Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 83(21): 3931-3939.e5, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37863053

RESUMEN

Ferroptosis, a regulated cell death pathway driven by accumulation of phospholipid peroxides, has been challenging to identify in physiological conditions owing to the lack of a specific marker. Here, we identify hyperoxidized peroxiredoxin 3 (PRDX3) as a marker for ferroptosis both in vitro and in vivo. During ferroptosis, mitochondrial lipid peroxides trigger PRDX3 hyperoxidation, a posttranslational modification that converts a Cys thiol to sulfinic or sulfonic acid. Once hyperoxidized, PRDX3 translocates from mitochondria to plasma membranes, where it inhibits cystine uptake, thereby causing ferroptosis. Applying hyperoxidized PRDX3 as a marker, we determined that ferroptosis is responsible for death of hepatocytes in mouse models of both alcoholic and nonalcoholic fatty liver diseases, the most prevalent chronic liver disorders. Our study highlights the importance of ferroptosis in pathophysiological conditions and opens the possibility to treat these liver diseases with drugs that inhibit ferroptosis.


Asunto(s)
Ferroptosis , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Ferroptosis/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Peróxidos , Peroxiredoxina III/genética , Compuestos de Sulfhidrilo
2.
Respir Res ; 25(1): 110, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431661

RESUMEN

Acute lung injury (ALI) is one of the life-threatening complications of sepsis, and macrophage polarization plays a crucial role in the sepsis-associated ALI. However, the regulatory mechanisms of macrophage polarization in ALI and in the development of inflammation are largely unknown. In this study, we demonstrated that macrophage polarization occurs in sepsis-associated ALI and is accompanied by mitochondrial dysfunction and inflammation, and a decrease of PRDX3 promotes the initiation of macrophage polarization and mitochondrial dysfunction. Mechanistically, PRDX3 overexpression promotes M1 macrophages to differentiate into M2 macrophages, and enhances mitochondrial functional recovery after injury by reducing the level of glycolysis and increasing TCA cycle activity. In conclusion, we identified PRDX3 as a critical hub integrating oxidative stress, inflammation, and metabolic reprogramming in macrophage polarization. The findings illustrate an adaptive mechanism underlying the link between macrophage polarization and sepsis-associated ALI.


Asunto(s)
Lesión Pulmonar Aguda , Macrófagos , Peroxiredoxina III , Humanos , Lesión Pulmonar Aguda/metabolismo , Inflamación/metabolismo , Lipopolisacáridos , Macrófagos/metabolismo , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/metabolismo , Peroxiredoxina III/metabolismo , Sepsis/metabolismo , Animales , Ratones
3.
Neurogenetics ; 24(1): 55-60, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36190665

RESUMEN

Cerebellar ataxias (CAs) comprise a rare group of neurological disorders characterized by extensive phenotypic and genetic heterogeneity. In the last several years, our understanding of the CA etiology has increased significantly and resulted in the discoveries of numerous ataxia-associated genes. Herein, we describe a single affected individual from a consanguineous family segregating a recessive neurodevelopmental disorder. The proband showed features such as global developmental delay, cerebellar atrophy, hypotonia, speech issues, dystonia, and profound hearing impairment. Whole-exome sequencing and Sanger sequencing revealed a biallelic nonsense variant (c.496A > T; p.Lys166*) in the exon 5 of the PRDX3 gene that segregated perfectly within the family. This is the third report that associates the PRDX3 gene variant with cerebellar ataxia. In addition, associated hearing impairment further delineates the PRDX3 associated gene phenotypes.


Asunto(s)
Ataxia Cerebelosa , Enfermedades Cerebelosas , Humanos , Ataxia , Ataxia Cerebelosa/genética , Consanguinidad , Familia , Linaje , Peroxiredoxina III/genética
4.
Biochem Biophys Res Commun ; 604: 144-150, 2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-35303681

RESUMEN

Alzheimer's disease (AD) is characterized by amyloid plaques and neurofibrillary tangles accompanied by progressive neurite loss. Mitochondria play pivotal roles in AD development. PRDX3 is a mitochondrial peroxide reductase critical for H2O2 scavenging and signal transduction. In this study, we found that PRDX3 knockdown (KD) in the N2a-APPswe cell line promoted retinoic acid (RA)-induced neurite outgrowth but did not reduce the viability of cells damaged by tert-butyl hydroperoxide (TBHP). We found that knocking down PRDX3 expression induced dysregulation of more than one hundred proteins, as determined by tandem mass tag (TMT)-labeled proteomics. A Gene Ontology (GO) analysis revealed that the dysregulated proteins were enriched in protein localization to the plasma membrane, the lipid catabolic process, and intermediate filament cytoskeleton organization. A STRING analysis showed close protein-protein interactions among dysregulated proteins. The expression of Annexin A1 (ANXA1), serine (Ser)-/threonine (Thr)-protein phosphatase 2A catalytic subunit alpha isoform (PP2A) and glutathione S-transferase Mu 2 (GSTM2) was significantly upregulated in PRDX3-KD N2a-APPswe cell lines, as verified by western blotting. Our study revealed, for the first time, that PRDX3 may play important roles in neurite outgrowth and AD development.


Asunto(s)
Enfermedad de Alzheimer , Proyección Neuronal , Peroxiredoxina III , Enfermedad de Alzheimer/metabolismo , Línea Celular Tumoral , Humanos , Peróxido de Hidrógeno/metabolismo , Neuritas/metabolismo , Proyección Neuronal/genética , Peroxiredoxina III/genética , Peroxiredoxina III/metabolismo , Proteómica
5.
Brain ; 144(5): 1467-1481, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-33889951

RESUMEN

Peroxiredoxin 3 (PRDX3) belongs to a superfamily of peroxidases that function as protective antioxidant enzymes. Among the six isoforms (PRDX1-PRDX6), PRDX3 is the only protein exclusively localized to the mitochondria, which are the main source of reactive oxygen species. Excessive levels of reactive oxygen species are harmful to cells, inducing mitochondrial dysfunction, DNA damage, lipid and protein oxidation and ultimately apoptosis. Neuronal cell damage induced by oxidative stress has been associated with numerous neurodegenerative disorders including Alzheimer's and Parkinson's diseases. Leveraging the large aggregation of genomic ataxia datasets from the PREPARE (Preparing for Therapies in Autosomal Recessive Ataxias) network, we identified recessive mutations in PRDX3 as the genetic cause of cerebellar ataxia in five unrelated families, providing further evidence for oxidative stress in the pathogenesis of neurodegeneration. The clinical presentation of individuals with PRDX3 mutations consists of mild-to-moderate progressive cerebellar ataxia with concomitant hyper- and hypokinetic movement disorders, severe early-onset cerebellar atrophy, and in part olivary and brainstem degeneration. Patient fibroblasts showed a lack of PRDX3 protein, resulting in decreased glutathione peroxidase activity and decreased mitochondrial maximal respiratory capacity. Moreover, PRDX3 knockdown in cerebellar medulloblastoma cells resulted in significantly decreased cell viability, increased H2O2 levels and increased susceptibility to apoptosis triggered by reactive oxygen species. Pan-neuronal and pan-glial in vivo models of Drosophila revealed aberrant locomotor phenotypes and reduced survival times upon exposure to oxidative stress. Our findings reveal a central role for mitochondria and the implication of oxidative stress in PRDX3 disease pathogenesis and cerebellar vulnerability and suggest targets for future therapeutic approaches.


Asunto(s)
Ataxia Cerebelosa/genética , Estrés Oxidativo/genética , Peroxiredoxina III/genética , Adulto , Animales , Ataxia Cerebelosa/metabolismo , Ataxia Cerebelosa/patología , Drosophila , Femenino , Humanos , Mutación con Pérdida de Función , Masculino , Persona de Mediana Edad , Linaje
6.
Toxicol Appl Pharmacol ; 432: 115758, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34678374

RESUMEN

Mitochondrial dysfunction is a major factor in nonalcoholic fatty liver disease (NAFLD), preceding insulin resistance and hepatic steatosis. Carnosol (CAR) is a kind of diterpenoid with antioxidant, anti-inflammatory and antitumor activities. Peroxiredoxin 3 (PRDX3), a mitochondrial H2O2-eliminating enzyme, undergoes overoxidation and subsequent inactivation under oxidative stress. The purpose of this study was to investigate the protective effect of the natural phenolic compound CAR on NAFLD via PRDX3. Mice fed a high-fat diet (HFD) and AML-12 cells treated with palmitic acid (PA) were used to detect the molecular mechanism of CAR in NAFLD. We found that pharmacological treatment with CAR notably moderated HFD- and PA- induced steatosis and liver injury, as shown by biochemical assays, Oil Red O and Nile Red staining. Further mechanistic investigations revealed that CAR exerted anti-NAFLD effects by inhibiting mitochondrial oxidative stress, perturbation of mitochondrial dynamics, and apoptosis in vivo and in vitro. The decreased protein and mRNA levels of PRDX3 were accompanied by intense oxidative stress after PA intervention. Interestingly, CAR specifically bound PRDX3, as shown by molecular docking assays, and increased the expression of PRDX3. However, the hepatoprotection of CAR in NAFLD was largely abolished by specific PRDX3 siRNA, which increased mitochondrial dysfunction and exacerbated apoptosis in vitro. In conclusion, CAR suppressed lipid accumulation, mitochondrial dysfunction and hepatocyte apoptosis by activating PRDX3, mitigating the progression of NAFLD, and thus, CAR may represent a promising candidate for clinical treatment of steatosis.


Asunto(s)
Abietanos/farmacología , Apoptosis/efectos de los fármacos , Activadores de Enzimas/farmacología , Hepatocitos/efectos de los fármacos , Hígado/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Peroxiredoxina III/metabolismo , Animales , Antioxidantes/farmacología , Línea Celular , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Activación Enzimática , Hepatocitos/enzimología , Hepatocitos/patología , Hígado/enzimología , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/enzimología , Mitocondrias Hepáticas/patología , Dinámicas Mitocondriales/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/enzimología , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Estrés Oxidativo/efectos de los fármacos , Ácido Palmítico/toxicidad , Peroxiredoxina III/genética
7.
J Cell Mol Med ; 24(17): 10177-10188, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32729669

RESUMEN

In recent years, plenty of studies found that circular RNAs (circRNAs) were essential players in the initiation and progression of various cancers including the renal cell carcinoma (RCC). However, the knowledge about the circRNAs in carcinogenesis is still limited. Dysregulated expression of circNUP98 in RCC tissues was identified by the circular RNA microarray. RT-PCR was performed to measure the expression of circNUP98 in 78 pairs of RCC tissues and adjacent normal tissues. Survival analysis was conducted to explore the association between the expression of circNUP98 and the prognosis of RCC. The function and underlying mechanisms of circSMC3 in RCC cells were investigated by RNAi, CCK-8, Western blotting, bioinformatic analysis, ChIP assay, circRIP assay and dual luciferase reporter assay. CircNUP98 was up-regulated in both RCC tissues and cell lines, and high expression of circNUP98 was correlated with poor prognosis of RCC patients. Silencing of circSMC3 inhibited the proliferation and promoted the apoptosis in a caspase-dependent manner in RCC cells. Mechanistically, we revealed that silencing of circ NUP98 inhibited RCC progression by down-regulating of PRDX3 via up-regulation of miR-567. Furthermore, STAT3 was identified as an inducer of circ NUP98 in RCC cells. CircNUP98 acts as an oncogene by a novel STAT3/circ NUP98/miR-567/PRDX3 axis, which may provide a potential biomarker and therapeutic target for the treatment of RCC.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Neoplasias Renales/genética , MicroARNs/genética , Oncogenes/genética , Peroxiredoxina III/genética , ARN Circular/genética , Animales , Apoptosis , Carcinogénesis/genética , Carcinoma de Células Renales/patología , Línea Celular , Regulación hacia Abajo/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Células HEK293 , Humanos , Neoplasias Renales/patología , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Pronóstico , Factor de Transcripción STAT3/genética , Regulación hacia Arriba/genética , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
8.
J Proteome Res ; 15(5): 1506-14, 2016 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-26983019

RESUMEN

PRDX3 is a mitochondrial peroxide reductase that regulates cellular redox state. It has been reported that PRDX3 is overexpressed in liver cancer, but how PRDX3 is involved in hepatocellular carcinoma (HCC) tumorigenesis and progression has not been well-characterized. In the present study, we established two stable cell lines by overexpressing or knocking down PRDX3 in HepG2 cells. We found that PRDX3 silencing decreased the growth rate of HepG2 cells and increased mtDNA oxidation. Quantitative proteomics identified 475 differentially expressed proteins between the PRDX3 knockdown and the control cells. These proteins were involved in antioxidant activity, angiogenesis, cell adhesion, cell growth, ATP synthesis, nucleic acid binding, redox, and chaperones. PRDX3 knockdown led to the down-regulation of ATP synthases and the decreased cellular ATP level, contributing to the slow-down of cell growth. Furthermore, silencing PRDX3 enhanced invasive properties of HepG2 cells via TIMP-1 down-regulation and the increased ECM degradation. Taken together, our results indicate that PRDX3 promotes HCC growth and mediates cell migration and invasiveness and is a potential therapeutic target for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Peroxiredoxina III/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Silenciador del Gen , Células Hep G2 , Humanos , Invasividad Neoplásica , Peroxiredoxina III/genética
9.
Int J Exp Pathol ; 95(3): 229-37, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24773279

RESUMEN

Hirschsprung's disease (HSCR) is a developmental disorder of the enteric nervous system characterized by aganglionosis in distal gut. In this study, we used two-dimensional gel electrophoresis (2-DE) technology coupled with matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis to identify differentially expressed proteins in the aganglionic (stenotic) and ganglionic (normal) colon segment tissues from patients with HSCR. We identified 15 proteins with different expression levels between the stenotic and the normal colon segment tissues from patients with HSCR. Nine proteins were upregulated and six proteins downregulated in the stenotic colon segment tissues compared to the normal colon segment tissues. Based on the biological functions, we selected the Hsp27 upregulated proteins and the PRDX3 downregulated proteins to confirm their expression in 20 patients. The protein and mRNA expressions of Hsp27 were statistically higher in the stenotic colon segment tissues than in the normal colon segment tissues, whereas the protein and mRNA expressions of PRDX3 were statistically lower in the stenotic colon segment tissues than in the normal colon segment tissues. These findings of changes in mRNA and protein in tissues from patients with HSCR provide information which may be helpful in understanding the pathomechanism that is implicated in the disease.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Enfermedad de Hirschsprung/metabolismo , Peroxiredoxina III/metabolismo , Proteína Wnt1/metabolismo , China , Colon/metabolismo , Electroforesis en Gel Bidimensional , Femenino , Regulación de la Expresión Génica , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico , Humanos , Lactante , Masculino , Chaperonas Moleculares , Peroxiredoxina III/genética , Proteómica , ARN Mensajero/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Proteína Wnt1/genética
10.
Daru ; 32(1): 189-196, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38407745

RESUMEN

BACKGROUND: Myocardial ischemia/reperfusion injury (MIRI) seriously threatens the health of people. The mitochondrial dysfunction in cardiomyocytes can promote the progression of MIRI. Dexmedetomidine (Dex) could alleviate the myocardial injury, which was known to reverse mitochondrial dysfunction in lung injury. However, the function of Dex in mitochondrial dysfunction during MIRI remains unclear. OBJECTIVE: To assess the function of Dex in mitochondrial dysfunction during MIRI. METHODS: To investigate the function of Dex in MIRI, H9C2 cells were placed in condition of hypoxia/reoxygenation (H/R). CCK8 assay was performed to test the cell viability, and the mitochondrial membrane potential was evaluated by JC-1 staining. In addition, the binding relationship between Sirt3 and Prdx3 was explored by Co-IP assay. Furthermore, the protein expressions were examined using western blot. RESULTS: Dex could abolish H/R-induced mitochondrial dysfunction in H9C2 cells. In addition, H/R treatment significantly inhibited the expression of Sirt3, while Dex partially restored this phenomenon. Knockdown of Sirt3 or Prdx3 obviously reduced the protective effect of Dex on H/R-induced mitochondrial injury. Meanwhile, Sirt3 could enhance the function of Prdx3 via deacetylation of Prdx3. CONCLUSION: Dex was found to attenuate H/R-induced mitochondrial dysfunction in cardiomyocytes via activation of Sirt3/Prdx3 pathway. Thus, this study might shed new lights on exploring new strategies for the treatment of MIRI.


Asunto(s)
Dexmedetomidina , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Peroxiredoxina III , Transducción de Señal , Sirtuina 3 , Animales , Ratas , Hipoxia de la Célula/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Dexmedetomidina/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Peroxiredoxina III/metabolismo , Peroxiredoxina III/genética , Transducción de Señal/efectos de los fármacos , Sirtuina 3/metabolismo , Sirtuina 3/genética , Sirtuinas
11.
Antioxid Redox Signal ; 40(10-12): 616-631, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37515421

RESUMEN

Aims: Mitochondrial dysfunction is the primary mechanism of liver ischemia/reperfusion (I/R) injury. The lysine desuccinylase sirtuin 5 (SIRT5) is a global regulator of the mitochondrial succinylome and has pivotal roles in mitochondrial metabolism and function; however, its hepatoprotective capacity in liver I/R remains unclear. In this study, we established liver I/R model in SIRT5-silenced and SIRT5-overexpressed mice to examine the role and precise mechanisms of SIRT5 in liver I/R injury. Results: Succinylation was strongly enriched in liver mitochondria during I/R, and inhibiting mitochondrial succinylation significantly attenuated liver I/R injury. Importantly, the levels of the desuccinylase SIRT5 were notably decreased in liver transplant patients, as well as in mice subjected to I/R and in AML12 cells exposed to hypoxia/reoxygenation. Furthermore, SIRT5 significantly ameliorated liver I/R-induced oxidative injury, apoptosis, and inflammation by regulating mitochondrial oxidative stress and function. Intriguingly, the hepatoprotective effect of SIRT5 was mediated by PRDX3. Mechanistically, SIRT5 specifically desuccinylated PRDX3 at the K84 site, which enabled PRDX3 to alleviate mitochondrial oxidative stress during liver I/R. Innovation: This study denoted the new effect and mechanism of SIRT5 in regulating mitochondrial oxidative stress through lysine desuccinylation, thus preventing liver I/R injury. Conclusions: Our findings demonstrate for the first time that SIRT5 is a key mediator of liver I/R that regulates mitochondrial oxidative stress through the desuccinylation of PRDX3, which provides a novel strategy to prevent liver I/R injury. Antioxid. Redox Signal. 40, 616-631.


Asunto(s)
Hepatopatías , Daño por Reperfusión , Sirtuinas , Animales , Humanos , Ratones , Hepatopatías/etiología , Lisina/metabolismo , Ratones Noqueados , Estrés Oxidativo , Sirtuinas/genética , Sirtuinas/metabolismo
12.
Artículo en Inglés | MEDLINE | ID: mdl-38970422

RESUMEN

Aims: Peroxiredoxin3 (Prdx3) is an intracellular antioxidant enzyme that is specifically localized in mitochondria and protects against oxidative stress by removing mitochondrial reactive oxygen species (ROS). The intestinal epithelium provides a physical and biochemical barrier that segregates host tissues from commensal bacteria to maintain intestinal homeostasis. An imbalance between the cellular antioxidant defense system and oxidative stress has been implicated in the pathogenesis of inflammatory bowel disease (IBD). However, the role of Prdx3 in the intestinal epithelium under intestinal inflammation has not been elucidated. To investigate the potential role of Prdx3 in intestinal inflammation, we used intestinal epithelial cell (IEC)-specific Prdx3-knockout mice. Results: IEC-specific Prdx3-deficient mice showed more severe colitis phenotypes with greater degrees of body weight loss, colon shortening, barrier disruption, mitochondrial damage, and ROS generation in IECs. Furthermore, exosomal miR-1260b was dramatically increased in Prdx3-knockdown colonic epithelial cells. Mechanistically, Prdx3 deficiency promoted intestinal barrier disruption and inflammation via P38-mitogen-activated protein kinase/NFκB signaling. Innovation: This is the first study to report the protective role of Prdx3 in acute colitis using IEC-specific conditional knockout mice. Conclusion: Our study sheds light on the role of exosome-loaded miRNAs, particularly miR-1260b, in IBD. Targeting miR-1260b or modulating exosome-mediated intercellular communication may hold promise as potential therapeutic strategies for managing IBD and restoring intestinal barrier integrity.

13.
Cancer Lett ; 589: 216796, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537775

RESUMEN

Nucleosome assembly during DNA replication is dependent on histone chaperones. Recent studies suggest that dysregulated histone chaperones contribute to cancer progression, including gastric cancer (GC). Further studies are required to explore the prognostic and therapeutic implications of histone chaperones and their mechanisms of action in GC progression. Here we identified histone chaperone ASF1B as a potential biomarker for GC proliferation and prognosis. ASF1B was significantly upregulated in GC, which was associated with poor prognosis. In vitro and in vivo experiments demonstrated that the inhibition of ASF1B suppressed the malignant characteristics of GC, while overexpression of ASF1B had the opposite effect. Mechanistically, transcription factor FOXM1 directly bound to the ASF1B-promoter region, thereby regulating its transcription. Treatment with thiostrepton, a FOXM1 inhibitor, not only suppressed ASF1B expression, but also inhibited GC progression. Furthermore, ASF1B regulated the mitochondrial protein peroxiredoxin 3 (PRDX3) transcription in a FOXM1-dependent manner. The crucial role of ASF1B-regulated PRDX3 in GC cell proliferation and oxidative stress balance was also elucidated. In summary, our study suggests that the FOXM1-ASF1B-PRDX3 axis is a potential therapeutic target for treating GC.


Asunto(s)
Peroxiredoxina III , Neoplasias Gástricas , Humanos , Peroxiredoxina III/genética , Peroxiredoxina III/metabolismo , Neoplasias Gástricas/genética , Proteínas de Ciclo Celular/metabolismo , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Chaperonas de Histonas/metabolismo , Estrés Oxidativo , Proliferación Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
14.
CNS Neurol Disord Drug Targets ; 23(3): 402-410, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36797610

RESUMEN

BACKGROUND: Postsynaptic density (PSD) is an electron-dense structure that contains various scaffolding and signaling proteins. Shank1 is a master regulator of the synaptic scaffold located at glutamatergic synapses, and has been proposed to be involved in multiple neurological disorders. METHODS: In this study, we investigated the role of shank1 in an in vitro Parkinson's disease (PD) model mimicked by 6-OHDA treatment in neuronal SN4741 cells. The expression of related molecules was detected by western blot and immunostaining. RESULTS: We found that 6-OHDA significantly increased the mRNA and protein levels of shank1 in SN4741 cells, but the subcellular distribution was not altered. Knockdown of shank1 via small interfering RNA (siRNA) protected against 6-OHDA treatment, as evidenced by reduced lactate dehydrogenase (LDH) release and decreased apoptosis. The results of RT-PCR and western blot showed that knockdown of shank1 markedly inhibited the activation of endoplasmic reticulum (ER) stress associated factors after 6-OHDA exposure. In addition, the downregulation of shank1 obviously increased the expression of PRDX3, which was accompanied by the preservation of mitochondrial function. Mechanically, downregulation of PRDX3 via siRNA partially prevented the shank1 knockdowninduced protection against 6-OHDA in SN4741 cells. CONCLUSION: In summary, the present study has provided the first evidence that the knockdown of shank1 protects against 6-OHDA-induced ER stress and mitochondrial dysfunction through activating the PRDX3 pathway.


Asunto(s)
Enfermedad de Parkinson , Humanos , Oxidopamina/toxicidad , Apoptosis , Proteínas , ARN Interferente Pequeño/metabolismo , Peroxiredoxina III
15.
J Orthop Surg Res ; 18(1): 432, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37312219

RESUMEN

BACKGROUND: Although the implications of circular RNAs (circRNAs) with the progression of diverse pathological conditions have been reported, the circRNA players in osteoarthritis (OA) are barely studied. METHODS: In this study, twenty-five OA patients who received arthroplasty were recruited for cartilage tissue collection. Public circRNA microarray data from Gene Expression Omnibus was retrieved for circRNA identification. An in vitro cell model of OA-related damages was constructed by treating human chondrocytes (CHON-001 cell line) with IL-1ß, and circSOD2 siRNA was used to silence circSOD2 expression to study its functional role in apoptosis, inflammatory responses, and extracellular matrix (ECM) degradation. Besides, we investigated the functional interactions among circSOD2, miR-224-5p, and peroxiredoxin 3 (PRDX3) by luciferase reporter assay, RNA-immunoprecipitation assay, and quantitative reverse transcription polymerase chain reaction. RESULTS: Our findings revealed the overexpression of circSOD2 in the OA cartilage and cell samples, and circSOD2 knockdown alleviated ECM degradation, inflammation, and apoptosis in CHON-001 cell model. In addition, our findings suggested the regulatory function of circSOD2 knockdown on miR-224-5p expression, while miR-224-5p was capable of downregulating PRDX3 expression. The co-transfection of miR-224-5p inhibitor or pcDNA-PRDX3 could prevent the effect of circSOD2 knockdown. CONCLUSION: Hence, our results demonstrated that knockdown of circSOD2 may serve as an intervention strategy to alleviate OA progression through modulating miR-224-5p/PRDX3 signaling axis.


Asunto(s)
MicroARNs , Osteoartritis , Humanos , MicroARNs/genética , Osteoartritis/genética , Peroxiredoxina III , ARN Circular/genética , ARN Interferente Pequeño
16.
Life Metab ; 2(6)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38179338

RESUMEN

The lack of a reliable and specific marker for ferroptosis has hindered the advancement of treatments related to this cell death mechanism toward clinical application. A recent study published in Molecular Cell has identified hyperoxidized peroxiredoxin 3 (PRDX3) as a promising marker for ferroptosis, opening up new avenues for monitoring and targeting ferroptosis in disease treatment.

17.
Redox Biol ; 52: 102297, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35334248

RESUMEN

Uveitis causes blindness and critical visual impairment in people of all ages, and retinal microglia participate in uveitis progression. Unfortunately, effective treatment is deficient. Icariin (ICA) is a bioactive monomer derived from Epimedium. However, the role of ICA in uveitis remains elusive. Our study indicated that ICA alleviated intraocular inflammation in vivo. Further results showed the proinflammatory M1 microglia could be transferred to anti-inflammatory M2 microglia by ICA in the retina and HMC3 cells. However, the direct pharmacological target of ICA is unknown, to this end, proteome microarrays and molecular simulations were used to identify the molecular targets of ICA. Data showed that ICA binds to peroxiredoxin-3 (PRDX3), increasing PRDX3 protein expression in both a time- and a concentration-dependent manner and promoting the subsequent elimination of H2O2. In addition, GPX4/SLC7A11/ACSL4 pathways were activated accompanied by PRDX3 activation. Functional tests demonstrated that ICA-derived protection is afforded through targeting PRDX3. First, ICA-shifted microglial M1/M2 phenotypic polarization was no longer detected by blocking PRDX3 both in vivo and in vitro. Next, ICA-activated GPX4/SLC7A11/ACSL4 pathways and downregulated H2O2 production were also reversed via inhibiting PRDX3 both in vivo and in vitro. Finally, ICA-elicited positive effects on intraocular inflammation were eliminated in PRDX3-deficient retina from experimental autoimmune uveitis (EAU) mice. Taking together, ICA-derived PRDX3 activation has therapeutic potential for uveitis, which might be associated with modulating microglial M1/M2 phenotypic polarization.


Asunto(s)
Microglía , Uveítis , Animales , Flavonoides , Humanos , Peróxido de Hidrógeno/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ratones , Microglía/metabolismo , Peroxiredoxina III/metabolismo , Uveítis/tratamiento farmacológico , Uveítis/metabolismo
18.
Exp Ther Med ; 21(5): 439, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33747176

RESUMEN

Peroxiredoxin 3 (PRDX3) is an abundant and effective enzyme, which aids in the removal of H2O2 in the mitochondria, thereby inhibiting cell autophagy. PRDX3 is a target protein of microRNA (miRNA/miR)-383, the overexpression of which has been found to inhibit the growth of glioma cells. We hypothesized that miR-383 serves an antitumor role by inhibiting oxidative stress during tumor growth. In the current study, human glioma U87 cells were transfected with pre-/short hairpin (sh)-PRDX3 vectors and miR-383 mimics/inhibitors. Apoptosis and reactive oxygen species (ROS) production were detected using flow cytometry. Autophagy was examined using acridine orange staining, and the expression of cytoplasmic autophagy-related proteins [autophagy-related protein 9 (ATG9), Ras-related protein Rab-1A (Rab1) and p62] was determined using western blot analysis. The interaction between miR-383 and PRDX3 was assessed using a dual-luciferase assay. The results indicated that both sh-PRDX3 and miR-383 mimics promoted apoptosis and increased the level of mitochondrial ROS, whilst acridine orange staining revealed that sh-PRDX3 promoted autophagy in U87 cells compared with that in the control cells. The detection of autophagic proteins indicated that sh-PRDX3 and miR-383 mimics increased the protein expression level of ATG9 and RAB1, and inhibited that of p62. On the contrary, the effect of miR-383 mimics was opposite to that of pre-PRDX3 in U87 cells. Reverse transcription-quantitative PCR and western blot assays revealed that miR-383 was negatively associated with PRDX3 in U87 cells. miR-383 was indicated to interact with PRDX3, as demonstrated using a dual-luciferase assay. In conclusion, the present study demonstrated that miR-383 induced cell apoptosis and mitochondrial ROS production by downregulating PRDX3 in U87 cells, thereby promoting oxidative stress-induced autophagy.

19.
Redox Biol ; 28: 101343, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31655428

RESUMEN

BACKGROUND: Hydrogen peroxide (H2O2)-induced mitochondrial oxidative damage is critical to intestinal ischemia/reperfusion (I/R) injury, and PRDX3 is an efficient H2O2 scavenger that protects cells from mitochondrial oxidative damage and apoptosis. However, the function of PRDX3 in intestinal I/R injury is unclear. The aim of this study was to investigate the precise mechanism underlying the involvement of PRDX3 in intestinal I/R injury. METHODS: An intestinal I/R model was established in mice with superior mesenteric artery occlusion, and Caco-2 cells were subjected to hypoxia/reoxygenation (H/R) for the in vivo simulation of I/R. RESULTS: PRDX3 expression was decreased during intestinal I/R injury, and PRDX3 overexpression significantly attenuated H/R-induced mitochondrial oxidative damage and apoptosis in Caco-2 cells. The level of acetylated PRDX3 was clearly increased both in vivo and in vitro. The inhibition of SIRTs by nicotinamide (NAM) increased the level of acetylated PRDX3 and impaired the antioxidative activity of PRDX3. Furthermore, NAM did not increase the acetylation of PRDX3 in sirtuin-3 (SIRT3)-knockdown Caco-2 cells. Importantly, PRDX3 acetylation was increased in mice lacking SIRT3, and this effect was accompanied by serious mitochondrial oxidative damage, apoptosis and remote organ damage after intestinal I/R injury. We screened potential sites of PRDX3 acetylation in the previously reported acetylproteome through immunoprecipitation (IP) experiments and found that SIRT3 deacetylates K253 on PRDX3 in Caco-2 cells. Furthermore, PRDX3 with the lysine residue K253 mutated to arginine (K253R) increased its dimerization in Caco-2 cells after subjected to 12 h hypoxia and followed 4 h reoxygenation. Caco-2 cells transfected with the K253R plasmid exhibited notably less mitochondrial damage and apoptosis, and transfection of the K253Q plasmid abolished the protective effect of PRDX3 overexpression. Analysis of ischemic intestines from clinical patients further verified the correlation between SIRT3 and PRDX3. CONCLUSIONS: PRDX3 is a key protective factor for intestinal I/R injury, and SIRT3-mediated PRDX3 deacetylation can alleviate intestinal I/R-induced mitochondrial oxidative damage and apoptosis.


Asunto(s)
Intestinos/irrigación sanguínea , Intestinos/patología , Mitocondrias/metabolismo , Peroxiredoxina III/genética , Daño por Reperfusión/etiología , Daño por Reperfusión/metabolismo , Sirtuina 3/metabolismo , Acetilación , Animales , Apoptosis , Biomarcadores , Biopsia , Línea Celular Tumoral , Citocinas/metabolismo , Susceptibilidad a Enfermedades , Masculino , Ratones , Ratones Noqueados , Estrés Oxidativo , Peroxiredoxina III/metabolismo , Daño por Reperfusión/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA