Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Divers ; 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38183513

RESUMEN

Thymidylate kinase (TMPK) of monkeypox virus (MPXV) has emerged as a promising target for potential therapeutics due to its significant role in pyrimidine metabolism. While smallpox drugs are advised for treating monkeypox, the European Medicine Agency has sanctioned Tecovirimat due to its potent nanomolar activity. Nonetheless, there is a need for monkeypox-specific therapeutic options. In this work, we employed docking-based virtual screening and molecular dynamics (MD) simulations to identify myxobacterial secondary metabolites as promising anti-viral natural compounds capable of inhibiting thymidylate kinase. The computational pharmacokinetics and manual curation of top-scoring compounds identified six lead compounds that were compared in terms of protein-ligand contacts and protein-essential dynamics. The study shows that among the six candidates, Aurachin A and the Soraphinol analogues such as Soraphinol A and Soraphinol C remain very stable compared to other compounds, enabling the active site integrity via a stable dynamics pattern. We also show that other compounds such as Phenoxan, Phenylnannolone C, and 8E-Aurafuron B remain unstable and have a negative impact on the active site integrity and may not be suitable binders for TMPK protein. Analyzing the Aurachin A and Soraphinol A binding, the established hydrogen bonds with Arg93 and the conserved hydrophobic interaction with Tyr101 are consistent with previous experimental interactions. Additionally, a deeper insight into the indole and the aromatic ring interaction through π-π stacking and π-cation interactions, as well as the background of Aurachin A and Soraphinol A as a bioactive compound, has significant implications not only for its potential as a promising drug but also for directing future drug discovery efforts targeting the TMPK protein.

2.
J Biol Chem ; 291(6): 2874-87, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26620556

RESUMEN

Serpins regulate coagulation and inflammation, binding serine proteases in suicide-inhibitory complexes. Target proteases cleave the serpin reactive center loop scissile P1-P1' bond, resulting in serpin-protease suicide-inhibitory complexes. This inhibition requires a near full-length serpin sequence. Myxomavirus Serp-1 inhibits thrombolytic and thrombotic proteases, whereas mammalian neuroserpin (NSP) inhibits only thrombolytic proteases. Both serpins markedly reduce arterial inflammation and plaque in rodent models after single dose infusion. In contrast, Serp-1 but not NSP improves survival in a lethal murine gammaherpesvirus68 (MHV68) infection in interferon γ-receptor-deficient mice (IFNγR(-/-)). Serp-1 has also been successfully tested in a Phase 2a clinical trial. We postulated that proteolytic cleavage of the reactive center loop produces active peptide derivatives with expanded function. Eight peptides encompassing predicted protease cleavage sites for Serp-1 and NSP were synthesized and tested for inhibitory function in vitro and in vivo. In engrafted aorta, selected peptides containing Arg or Arg-Asn, not Arg-Met, with a 0 or +1 charge, significantly reduced plaque. Conversely, S-6 a hydrophobic peptide of NSP, lacking Arg or Arg-Asn with -4 charge, induced early thrombosis and mortality. S-1 and S-6 also significantly reduced CD11b(+) monocyte counts in mouse splenocytes. S-1 peptide had increased efficacy in plasminogen activator inhibitor-1 serpin-deficient transplants. Plaque reduction correlated with mononuclear cell activation. In a separate study, Serp-1 peptide S-7 improved survival in the MHV68 vasculitis model, whereas an inverse S-7 peptide was inactive. Reactive center peptides derived from Serp-1 and NSP with suitable charge and hydrophobicity have the potential to extend immunomodulatory functions of serpins.


Asunto(s)
Coagulación Sanguínea/efectos de los fármacos , Infecciones por Herpesviridae/inmunología , Factores Inmunológicos , Proteínas de la Membrana , Péptidos , Rhadinovirus/inmunología , Vasculitis/inmunología , Animales , Coagulación Sanguínea/inmunología , Modelos Animales de Enfermedad , Infecciones por Herpesviridae/tratamiento farmacológico , Humanos , Factores Inmunológicos/síntesis química , Factores Inmunológicos/química , Factores Inmunológicos/inmunología , Células Jurkat , Proteínas de la Membrana/síntesis química , Proteínas de la Membrana/química , Proteínas de la Membrana/farmacología , Ratones , Ratones Noqueados , Péptidos/síntesis química , Péptidos/química , Péptidos/farmacología , Vasculitis/tratamiento farmacológico
3.
J Biol Chem ; 289(10): 6639-6655, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24451374

RESUMEN

The vaccinia viral protein A27 in mature viruses specifically interacts with heparan sulfate for cell surface attachment. In addition, A27 associates with the viral membrane protein A17 to anchor to the viral membrane; however, the specific interaction between A27 and A17 remains largely unclear. To uncover the active binding sites and the underlying binding mechanism, we expressed and purified the N-terminal (18-50 residues) and C-terminal (162-203 residues) fragments of A17, which are denoted A17-N and A17-C. Through surface plasmon resonance, the binding affinity of A27/A17-N (KA = 3.40 × 10(8) m(-1)) was determined to be approximately 3 orders of magnitude stronger than that of A27/A17-C (KA = 3.40 × 10(5) m(-1)), indicating that A27 prefers to interact with A17-N rather than A17-C. Despite the disordered nature of A17-N, the A27-A17 interaction is mediated by a specific and cooperative binding mechanism that includes two active binding sites, namely (32)SFMPK(36) (denoted as F1 binding) and (20)LDKDLFTEEQ(29) (F2). Further analysis showed that F1 has stronger binding affinity and is more resistant to acidic conditions than is F2. Furthermore, A27 mutant proteins that retained partial activity to interact with the F1 and F2 sites of the A17 protein were packaged into mature virus particles at a reduced level, demonstrating that the F1/F2 interaction plays a critical role in vivo. Using these results in combination with site-directed mutagenesis data, we established a computer model to explain the specific A27-A17 binding mechanism.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales de Fusión/metabolismo , Virión/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Simulación por Computador , Células HeLa , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estructura Secundaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Resonancia por Plasmón de Superficie , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/genética , Virión/química , Virión/genética
4.
J Biol Chem ; 288(47): 33642-33653, 2013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24114841

RESUMEN

Vaccinia virus encodes a number of proteins that inhibit and manipulate innate immune signaling pathways that also have a role in virulence. These include A52, a protein shown to inhibit IL-1- and Toll-like receptor-stimulated NFκB activation, via interaction with interleukin-1 receptor-associated kinase 2 (IRAK2). Interestingly, A52 was also found to activate p38 MAPK and thus enhance Toll-like receptor-dependent IL-10 induction, which was TRAF6-dependent, but the manner in which A52 manipulates TRAF6 to stimulate p38 activation was unclear. Here, we show that A52 has a non-canonical TRAF6-binding motif that is essential for TRAF6 binding and p38 activation but dispensable for NFκB inhibition and IRAK2 interaction. Wild-type A52, but not a mutant defective in p38 activation and TRAF6 binding (F154A), caused TRAF6 oligomerization and subsequent TRAF6-TAK1 association. The crystal structure of A52 shows that it adopts a Bcl2-like fold and exists as a dimer in solution. Residue Met-65 was identified as being located in the A52 dimer interface, and consistent with that, A52-M65E was impaired in its ability to dimerize. A52-M65E although capable of interacting with TRAF6, was unable to cause either TRAF6 self-association, induce the TRAF6-TAK1 association, or activate p38 MAPK. The results suggest that an A52 dimer causes TRAF6 self-association, leading to TAK1 recruitment and p38 activation. This reveals a molecular mechanism whereby poxviruses manipulate TRAF6 to activate MAPKs (which can be proviral) without stimulating antiviral NFκB activation.


Asunto(s)
Quinasas Quinasa Quinasa PAM/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Virus Vaccinia/metabolismo , Vaccinia/metabolismo , Proteínas Virales/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Sustitución de Aminoácidos , Animales , Activación Enzimática , Células HEK293 , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/genética , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Ratones , Ratones Noqueados , Mutación Missense , Unión Proteica , Multimerización de Proteína , Factor 6 Asociado a Receptor de TNF/genética , Vaccinia/genética , Virus Vaccinia/genética , Proteínas Virales/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética
5.
Immun Inflamm Dis ; 12(8): e1360, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39150224

RESUMEN

BACKGROUND: Messenger RNA (mRNA) vaccines emerged as a powerful tool in the fight against infections. Unlike traditional vaccines, this unique type of vaccine elicits robust and persistent innate and humoral immune response with a unique host cell-mediated pathogen gene expression and antigen presentation. METHODS: This offers a novel approach to combat poxviridae infections. From the genome of vaccinia and Mpox viruses, three key genes (E8L, E7R, and H3L) responsible for virus attachment and virulence were selected and employed for designing the candidate mRNA vaccine against vaccinia and Mpox viral infection. Various bioinformatics tools were employed to generate (B cell, CTL, and HTL) epitopes, of which 28 antigenic and immunogenic epitopes were selected and are linked to form the mRNA vaccine construct. Additional components, including a 5' cap, 5' UTR, adjuvant, 3' UTR, and poly(A) tail, were incorporated to enhance stability and effectiveness. Safety measures such as testing for human homology and in silico immune simulations were implemented to avoid autoimmunity and to mimics the immune response of human host to the designed mRNA vaccine, respectively. The mRNA vaccine's binding affinity was evaluated by docking it with TLR-2, TLR-3, TLR-4, and TLR-9 receptors which are subsequently followed by molecular dynamics simulations for the highest binding one to predict the stability of the binding complex. RESULTS: With a 73% population coverage, the mRNA vaccine looks promising, boasting a molecular weight of 198 kDa and a molecular formula of C8901H13609N2431O2611S48 and it is said to be antigenic, nontoxic and nonallergic, making it safe and effective in preventing infections with Mpox and vaccinia viruses, in comparison with other insilico-designed vaccine for vaccinia and Mpox viruses. CONCLUSIONS: However, further validation through in vivo and in vitro techniques is underway to fully assess its potential.


Asunto(s)
Biología Computacional , Virus Vaccinia , Vacunas de ARNm , Humanos , Virus Vaccinia/inmunología , Virus Vaccinia/genética , Biología Computacional/métodos , Infecciones por Poxviridae/prevención & control , Infecciones por Poxviridae/inmunología , Vaccinia/prevención & control , Vaccinia/inmunología , Vacunas Sintéticas/inmunología , ARN Mensajero/inmunología , ARN Mensajero/genética , Vacunas Virales/inmunología , Epítopos de Linfocito B/inmunología , Desarrollo de Vacunas , Epítopos de Linfocito T/inmunología
6.
Ann Med Surg (Lond) ; 85(2): 316-321, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36845803

RESUMEN

As of May 2022, a new outbreak of the human monkeypox (MPOX) disease appeared in multiple countries, where the 2022 human MPOX disease spread to more than 109 cases, excluding the suspected cases up to the end of 2022. The deaths of the 2022 human MPOX exceeded 200 cases up to the same date. The human MPOX is not a new disease, this disease was once endemic in some countries on the African continent. Despite this, this disease began to spread in a number of countries around the world in 2022. The first case of the 2022 human MPOX was recorded in the United Kingdom in May. After that date, this disease began to become a pandemic in a number of other countries, such as the United States, Spain, and Brazil. The 2022 human MPOX is a type of viral disease caused by a viral virus, the MPOX virus, and this virus causes rashes and lesions over the skin of the patient, as well as in the mouth of the patient. Multiple effective indicators are employed for the study of the 2022 of the human MPOX, such as the herd immunity of the human MPOX (HIhMPOX), the basic reproduction number of the human MPOX (BRNhMPOX), and the infection period of the human MPOX. This study focuses on the study of the herd immunity of, and the basic reproduction number of the 2022 outbreak of human MPOX in multiple countries around the world. This study employed the semianalytical method of the Susceptible compartment S, Infectious compartment I, Recovered compartment R (SIR) pandemic model including the mortality for the study of the herd immunity, and the basic reproduction number of the 2022 human MPOX disease. It is found that the average value of the herd immunity for the human MPOX disease in 2022 equals to 0.2194, that is, 21.94% for multiple countries, and equals to 35.52% for the United States, and 30.99% for Spain. Also, it is found that the average value of the basic reproduction number of the 2022 human MPOX disease equals to 1.2810 for multiple countries. It is concluded from these values that 21.94% of the total susceptible population has to be immunized in an effective way to prevent the spreading of the disease. Also, based on the previous values, it is concluded that the status of the 2022 MPOX disease is spreading as a pandemic.

7.
Can J Infect Dis ; 9(5): 310-3, 1998 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22346551

RESUMEN

This review commemorates the 200th anniversary of Edward Jenner's development of a vaccine for variola, the cause of smallpox, and the 20th anniversary of its eradication. Jenner's original 23 case reports are briefly revisited within the context of earlier attempts to prevent this dreaded disease and in light of the current understanding of vaccinology and immunology. In addition, with molecular biological information available about many pox viruses and detailed sequence knowledge of some, it is now possible to appreciate Jenner's prescient accomplishments more fully.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA