densovirus (Myzus persicae nicotianae densovirus, MpnDV) as model systems. MpnDV increased the activities of its host, promoting population dispersal and leading to significant proliferation in tobacco plants by significantly enhancing the titer of the sesquiterpene (E)-ß-farnesene (EßF) via up-regulation of expression levels of the MpFPPS1 gene. The proliferation and dispersal of MpnDV-positive individuals were faster than that of MpnDV-negative individuals in PVY-infected tobacco plants, which promoted the transmission of PVY. These results combined showed that an insect virus may facilitate the transmission of a plant virus by enhancing the locomotor activity and population proliferation of insect vectors. These findings provide novel opportunities for controlling insect vectors and plant viruses, which can be used in the development of novel management strategies.


Asunto(s)
Áfidos , Densovirus , Nicotiana , Enfermedades de las Plantas , Áfidos/virología , Áfidos/fisiología , Animales , Nicotiana/virología , Nicotiana/parasitología , Enfermedades de las Plantas/virología , Densovirus/fisiología , Densovirus/genética , Potyvirus/fisiología , Potyvirus/patogenicidad , Sesquiterpenos/metabolismo , Virus de Plantas/fisiología , Virus de Plantas/patogenicidad
2.
New Phytol ; 244(1): 202-218, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39129060

RESUMEN

Ethylene response factors (ERFs) have been associated with biotic stress in Arabidopsis, while their function in non-model plants is still poorly understood. Here we investigated the role of potato ERF StPti5 in plant immunity. We show that StPti5 acts as a susceptibility factor. It negatively regulates potato immunity against potato virus Y and Ralstonia solanacearum, pathogens with completely different modes of action, and thereby has a different role than its orthologue in tomato. Remarkably, StPti5 is destabilised in healthy plants via the autophagy pathway and accumulates exclusively in the nucleus upon infection. We demonstrate that StEIN3 and StEIL1 directly bind the StPti5 promoter and activate its expression, while synergistic activity of the ethylene and salicylic acid pathways is required for regulated StPti expression. To gain further insight into the mode of StPti5 action in attenuating potato defence responses, we investigated transcriptional changes in salicylic acid deficient potato lines with silenced StPti5 expression. We show that StPti5 regulates the expression of other ERFs and downregulates the ubiquitin-proteasome pathway as well as several proteases involved in directed proteolysis. This study adds a novel element to the complex puzzle of immune regulation, by deciphering a two-level regulation of ERF transcription factor activity in response to pathogens.


Asunto(s)
Etilenos , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Potyvirus , Regiones Promotoras Genéticas , Ralstonia solanacearum , Ácido Salicílico , Solanum tuberosum , Solanum tuberosum/microbiología , Solanum tuberosum/inmunología , Solanum tuberosum/genética , Solanum tuberosum/virología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Etilenos/metabolismo , Ralstonia solanacearum/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Ácido Salicílico/metabolismo , Potyvirus/fisiología , Regiones Promotoras Genéticas/genética , Unión Proteica , Complejo de la Endopetidasa Proteasomal/metabolismo , Autofagia , Núcleo Celular/metabolismo
3.
Microb Ecol ; 87(1): 131, 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39419884

RESUMEN

In this study, the impact of culture media filtrate of QD3 actinobacterial isolate on two potato cultivars, Spunta and Diamond, infected with potato virus Y (PVY) was investigated. Various parameters, including infection percentage, PVY virus infectivity, disease severity scoring, PVY optical density, photosynthetic and defense-related biochemical markers, enzymatic profiling, phenolic compounds, proline content, salicylic acid levels, and growth and yield parameters, were assessed to elucidate the potential of the QD3 actinobacterial isolate culture filtrate in mitigating PVY-induced damage. The physiological and biochemical characteristics of the QD3 actinobacterial isolate, including its salinity tolerance, pH preferences, and metabolic traits, were investigated. Molecular identification via 16S rRNA gene sequencing confirmed its classification as Streptomyces fradiae QD3, and it was deposited in GenBank with the gene accession number MN160630. Distinct responses between Spunta and Diamond cultivars, with Spunta displaying greater resistance to PVY infection. Notably, pre-infection foliar application of the QD3 filtrate significantly reduced disease symptoms and virus infection in both cultivars. For post-PVY infection, the QD3 filtrate effectively mitigated disease severity and the PVY optical density. Furthermore, the QD3 filtrate positively influenced photosynthetic pigments, enzymatic antioxidant activities, and key biochemical components associated with plant defense mechanisms. Gas chromatography‒mass spectrometry (GC‒MS) analysis revealed palmitic acid (hexadecanoic acid, methyl ester) and oleic acid (9-octadecanoic acid, methyl ester) as the most prominent compounds, with retention times of 23.23 min and 26.41 min, representing 53.27% and 23.25%, respectively, of the total peak area as primary unsaturated fatty acids and demonstrating antiviral effects against plant viruses. Cytotoxicity assays on normal human skin fibroblasts (HSFs) revealed the safety of QD3 metabolites, with low discernible toxicity at high concentrations, reinforcing their potential as safe and effective interventions. The phytotoxicity results indicate that all the seeds presented high germination rates of approximately 95-98%, suggesting that the treatment conditions had no phytotoxic effect on the Brassica oleracea (broccoli) seeds, Lactuca sativa (lettuce) seeds, and Eruca sativa (arugula or rocket) seeds. Overall, the results of this study suggest that the S. fradiae filtrate has promising anti-PVY properties, influencing various physiological, biochemical, and molecular aspects in potato cultivars. These findings provide valuable insights into potential strategies for managing PVY infections in potato crops, emphasizing the importance of Streptomyces-derived interventions in enhancing plant health and crop protection.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Potyvirus , Solanum tuberosum , Streptomyces , Solanum tuberosum/virología , Solanum tuberosum/microbiología , Streptomyces/aislamiento & purificación , Streptomyces/fisiología , Streptomyces/genética , Potyvirus/fisiología , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/microbiología , ARN Ribosómico 16S/genética
4.
Appl Microbiol Biotechnol ; 108(1): 315, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689185

RESUMEN

The plant microbes are an integral part of the host and play fundamental roles in plant growth and health. There is evidence indicating that plants have the ability to attract beneficial microorganisms through their roots in order to defend against pathogens. However, the mechanisms of plant microbial community assembly from below- to aboveground compartments under pathogen infection remain unclear. In this study, we investigated the bacterial and fungal communities in bulk soil, rhizosphere soil, root, stem, and leaf of both healthy and infected (Potato virus Y disease, PVY) plants. The results indicated that bacterial and fungal communities showed different recruitment strategies in plant organs. The number and abundance of shared bacterial ASVs between bulk and rhizosphere soils decreased with ascending migration from below- to aboveground compartments, while the number and abundance of fungal ASVs showed no obvious changes. Field type, plant compartments, and PVY infection all affected the diversity and structures of microbial community, with stronger effects observed in the bacterial community than the fungal community. Furthermore, PVY infection, rhizosphere soil pH, and water content (WC) contributed more to the assembly of the bacterial community than the fungal community. The analysis of microbial networks revealed that the bacterial communities were more sensitive to PVY infection than the fungal communities, as evidenced by the lower network stability of the bacterial community, which was characterized by a higher proportion of positive edges. PVY infection further increased the bacterial network stability and decreased the fungal network stability. These findings advance our understanding of how microbes respond to pathogen infections and provide a rationale and theoretical basis for biocontrol technology in promoting sustainable agriculture. KEY POINTS: • Different recruitment strategies between plant bacterial and fungal communities. • Bacterial community was more sensitive to PVY infection than fungal community. • pH and WC drove the microbial community assembly under PVY infection.


Asunto(s)
Bacterias , Hongos , Enfermedades de las Plantas , Raíces de Plantas , Rizosfera , Microbiología del Suelo , Hongos/fisiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , Microbiota , Hojas de la Planta/microbiología , Concentración de Iones de Hidrógeno , Micobioma , Plantas/microbiología
5.
Pestic Biochem Physiol ; 201: 105893, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685255

RESUMEN

Potato virus Y (PVY) is one of the most important pathogens in the genus Potyvirus that seriously harms agricultural production. Copper (Cu), as a micronutrient, is closely related to plant immune response. In this study, we found that foliar application of Cu could inhibit PVY infection to some extent, especially at 7 days post inoculation (dpi). To explore the effect of Cu on PVY infection, transcriptome sequencing analysis was performed on PVY-infected tobacco with or without Cu application. Several key pathways regulated by Cu were identified, including plant-pathogen interaction, inorganic ion transport and metabolism, and photosynthesis. Moreover, the results of virus-induced gene silencing (VIGS) assays revealed that NbMLP423, NbPIP2, NbFd and NbEXPA played positive roles in resistance to PVY infection in Nicotiana benthamiana. In addition, transgenic tobacco plants overexpressing NtEXPA11 showed increased resistance to PVY infection. These results contribute to clarify the role and regulatory mechanism of Cu against PVY infection, and provide candidate genes for disease resistance breeding.


Asunto(s)
Cobre , Resistencia a la Enfermedad , Nicotiana , Enfermedades de las Plantas , Potyvirus , Nicotiana/virología , Nicotiana/genética , Potyvirus/fisiología , Cobre/farmacología , Enfermedades de las Plantas/virología , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Plantas Modificadas Genéticamente/virología , Regulación de la Expresión Génica de las Plantas , Transcriptoma
6.
Planta ; 258(4): 70, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37620620

RESUMEN

MAIN CONCLUSION: The Cas13a-based multiplex RNA targeting system can be engineered to confer resistance to RNA viruses, whereas the number and expression levels of gRNAs have no significant effect on viral interference. The CRISPR-Cas systems provide adaptive immunity to bacterial and archaeal species against invading phages and foreign plasmids. The class 2 type VI CRISPR/Cas effector Cas13a has been harnessed to confer the protection against RNA viruses in diverse eukaryotic species. However, whether the number and expression levels of guide RNAs (gRNAs) have effects on the efficiency of RNA virus inhibition is unknown. Here, we repurpose CRISPR/Cas13a in combination with an endogenous tRNA-processing system (polycistronic tRNA-gRNA) to target four genes of potato virus Y (PVY) with varying expression levels. We expressed Cas13a and four different gRNAs in potato lines, and the transgenic plants expressing multiple gRNAs displayed similar suppression of PVY accumulation and reduced disease symptoms as those expressing a single gRNA. Moreover, PTG/Cas13a-transformed plants with different expression levels of multiple gRNAs displayed similar resistance to PVY strains. Collectively, this study suggests that the Cas13a-based multiplex RNA targeting system can be utilized to engineer resistance to RNA viruses in plants, whereas the number and expression levels of gRNAs have no significant effect on CRISPR/Cas13a-mediated viral interference in plants.


Asunto(s)
Potyvirus , Potyvirus/genética , ARN , Sistemas CRISPR-Cas/genética , Plantas Modificadas Genéticamente/genética , Procesamiento Postranscripcional del ARN
7.
Mol Biol Rep ; 50(3): 2171-2181, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36565419

RESUMEN

BACKGROUND: It is believed that viruses affect potato yield more than any other pathogens worldwide. METHOD AND RESULTS: We report here on a survey of the four most common potato viruses in the Tokat Province of northern Turkey. Leaf samples were collected from potato plants showing signs of viral diseases in five districts of the province. Over 400 leaf samples were tested using RT-PCR with virus-specific primers. Among the one or more viruses detected in 218 (52%) leaf samples, Potato virus Y (PVY) was the most common (47.1%), followed by potato virus S (PVS; 16.7%), potato virus X (PVX; 6.0%) and potato leaf roll virus (PLRV; 5.3%). The most common mixed infections were PVY + PVS (6.9%). A phylogenetic analysis of the gene sequences showed all Turkish PVS isolates to be clustered with the PVSO group, two PVY isolates with the PVYN-WI group and one isolate with the PVYNTN group. Turkish PVX isolates are in the Type X group of the two major PVX isolate groups. The Turkish PLRV isolates were separated into two major groups depending on the results of the phylogenetic analysis, with six cases in Group 1 and one in Group 2. CONCLUSIONS: PVY, PVX, PVS and PLRV were detected in potato production areas in Tokat. A phylogenetic comparison of the gene sequences revealed all Turkish isolates to be immigrant members of the world populations of these viruses. Our results emphasize the importance of the strict quarantine control of plant materials entering Turkey.


Asunto(s)
Potyvirus , Solanum tuberosum , Filogenia , Prevalencia , Turquía , Cartilla de ADN , Potyvirus/genética , Enfermedades de las Plantas
8.
Ecotoxicol Environ Saf ; 255: 114775, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36933482

RESUMEN

Nanoparticles (NPs) derived from RNA interference (RNAi) are considered a potentially revolutionary technique in the field of plant protection in the future. However, the application of NPs in RNAi is hindered by the conflict between the high cost of RNA production and the large quantity of materials required for field application. This study aimed to evaluate the antiviral efficacy of commercially available nanomaterials, such as chitosan quaternary ammonium salt (CQAS), amine functionalized silica nano powder (ASNP), and carbon quantum dots (CQD), that carried double-stranded RNA (dsRNA) via various delivery methods, including infiltration, spraying, and root soaking. ASNP-dsRNA NPs are recommended for root soaking, which is considered the most effective method of antiviral compound application. The most effective antiviral compound tested was CQAS-dsRNA NPs delivered by root soaking. Using fluorescence, FITC-CQAS-dsCP-Cy3, and CQD-dsCP-Cy3 NPs demonstrated the uptake and transport pathways of dsRNA NPs in plants when applied to plants in different modes. The duration of protection with NPs applied in various modes was then compared, providing references for evaluating the retention period of various types of NPs. All three types of NPs effectively silenced genes in plants and afforded at least 14 days of protection against viral infection. Particularly, CQD-dsRNA NPs could protect systemic leaves for 21 days following spraying.


Asunto(s)
Nanopartículas , Potyvirus , ARN Bicatenario , Potyvirus/genética , Antivirales/farmacología , Interferencia de ARN
9.
Pestic Biochem Physiol ; 189: 105309, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36549816

RESUMEN

The cysteine protease structural domain (CPD) encoded by the potato virus Y (PVY) accessory component protein helper component-proteinase (HC-Pro) is an auxiliary component of aphid virus transmission and plays an important role in virus infection and replication. Urea derivatives have potential antiviral activities. In this study, the PVY HC-Pro C-terminal truncated recombinant protein (residues 307-465) was expressed and purified. The interactions of PVY CPD with urea derivatives HD1-36 were investigated. Microscale thermophoresis experiments showed that HD6, -19, -21 and - 25 had the strongest binding forces to proteins, with Kd values of 2.16, 1.40, 1.97 and 1.12 µM, respectively. An experiment verified the microscale thermophoresis results, and the results were as expected, with Kd values of 6.10, 4.78, 5.32, and 4.52 µM for HD6, -19, -21, and - 25, respectively. Molecular docking studies indicated that the interaction sites between PVY CPD and HD6, -19, -21, and - 25, independently, were aspartic acid 121, asparagine 48, and tyrosine 38, which played important roles in their binding. In vivo experiments verified that HD25 inhibited PVY more than the control agents ningnanmycin and urea. These data have important implications for the design and synthesis of novel urea derivatives.


Asunto(s)
Proteasas de Cisteína , Potyvirus , Solanum tuberosum , Proteasas de Cisteína/genética , Simulación del Acoplamiento Molecular , Enfermedades de las Plantas
10.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37958754

RESUMEN

The external application of double-stranded RNA (dsRNA) has recently been developed as a non-transgenic approach for crop protection against pests and pathogens. This novel and emerging approach has come to prominence due to its safety and environmental benefits. It is generally assumed that the mechanism of dsRNA-mediated antivirus RNA silencing is similar to that of natural RNA interference (RNAi)-based defence against RNA-containing viruses. There is, however, no direct evidence to support this idea. Here, we provide data on the high-throughput sequencing (HTS) analysis of small non-coding RNAs (sRNA) as hallmarks of RNAi induced by infection with the RNA-containing potato virus Y (PVY) and also by exogenous application of dsRNA which corresponds to a fragment of the PVY genome. Intriguingly, in contrast to PVY-induced production of discrete 21 and 22 nt sRNA species, the externally administered PVY dsRNA fragment led to generation of a non-canonical pool of sRNAs, which were present as ladders of ~18-30 nt in length; suggestive of an unexpected sRNA biogenesis pathway. Interestingly, these non-canonical sRNAs are unable to move systemically and also do not induce transitive amplification. These findings may have significant implications for further developments in dsRNA-mediated crop protection.


Asunto(s)
Potyvirus , ARN Pequeño no Traducido , Solanum tuberosum , ARN Bicatenario/genética , Solanum tuberosum/genética , Interferencia de ARN , Potyvirus/genética
11.
Int J Mol Sci ; 24(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37175986

RESUMEN

In this study, a commercial agent with antivirus activity and moroxydine hydrochloride were employed to perform a lead optimization. A series of 1,3,5-triazine derivatives with piperazine structures were devised and synthesized, and an evaluation of their anti-potato virus Y (PVY) activity revealed that several of the target compounds possessed potent anti-PVY activity. The synthesis of compound C35 was directed by a 3D-quantitative structure-activity relationship that used the compound's structural parameters. The assessment of the anti-PVY activity of compound C35 revealed that its curative, protective, and inactivation activities (53.3 ± 2.5%, 56.9 ± 1.5%, and 85.8 ± 4.4%, respectively) were comparable to the positive control of ningnanmycin (49.1 ± 2.4%, 50.7 ± 4.1%, and 82.3 ± 6.4%) and were superior to moroxydine hydrochloride (36.7 ± 2.7%, 31.4 ± 2.0%, and 57.1 ± 1.8%). In addition, molecular docking demonstrated that C35 can form hydrogen bonds with glutamic acid at position 150 (GLU 150) of PVY CP, providing a partial theoretical basis for the antiviral activity of the target compounds.


Asunto(s)
Potyvirus , Virus del Mosaico del Tabaco , Piperazina , Simulación del Acoplamiento Molecular , Antivirales/química , Triazinas/farmacología
12.
New Phytol ; 235(3): 1179-1195, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35491734

RESUMEN

Knowledge of the immune mechanisms responsible for viral recognition is critical for understanding durable disease resistance and successful crop protection. We determined how potato virus Y (PVY) coat protein (CP) is recognised by Rysto , a TNL immune receptor. We applied structural modelling, site-directed mutagenesis, transient overexpression, co-immunoprecipitation, infection assays and physiological cell death marker measurements to investigate the mechanism of Rysto -CP interaction. Rysto associates directly with PVY CP in planta that is conditioned by the presence of a CP central 149 amino acids domain. Each deletion that affects the CP core region impairs the ability of Rysto to trigger defence. Point mutations in the amino acid residues Ser125 , Arg157 , and Asp201 of the conserved RNA-binding pocket of potyviral CP reduce or abolish Rysto binding and Rysto -dependent responses, demonstrating that appropriate folding of the CP core is crucial for Rysto -mediated recognition. Rysto recognises the CPs of at least 10 crop-damaging viruses that share a similar core region. It confers immunity to plum pox virus and turnip mosaic virus in both Solanaceae and Brassicaceae systems, demonstrating potential utility in engineering virus resistance in various crops. Our findings shed new light on how R proteins detect different viruses by sensing conserved structural patterns.


Asunto(s)
Potyvirus , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Resistencia a la Enfermedad , Potyvirus/fisiología
13.
Anal Biochem ; 642: 114526, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34922917

RESUMEN

Potato virus Y (PVY) is an abundant and damaging virus which reduces crop yield and marketability. Accurate detection of this economically important virus both in-field and in seed potatoes is considered essential in the control of PVY spread. Current detection methods are focused on immunodetection and PCR-based methods, however, identification of PVY through isothermal amplification is a promising avenue for developing accessible, on-site diagnostics with quick turnaround times. In this work, a rapid recombinase polymerase amplification assay was developed which could readily amplify PVY nucleic acids with good sensitivity and specificity. Additionally, this assay was shown to be capable of amplification directly from RNA in a one-step amplification process, without the need for prior reverse transcription. The assay was coupled with lateral flow technology to provide a rapid visual confirmation of amplification. This nucleic-acid lateral flow immunoassay could feasibly be employed in-field, or at any location where testing is required, to aid in the detection and control of PVY.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico , Potyvirus/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , ARN Viral/genética
14.
Transgenic Res ; 31(3): 313-323, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35262867

RESUMEN

Small interfering RNAs (siRNAs) produced from template double-stranded RNAs (dsRNAs) can activate the immune system in transgenic plants by detecting virus transcripts to degrade. In the present study, an RNA interference (RNAi) gene silencing mechanism was used for the development of transgenic potato plants resistant to potato virus Y (PVY), the most harmful viral disease. Three RNAi gene constructs were designed based on the coat protein (CP) and the untranslated region parts of the PVY genome, being highly conserved among all strains of the PVY viruses. Transgenic potato plants were generated using Agrobacterium containing pCAMRNAiCP, pCAMRNAiUR, and pCAMRNAiCP-UR constructs. The transgene insertions were confirmed by molecular analysis containing polymerase chain reaction (PCR) and southern blotting. The resistance of transgenic plants to PVY virus was determined using bioassay and evaluating the amount of viral RNA in plants by RT-PCR, dot blotting of PVY coating protein, and enzyme-linked immunosorbent assay (ELISA). Bioassay analysis revealed that more than 67% of transgenic potato plants were resistant to PVY compared with the non-transgenic plants, which showed viral disease symptoms. No phenotypic abnormalities were observed in transgenic plants. Out of six lines in southern blot analysis, four lines had one copy of the transgene and two lines had two copies of the target genes. No correlation was detected between the copy number of the genes and the resistance level of the plant to PVY. Transgenic lines obtained from all three constructs indicated more or less similar levels of resistance against viral infection; however, CP-UR lines exhibited relatively high resistance followed by CP and UR expressing lines, respectively. Meanwhile, some lines showed a delay in symptoms 35 days after infection which were classified as susceptible.


Asunto(s)
Potyvirus , Solanum tuberosum , Virosis , Enfermedades de las Plantas , Plantas Modificadas Genéticamente/metabolismo , Potyvirus/genética , Interferencia de ARN , ARN Bicatenario , ARN Interferente Pequeño , Solanum tuberosum/metabolismo , Virosis/genética
15.
Int J Mol Sci ; 23(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35887257

RESUMEN

In this work we developed and exploited a spray-induced gene silencing (SIGS)-based approach to deliver double-stranded RNA (dsRNA), which was found to protect potato against potato virus Y (PVY) infection. Given that dsRNA can act as a defence-inducing signal that can trigger sequence-specific RNA interference (RNAi) and non-specific pattern-triggered immunity (PTI), we suspected that these two pathways may be invoked via exogeneous application of dsRNA, which may account for the alterations in PVY susceptibility in dsRNA-treated potato plants. Therefore, we tested the impact of exogenously applied PVY-derived dsRNA on both these layers of defence (RNAi and PTI) and explored its effect on accumulation of a homologous virus (PVY) and an unrelated virus (potato virus X, PVX). Here, we show that application of PVY dsRNA in potato plants induced accumulation of both small interfering RNAs (siRNAs), a hallmark of RNAi, and some PTI-related gene transcripts such as WRKY29 (WRKY transcription factor 29; molecular marker of PTI), RbohD (respiratory burst oxidase homolog D), EDS5 (enhanced disease susceptibility 5), SERK3 (somatic embryogenesis receptor kinase 3) encoding brassinosteroid-insensitive 1-associated receptor kinase 1 (BAK1), and PR-1b (pathogenesis-related gene 1b). With respect to virus infections, PVY dsRNA suppressed only PVY replication but did not exhibit any effect on PVX infection in spite of the induction of PTI-like effects in the presence of PVX. Given that RNAi-mediated antiviral immunity acts as the major virus resistance mechanism in plants, it can be suggested that dsRNA-based PTI alone may not be strong enough to suppress virus infection. In addition to RNAi- and PTI-inducing activities, we also showed that PVY-specific dsRNA is able to upregulate production of a key enzyme involved in poly(ADP-ribose) metabolism, namely poly(ADP-ribose) glycohydrolase (PARG), which is regarded as a positive regulator of biotic stress responses. These findings offer insights for future development of innovative approaches which could integrate dsRNA-induced RNAi, PTI and modulation of poly(ADP-ribose) metabolism in a co-ordinated manner, to ensure a high level of crop protection.


Asunto(s)
Potyvirus , Solanum tuberosum , Enfermedades de las Plantas/genética , Poli Adenosina Difosfato Ribosa , Potyvirus/fisiología , Interferencia de ARN , ARN Bicatenario/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Solanum tuberosum/metabolismo
16.
Biochemistry (Mosc) ; 86(9): 1128-1138, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34565316

RESUMEN

Potato virus Y (PVY) is one of the most common and harmful plant viruses. Translation of viral RNA starts with the interaction between the plant cap-binding translation initiation factors eIF4E and viral genome-linked protein (VPg) covalently attached to the viral RNA. Disruption of this interaction is one of the natural mechanisms of plant resistance to PVY. The multigene eIF4E family in the potato (Solanum tuberosum L.) genome contains genes for the translation initiation factors eIF4E1, eIF4E2, and eIF(iso)4E. However, which of these factors can be recruited by the PVY, as well as the mechanism of this interaction, remain obscure. Here, we showed that the most common VPg variant from the PVY strain NTN interacts with eIF4E1 and eIF4E2, but not with eIF(iso)4E. Based on the VPg, eIF4E1, and eIF4E2 models and data on the natural polymorphism of VPg amino acid sequence, we suggested that the key role in the recognition of potato cap-binding factors belongs to the R104 residue of VPg. To verify this hypothesis, we created VPg mutants with substitutions at position 104 and examined their ability to interact with potato eIF4E factors. The obtained data were used to build the theoretical model of the VPg-eIF4E2 complex that differs significantly from the earlier models of VPg complexes with eIF4E proteins, but is in a good agreement with the current biochemical data.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Proteínas de Plantas/metabolismo , Potyvirus/metabolismo , Proteínas Virales/metabolismo , Sitios de Unión , Factor 4E Eucariótico de Iniciación/química , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/química , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Solanum tuberosum/metabolismo , Técnicas del Sistema de Dos Híbridos , Proteínas Virales/química , Proteínas Virales/genética
17.
Lett Appl Microbiol ; 73(1): 64-72, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33825200

RESUMEN

Potato viral disease has been a major problem in potato production worldwide including Russia. Here, we detected Potato Virus M (PVM), P (PVP), S (PVS), Y (PVY), and X (PVX) and Potato Leaf Roll Virus (PLRV) by RT-PCR on potato leaves and tubers from the Northwestern (NW), Volga (VF), and Far Eastern (FE) federal districts of Russia. Each sample was co-infected with up to five viruses. RT-PCR disclosed all six viruses in NW, three in VF, and five in FE. Phylogenetic analyses of PVM and PVS strains resolved all PVM isolates in Group O (ordinary) and all PVS isolates in Group O. Seven PVY strains were detected, and they included only recombinants. PVY recombinants were thus the dominant potato virus strains in Russia, although they widely varied among the regions. Our research provides insights into the geographical distribution and genetic variability of potato viruses in Russia.


Asunto(s)
Carlavirus/fisiología , Luteoviridae/fisiología , Enfermedades de las Plantas/virología , Virus de Plantas/fisiología , Solanum tuberosum/virología , Filogenia , Hojas de la Planta/virología , Virus de Plantas/genética , Federación de Rusia
18.
Breed Sci ; 71(2): 193-200, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34377067

RESUMEN

The plant eukaryotic translation-initiation factors eIF4E and eIF(iso)4E play key roles in infection by plant RNA viruses, especially potyviruses. Mutations in the genes that encode these factors reduce susceptibility to the viruses. In the amphidiploid plant tobacco (Nicotiana tabacum L.), eIF4E1-S deletion mutants resist Potato virus Y (PVY), but resistance-breaking strains (RB-PVY) have appeared. In an earlier study, we demonstrated that the loss-of-function of eIF(iso)4E-T reduces susceptibility to RB-PVY. Here, we show that simultaneous inhibition of eIF4E1-S and eIF(iso)4E-T synergistically confers enhanced resistance to both PVY and RB-PVY without host growth or development defects. PVY symptoms and accumulation in a tobacco line lacking eIF4E1-S were detected at 14 days post-inoculation (dpi) and RB-PVY symptoms in lines without functional eIF(iso)4E-T were observed at 24 dpi. RB-PVY emerged in a PVY-infected tobacco line lacking eIF4E1-S. In contrast, lines without functional eIF4E1-S and eIF(iso)4E-T were nearly immune to PVY and RB-PVY, and little accumulation of either virus was detected even at 56 dpi. Thus, the lines will be promising for PVY-resistance breeding. This study provides a novel strategy to develop tobacco highly resistant to PVY and RB-PVY, and insights into the mechanisms responsible for high-level resistance.

19.
Plant Dis ; 105(11): 3344-3348, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34096772

RESUMEN

Potato virus A (PVA) and potato virus Y (PVY) are two members of genus Potyvirus infecting potato crops worldwide. Host resistance offers an economical and effective means for the control or management of these viruses. In this study, 20 potato clones were screened for their resistance against PVA and PVY by mechanical or graft inoculation assay, and were explored for the relationship between extreme resistance genes Ra and Ry by the detection of molecular markers linked to Ryadg, Rysto, and Rychc. Six clones, including Barbara, Jizhangshu 8, Longshu 7, Longshu 8, M6, and Solara, were found to be extremely resistant to both PVA and PVY; three clones (AC142, Eshu 3, and Shepody) were deemed to be extremely resistant to PVA but susceptible to PVY. To further reveal the inheritance of the extreme resistance (ER) against PVA, a tetraploid F1 population of Barbara × F58050 (susceptible to both PVY and PVA) and a tetraploid BC1 population of BF145 (a PVA-resistant but PVY-susceptible progeny of Barbara × F58050) × F58050 were obtained. Phenotyping of the F1 and BC1 populations by graft inoculation with PVA showed segregation ratios of 3:1 and 1:1 (resistant:susceptible), respectively. These results suggest that two independent loci control ER against PVA in Barbara: one confers ER to both PVA and PVY and the other confers ER to PVA only. The deduced genotype of Barbara is RyryryryRararara.


Asunto(s)
Potyvirus , Solanum tuberosum , Genotipo , Enfermedades de las Plantas , Potyvirus/genética , Solanum tuberosum/genética
20.
Plant Dis ; 105(11): 3600-3609, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34080887

RESUMEN

Potato virus Y (PVY) disrupts healthy seed potato production and causes tuber yield and quality losses globally. Its subdivisions consist of strain groups defined by potato hypersensitive resistance (HR) genes and whether necrosis occurs in tobacco, and phylogroups defined by sequencing. When PVY isolate PP was inoculated to potato cultivar differentials with HR genes, the HR phenotype pattern obtained resembled that caused by strain group PVYD isolate KIP1. A complete genome of isolate PP was obtained by high-throughput sequencing. After removal of its short terminal recombinant segment, it was subjected to phylogenetic analysis together with 30 complete nonrecombinant PVY genomes. It fitted within the same minor phylogroup PVYO3 subclade as KIP1. Putative HR gene Nd was proposed previously to explain the unique HR phenotype pattern that developed when differential cultivars were inoculated with PVYD. However, an alternative explanation was that PVYD elicits HR with HR genes Nc and Ny instead. To establish which gene(s) it elicits, isolates KIP1 and PP were inoculated to F1 potato seedlings from (i) crossing 'Kipfler' and 'White Rose' with 'Ruby Lou' and (ii) self-pollinated 'Desiree' and 'Ruby Lou', where 'Kipfler' is susceptible (S) but 'White Rose', 'Desiree', and 'Ruby Lou' develop HR. With both isolates, the HR:S segregation ratios obtained fitted 5:1 for 'Kipfler' × 'Ruby Lou', 11:1 for 'White Rose' × 'Ruby Lou', and 3:1 for 'Desiree'. Those for 'Ruby Lou' were 68:1 (isolate PP) and 52:0 (isolate KIP1). Because potato is tetraploid, these ratios suggest PVYD elicits HR with Ny from 'Ruby Lou' (duplex condition) and 'Desiree' (simplex condition) and Nc from 'White Rose' (simplex condition) but provide no evidence that Nd exists. Therefore, our differential cultivar inoculations and inheritance studies highlight that PVYD isolates elicit an HR phenotype in potato cultivars with either of two HR genes Nc or Ny, so putative gene Nd can be discounted. Moreover, phylogenetic analysis placed isolate PP within the same minor phylogroup PVYO3 subclade as KIP1, which constitutes the most basal divergence within overall major phylogroup PVYO.


Asunto(s)
Potyvirus , Solanum tuberosum , Filogenia , Enfermedades de las Plantas , Potyvirus/genética , Nicotiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA