Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 117(2): 432-448, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37850375

RESUMEN

Coastal forests, such as mangroves, protect much of the tropical and subtropical coasts. Long-distance dispersal via sea-surfing propagules is essential for coastal plants, but the genomic and molecular basis of sea-surfing plant propagule evolution remains unclear. Heritiera fomes and Heritiera littoralis are two coastal plants with typical buoyant fruits. We de novo sequenced and assembled their high-quality genomes. Our phylogenomic analysis indicates H. littoralis and H. fomes originated (at ~6.08 Mya) just before the start of Quaternary sea-level fluctuations. Whole-genome duplication occurred earlier, permitting gene copy gains in the two species. Many of the expanded gene families are involved in lignin and flavonoid biosynthesis, likely contributing to buoyant fruit emergence. It is repeatedly revealed that one duplicated copy to be under positive selection while the other is not. By examining H. littoralis fruits at three different developmental stages, we found that gene expression levels remain stable from young to intermediate. However, ~1000 genes are up-regulated and ~ 3000 genes are down-regulated as moving to mature. Particularly in fruit epicarps, the upregulation of WRKY12 and E2Fc likely constrains the production of p-Coumaroyl-CoA, the key internal substrate for lignin biosynthesis. Hence, to increase fruit impermeability, methylated lignin biosynthesis is shut down by down-regulating the genes CCoAOMT, F5H, COMT, and CSE, while unmethylated lignins are preferentially produced by upregulating CAD and CCR. Similarly, cutin polymers and cuticular waxes accumulate with high levels before maturation in epicarps. Overall, our genome assemblies and analyses uncovered the genomic evolution and temporal transcriptional regulation of sea-surfing propagule.


Asunto(s)
Lignina , Plantas , Lignina/metabolismo , Plantas/metabolismo , Frutas/genética , Frutas/metabolismo , Filogenia , Regulación de la Expresión Génica de las Plantas/genética
2.
Ecol Lett ; 27(8): e14494, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39136244

RESUMEN

Introduction history, including propagule pressure and residence time, has been proposed as a primary driver of biological invasions. However, it is unclear whether introduction history increases the likelihood that a species will be invasive or only the likelihood that it will be established. Using a dataset of non-native species historically available as ornamental plants in the conterminous United States, we investigated how introduction history relates to these stages of invasion. Introduction history was highly significant and a strong predictor of establishment, but only marginally significant and a poor predictor of invasive success. Propagule pressure predicted establishment better than residence time, with species likely to be established if they were introduced to only eight locations. These findings suggest that ongoing plant introductions will lead to widespread establishment but may not directly increase invasive success. Instead, other characteristics, like plant traits and local scale processes, may better predict whether a species becomes invasive.


Asunto(s)
Especies Introducidas , Estados Unidos , Plantas
3.
Ecol Lett ; 27(8): e14493, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39140430

RESUMEN

Invasions are commonly found to benefit from disturbance events. However, the importance of the relative timing of the invasion and disturbance for invader success and impact on community composition remains uncertain. Here, we experimentally test this by invading a five-species bacterial community on eight separate occasions-four before a disturbance and four after. Invader success and impact on community composition was greatest when the invasion immediately followed the disturbance. However, the subsequent invasions had negligible success or impact. Pre-disturbance, invader success and impact was greatest when the invader was added just before the disturbance. Importantly, however, the first three pre-disturbance invasion events had significantly greater success than the last three post-disturbance invasions. Moreover, these findings were consistent across a range of propagule pressures. Overall, we demonstrate that timing is highly important for both the success and impact on community composition of an invader, with both being lower as time since disturbance progresses.


Asunto(s)
Bacterias , Especies Introducidas , Microbiota , Bacterias/clasificación , Ecosistema
4.
Ann Bot ; 133(2): 365-378, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38099505

RESUMEN

BACKGROUND AND AIMS: Plants can propagate generatively and vegetatively. The type of propagation and the resulting propagule can influence the growth of the plants, such as plant architectural development and pattern of biomass allocation. Potato is a species that can reproduce through both types of propagation: through true botanical seeds and seed tubers. The consequences of propagule type on the plant architectural development and biomass partitioning in potatoes are not well known. We quantified architectural differences between plants grown from these two types of propagules from the same genotype, explicitly analysing branching dynamics above and below ground, and related these differences to biomass allocation patterns. METHODS: A greenhouse experiment was conducted, using potato plants of the same genotype but grown from two types of propagules: true seeds and seed tubers from a plant grown from true seed (seedling tuber). Architectural traits and biomass allocation to different organs were quantified at four developmental stages. Differences between true-seed-grown and seedling-tuber-grown plants were compared at the whole-plant level and at the level of individual stems and branches, including their number, size and location on the plant. KEY RESULTS: A more branched and compact architecture was produced in true-seed-grown plants compared with seedling-tuber-grown plants. The architectural differences between plants grown from true seeds and seedling tubers appeared gradually and were attributed mainly to the divergent temporal-spatial distribution of lateral branches above and below ground on the main axis. The continual production of branches in true-seed-grown plants indicated their indeterminate growth habit, which was also reflected in a slower shift of biomass allocation from above- to below-ground branches, whereas the opposite trend was found in seedling-tuber-grown plants. CONCLUSIONS: In true-seed-grown plants, lateral branching was stronger and determined whole-plant architecture and plant function with regard to light interception and biomass production, compared with seedling-tuber-grown plants. This different role of branching indicates that a difference in preference between clonal and sexual reproduction might exist. The divergent branching behaviours in true-seed-grown and seedling-tuber-grown plants might be regulated by the different intensity of apical dominance, which suggests that the control of branching can depend on the propagule type.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Tubérculos de la Planta , Fenotipo , Genotipo , Desarrollo de la Planta , Plantones
5.
Ecol Appl ; 34(1): e2813, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36708094

RESUMEN

Understanding the mechanisms by which the geomorphic structures affect habitat invasibility by mediating various abiotic and biotic factors is essential for predicting whether these geomorphic structures may provide spatial windows of opportunity to facilitate range-expansion of invasive species in salt marshes. Many studies have linked geomorphic landscape features such as tidal channels to invasion by exotic plants, but the role of tidal channel meanders (i.e., convex and concave sides) in regulating the Spartina alterniflora invasion remains unclear. Here, we examined the combined effects of tidal channel meander-mediated hydrodynamic variables, soil abiotic stresses, and propagule pressure on the colonization of Spartina in the Yellow River Delta, China, by conducting field observations and experiments. The results showed that lower hydrodynamic disturbance, bed shear stress, and higher propagule pressure triggered by eddies due to the convex structure of channel meanders facilitated Spartina seedling establishment and growth, whereas the concave side considerably inhibited the Spartina invasion. Lower soil abiotic stresses also significantly promoted the invasibility of the channel meanders by Spartina. Based on these findings, we propose a conceptual framework to illustrate the effects of the meandering geomorphology of tidal channels on the mechanisms that might allow the landward spread of Spartina and related processes. Our results demonstrate that the meandering geomorphic structures of tidal channels could act as stepping-stones to significantly facilitate the landward invasion of Spartina along tidal channels. This implies that geomorphic characteristics of tidal channels should be integrated into invasive species control and salt marsh management strategies.


Asunto(s)
Ecosistema , Humedales , Especies Introducidas , Poaceae , China , Suelo/química
6.
Conserv Biol ; : e14290, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708868

RESUMEN

The conservation-invasion paradox (CIP) refers to a long-term phenomenon wherein species threatened in their native range can sustain viable populations when introduced to other regions. Understanding the drivers of CIP is helpful for conserving threatened species and managing invasive species, which is unfortunately still lacking. We compiled a global data set of 1071 introduction events, including 960 CIP events (successful establishment of threatened species outside its native range) and 111 non-CIP events (unsuccessful establishment of threatened species outside its native range after introduction), involving 174 terrestrial vertebrates. We then tested the relative importance of various predictors at the location, event, and species levels with generalized linear mixed models and model averaging. Successful CIP events occurred across taxonomic groups and biogeographic realms, especially for the mammal group in the Palearctic and Australia. Locations of successful CIP events had fewer native threat factors, especially less climate warming in invaded regions. The probability of a successful CIP event was highest when species introduction efforts were great and there were more local congeners and fewer natural enemies. These results can inform threatened species ex situ conservation and non-native invasive species mitigation.


Causantes mundiales de la paradoja conservación­invasión Resumen La paradoja de conservación­invasión (PCI) se refiere al evento a largo plazo en el que las especies amenazadas en su distribución nativa puedan mantener poblaciones viables cuando se les introduce a otras regiones. Es de mucha ayuda para la conservación de especies amenazadas y el manejo de especies invasoras entender las causantes de la PCI, entendimiento que todavía es escaso. Compilamos un conjunto mundial de datos de 174 vertebrados terrestres en 1071 eventos de introducción, incluyendo 960 eventos de PCI (el establecimiento exitoso de especies amenazadas fuera de su distribución nativa) y 111 eventos no PCI (el fracaso en el establecimiento de especies amenazadas fuera de su distribución nativa después de la introducción). Después analizamos con modelos lineales mixtos generalizados y promedio de modelos la importancia relativa de varios pronosticadores en la localidad, en el evento y a nivel de especie. Los eventos exitosos de PCI ocurrieron en todos los grupos taxonómicos y en todos los reinos biogeográficos, especialmente para los mamíferos del Paleártico y Australia. Las localidades de los eventos exitosos de PCI tuvieron menos factores nativos de amenaza, especialmente un menor calentamiento climático en las regiones invadidas. La probabilidad de que un evento de PCI sea exitoso fue mayor cuando los esfuerzos de introducción fueron mayores y hubo más congéneres locales y menos enemigos naturales. Estos resultados pueden orientar la conservación ex situ de especies y la mitigación de especies invasoras no nativas.

7.
Oecologia ; 204(3): 517-527, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38308676

RESUMEN

Dispersal and establishment strategies are highly variable. Each strategy is associated with specific costs and benefits, and understanding which factors favour or disfavour a strategy is a key issue in ecology and evolution. Ants exhibit several strategies of establishment, i.e. of colony foundation. Some species rely on winged queens that found new colonies alone when others found with accompanying workers (colony fission). The benefits conferred by these workers have been little studied and quantified, because comparing the costs and benefits of solitary foundation vs. colony fission is difficult when comparing different species. We investigated this using the ant Myrmecina graminicola, one of the few species that use both strategies. Young mated queens were allowed to found new colonies in the laboratory, with either zero (solitarily), two or four workers (colony fission). The presence of workers increased both survival and growth of the foundations over the first year, with more workers yielding higher growth. Few workers (as little as two workers) were sufficient to provide benefits, suggesting that in M. graminicola the strategy of colony fission may not dramatically decrease the number of new colonies produced compared to solitary foundation. Because queens performing solitary foundation or colony fission differ in dispersal (by flight vs. on foot), our results support the hypothesis that these two strategies of foundation coexist along a competition-colonization trade-off, where solitary foundation offers a colonization advantage, while colony fission has a competitive advantage.


Asunto(s)
Hormigas , Animales , Conducta Social , Ecología , Reproducción , Alas de Animales
8.
Risk Anal ; 44(8): 1839-1849, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38331570

RESUMEN

Biological invasions are a growing threat to biodiversity, food security, and economies. Rising pressure from increased global trade requires improving border inspection efficiency. Here, we depart from the conventional consignment-by-consignment approach advocated in current inspection standards. Instead, we suggest a broader perspective: evaluating border inspection regimes based on their ability to reduce propagule pressure across entire pathways. Additionally, we demonstrate that most biosecurity pathways exhibit superspreading behavior, that is, consignments from the same pathway have varying infestation rates and contain rare right-tail events (also called overdispersion). We show that greater overdispersion leads to more pronounced diminishing returns, with consequences on the optimal allocation of sampling effort. We leverage these two insights to develop a simple and efficient border inspection regime that can significantly reduce propagule pressure compared to current standards. Our analysis revealed that consignment size is a key driver of biosecurity risk and that sampling proportional to the square root of consignment size is near optimal. In testing, our framework reduced propagule pressure by 31 to 38% compared to current standards. We also identified opportunities to further improve inspection efficiency by considering additional pathway characteristics (i.e., overdispersion parameters, zero inflation, relative risk, sampling cost, detectability) and developed solutions for these more complex scenarios. We anticipate our result will mitigate biological invasion risk with significant implications for biodiversity conservation, food security, and economies worldwide.


Asunto(s)
Bioaseguramiento , Especies Introducidas , Medición de Riesgo/métodos , Humanos , Biodiversidad , Comercio , Seguridad Alimentaria , Animales
9.
J Environ Manage ; 365: 121555, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38924891

RESUMEN

Secondary shrublands and transitional woodland/shrub formations are recognised to be particularly susceptible to plant invasions, one of the main global threats to biodiversity, especially in dynamic peri-urban landscapes. Urban fringes are in fact often the place for the sprawl of artificial surfaces, fragmentation of habitats, and complex land transitions (including both agriculture intensification and abandonment), which in turn increase propagule pressure of exotic species over residual semi-natural ecosystems. Within this framework, the present study was aimed at analysing i) how landscape composition and configuration affect the richness of woody exotic species in shrubland and transitional woodland/shrub patches, and ii) how this threat can be addressed by means of green infrastructure design in a peri-urban case study (Metropolitan City of Rome, Italy). Accordingly, the occurrence of exotic plants was recorded with field surveys and then integrated with landscape analyses, both at patch level and over a 250 m buffer area around each patch. Thus, the effect of landscape features on exotic plant richness was investigated with Generalised Linear Models, and the best model identified (pseudo R-square = 0.62) for inferring invasibility of shrublands throughout the study area. Finally, a Green Infrastructure (GI) to contain biological invasion was planned, based on inferred priority sites for intervention and respective, site-tailored, actions. The latter included not only the removal of invasive woody alien plants, but also reforestation and planting of native trees for containment of dispersal and subsequent establishment. Even though specifically developed for the study site, and consistent with local government needs, the proposed approach represents a pilot planning process that might be applied to other peri-urban regions for the combined containment of biological invasions and sustainable development of peripheral complex landscapes.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Especies Introducidas , Conservación de los Recursos Naturales/métodos , Ciudad de Roma , Italia , Bosques
10.
Microb Ecol ; 86(2): 1010-1022, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36441249

RESUMEN

Bacterial communities associated with plant propagules remain understudied, despite the opportunities that propagules represent as dispersal vectors for bacteria to new sites. These communities may be the product of a combination of environmental influence and inheritance from parent to offspring. The relative role of these mechanisms could have significant implications for our understanding of plant-microbe interactions. We studied the correlates of microbiome community similarities across an invasion front of red mangroves (Rhizophora mangle L.) in Florida, where the species is expanding northward. We collected georeferenced propagule samples from 110 individuals of red mangroves across 11 populations in Florida and used 16S rRNA gene (iTag) sequencing to describe their bacterial communities. We found no core community of bacterial amplicon sequence variants (ASVs) across the Florida range of red mangroves, though there were some ASVs shared among individuals within most populations. Populations differed significantly as measured by Bray-Curtis dissimilarity, but not Unifrac distance. We generated data from 6 microsatellite loci from 60 individuals across 9 of the 11 populations. Geographic distance was correlated with beta diversity, but genetic distance was not. We conclude that red mangrove propagule bacterial communities are likely influenced more by local environmental acquisition than by inheritance.


Asunto(s)
Rhizophoraceae , Humanos , Rhizophoraceae/microbiología , ARN Ribosómico 16S/genética , Bacterias/genética , Florida
11.
Appl Microbiol Biotechnol ; 107(7-8): 2263-2275, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36929189

RESUMEN

The cattle tick, Rhipicephalus microplus (Acari: Ixodidae), is a multi-billion dollar ectoparasite of global importance affecting beef and milk production. Submerged cultures of cosmopolitan entomopathogenic fungal species of the genus Metarhizium typically produce microsclerotia that provide both long-term survival and environmental resistance. Microsclerotia hold great potential as an unconventional active propagule to control this tick under laboratory and semi-field conditions. However, heat stress caused especially by elevated temperatures poses a critical environmental constraint for the successful development and efficacy of microsclerotia under tropical conditions. First, we screened six strains of Metarhizium anisopliae, Metarhizium robertsii and Metarhizium humberi for their ability to produce microsclerotia by submerged liquid cultivation. In addition, we assessed the biological fitness and bioefficacy of dried microsclerotial pellets under amenable (27 °C) and heat-stressed (32 °C) incubation against engorged adult females of R. microplus. Microsclerotia in pelletized formulation prepared with carriers based on diatomaceous earth and microcrystalline cellulose exhibited conidial production at different extents according to the fungal strain and the incubation temperature, but most strains displayed reduced sporogenesis when exposed to 32 °C. Engorged tick females exposed to sporulated microsclerotia from pelletized M. anisopliae CG47 or IP 119 had fewer number of hatching larvae in comparison to the control group, irrespective of the incubation temperature tested. The minimum dosage of microsclerotial pellets that effectively reduced hatchability of tick larvae was estimated to be 2 mg per plate (equivalent to 6.0 kg per hectare). Metarhizium microsclerotial pellets exhibited significant tolerance to 32 °C and pronounced acaricidal activity against this economically important ectoparasite of cattle, even under simulated environmental heat stress. KEY POINTS: • Heat stress affects conidial production by microsclerotia of most pelletized Metarhizium strains • Heat stress does not impair the acaricidal performance of pelletized microsclerotia • Pellet formulation of Metarhizium microsclerotia is a promising mycoacaricide.


Asunto(s)
Metarhizium , Rhipicephalus , Termotolerancia , Animales , Femenino , Control Biológico de Vectores , Rhipicephalus/microbiología , Larva/microbiología , Esporas Fúngicas
12.
Plant Mol Biol ; 109(4-5): 385-399, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34783977

RESUMEN

KEY MESSAGE: Melatonin plays a crucial role in the mitigation of plant biotic stress through induced defense responses and pathogen attenuation. Utilizing the current knowledge of signaling and associated mechanism of this phytoprotectant will be invaluable in sustainable plant disease management. Biotic stress in plants involves complex regulatory networks of various sensory and signaling molecules. In this context, the polyfunctional, ubiquitous-signaling molecule melatonin has shown a regulatory role in biotic stress mitigation in plants. The present review conceptualized the current knowledge concerning the melatonin-mediated activation of the defense signaling network that leads to the resistant or tolerant phenotype of the infected plants. Fundamentals of signaling networks involved in melatonin-induced reactive oxygen species (ROS) or reactive nitrogen species (RNS) scavenging through enzymatic and non-enzymatic antioxidants have also been discussed. Increasing evidence has suggested that melatonin acts upstream of mitogen-activated proteinase kinases in activation of defense-related genes and heat shock proteins that provide immunity against pathogen attack. Besides, the direct application of melatonin on virulent fungi and bacteria showed disrupted spore morphology, destabilization of cell ultrastructure, reduced biofilm formation, and enhanced mortality that led to attenuate disease symptoms on melatonin-treated plants. The transcriptome analysis has revealed the down-regulation of pathogenicity genes, metabolism-related genes, and up-regulation of fungicide susceptibility genes in melatonin-treated pathogens. The activation of melatonin-mediated systemic acquired resistance (SAR) through cross-talk with salicylic acid (SA), jasmonic acid (JA) has been essential for viral disease management. The high endogenous melatonin concentration has also been correlated with the up-regulation of genes involved in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI). The present review highlights the versatile functions of melatonin towards direct inhibition of pathogen propagule along with active participation in mediating oxidative burst and simulating PTI, ETI and SAR responses. The hormonal cross-talk involving melatonin mediated biotic stress tolerance through defense signaling network suggests its suitability in a sustainable plant protection system.


Asunto(s)
Melatonina , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Plantas/genética , Estrés Fisiológico
13.
Mol Ecol ; 31(6): 1649-1665, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34181792

RESUMEN

The link between the successful establishment of alien species and propagule pressure is well-documented. Less known is how humans influence the post-introduction dynamics of invasive alien populations. The latter requires studying parallel invasions by the same species in habitats that are differently impacted by humans. We analysed microsatellite and genome size variation, and then compared the genetic diversity and structure of invasive Poa annua L. on two sub-Antarctic islands: human-occupied Marion Island and unoccupied Prince Edward Island. We also carried out niche modelling to map the potential distribution of the species on both islands. We found high levels of genetic diversity and evidence for extensive admixture between genetically distinct lineages of P. annua on Marion Island. By contrast, the Prince Edward Island populations showed low genetic diversity, no apparent admixture, and had smaller genomes. On both islands, high genetic diversity was apparent at human landing sites, and on Marion Island, also around human settlements, suggesting that these areas received multiple introductions and/or acted as initial introduction sites and secondary sources (bridgeheads) for invasive populations. More than 70 years of continuous human activity associated with a meteorological station on Marion Island led to a distribution of this species around human settlements and along footpaths, which facilitates ongoing gene flow among geographically separated populations. By contrast, this was not the case for Prince Edward Island, where P. annua populations showed high genetic structure. The high levels of genetic variation and admixture in P. annua facilitated by human activity, coupled with high habitat suitability on both islands, suggest that P. annua is likely to increase its distribution and abundance in the future.


Asunto(s)
Flujo Génico , Repeticiones de Microsatélite , Regiones Antárticas , Ecosistema , Variación Genética/genética , Actividades Humanas , Humanos , Islas , Repeticiones de Microsatélite/genética
14.
Ecol Appl ; 32(8): e2706, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35808932

RESUMEN

Sowing native seeds is a common approach to reintroduce native plants to degraded systems. However, this method is often overlooked in wetland restoration despite the immense global loss of diverse native wetland vegetation. Developing guiding principles for seed-based wetland restoration is critical to maximize native plant recovery, particularly in previously invaded wetlands. Doing so requires a comprehensive understanding of how restoration manipulations, and their interactions, influence wetland plant community assembly. With a focus on the invader Phragmites australis, we established a series of mesocosm experiments to assess how native sowing density, invader propagule pressure, abiotic filters (water and nutrients), and native sowing timing (i.e., priority effects) interact to influence plant community cover and biomass in wetland habitats. Increasing the density of native seeds yielded higher native cover and biomass, but P. australis suppression with increasing sowing densities was minimal. Rather, community outcomes were largely driven by invader propagule pressure: P. australis densities of ≤500 seeds/m2 maintained high native cover and biomass. Low-water conditions increased the susceptibility of P. australis to dominance by native competitors. Early sowing of native seeds showed a large and significant benefit to native cover and biomass, regardless of native sowing density, suggesting that priority effects can be an effective restoration manipulation to enhance native plant establishment. Given the urgent wetland restoration need combined with the limited studies on seed-based wetland restoration, these findings provide guidance on restoration manipulations that are grounded in ecological theory to improve seed-based wetland restoration outcomes.


Asunto(s)
Poaceae , Humedales , Biomasa , Semillas , Plantas , Agua
15.
Plant Dis ; 106(3): 966-974, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34546777

RESUMEN

Fusarium wilt of banana (FWB), caused by a suite of Fusarium fungi, is among the most devastating plant diseases. The iconic FWB epidemic in the previous century lasted decades and was caused by so-called Race 1 strains that wiped out the dominant 'Gros Michel' banana plantations across Central America. Eventually, it was stopped because the Race 1-resistant 'Cavendish' banana variety replaced 'Gros Michel', which dominates global production (>50%) and trade (>95%). However, presently, the so-called Tropical Race 4 (TR4) threatens plantations of 'Cavendish' and many other banana varieties around the globe. Prevention is the first line of defense against the spread of TR4. Therefore, many disinfection units are installed to prevent the entry of TR4 in banana plantations. These foot and tire baths are filled with disinfectants, but limited knowledge is available on their efficacy. In this project, we evaluated 13 disinfectants commonly used in the Philippines. Our results show that the efficacy of these products depends on the type of fungal spores, the exposure time, and the replenishment frequency of the disinfection units. The resting spores of TR4 were resistant to all but one - unfortunately corrosive - disinfectant. Furthermore, we show that the actual contact time with disinfectants was far below the thresholds determined in laboratory experiments. Finally, muddy disinfection units reduced the efficacy of disinfectants. Taken together, we conclude that practices are inadequate to prevent the dissemination of TR4.


Asunto(s)
Desinfectantes , Fusarium , Musa , Desinfectantes/farmacología , Musa/microbiología , Filipinas , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control
16.
Ecol Lett ; 24(7): 1363-1374, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33896095

RESUMEN

Ecological processes often exhibit time lags. For plant invasions, lags of decades to centuries between species' introduction and establishment in the wild (naturalisation) are common, leading to the idea of an invasion debt: accelerating rates of introduction result in an expanding pool of introduced species that will naturalise in the future. Here, I show how a concept from survival analysis, the hazard function, provides an intuitive way to understand and forecast time lags. For plant naturalisation, theoretical arguments predict that lags between introduction and naturalisation will have a unimodal distribution, and that increasing horticultural activity will cause the mean and variance of lag times to decline over time. These predictions were supported by data on introduction and naturalisation dates for plant species introduced to Britain. While increasing trade and horticultural activity can generate an invasion debt by accelerating introductions, the same processes could lower that debt by reducing lag times.


Asunto(s)
Especies Introducidas , Plantas
17.
Ann Bot ; 127(1): 1-5, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33106838

RESUMEN

BACKGROUND: Whereas the incidence or rate of polyploid speciation in flowering plants is modest, the production of polyploid individuals within local populations is widespread. Explanations for this disparity primarily have focused on properties or interactions of polyploids that limit their persistence. HYPOTHESIS: The emergence of local polyploid populations within diploid populations is similar to the arrival of invasive species at new, suitable sites, with the exception that polyploids suffer interference from their progenitor(s). The most consistent predictor of successful colonization by invasive plants is propagule pressure, i.e. the number of seeds introduced. Therefore, insufficient propagule pressure, i.e. the formation of polyploid seeds within diploid populations, ostensibly is a prime factor limiting the establishment of newly emergent polyploids within local populations. Increasing propagule number reduces the effects of genetic, environmental and demographic stochasticity, which thwart population survival. As with invasive species, insufficient seed production within polyploid populations limits seed export, and thus reduces the chance of polyploid expansion. CONCLUSION: The extent to which propagule pressure limits the establishment of local polyploid populations remains to be determined, because we know so little. The numbers of auto- or allopolyploid seed in diploid populations rarely have been ascertained, as have the numbers of newly emergent polyploid plants within diploid populations. Moreover, seed production by these polyploids has yet to be assessed.


Asunto(s)
Magnoliopsida , Poliploidía , Diploidia , Humanos , Especies Introducidas , Plantas
18.
Ann Bot ; 128(2): 149-157, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-33876193

RESUMEN

BACKGROUND AND AIMS: Invasive species may undergo rapid evolution despite very limited standing genetic diversity. This so-called genetic paradox of biological invasions assumes that an invasive species has experienced (and survived) a genetic bottleneck and then underwent local adaptation in the new range. In this study, we test how often Australian acacias (genus Acacia), one of the world's most problematic invasive tree groups, have experienced genetic bottlenecks and inbreeding. METHODS: We collated genetic data from 51 different genetic studies on Acacia species to compare genetic diversity between native and invasive populations. These studies analysed 37 different Acacia species, with genetic data from the invasive ranges of 11 species, and data from the native range for 36 species (14 of these 36 species are known to be invasive somewhere in the world, and the other 22 are not known to be invasive). KEY RESULTS: Levels of genetic diversity are similar in native and invasive populations, and there is little evidence of invasive populations being extensively inbred. Levels of genetic diversity in native range populations also did not differ significantly between species that have and that do not have invasive populations. CONCLUSION: We attribute our findings to the impressive movement, introduction effort and human usage of Australian acacias around the world.


Asunto(s)
Acacia , Acacia/genética , Australia , Variación Genética , Humanos , Endogamia , Especies Introducidas
19.
Ecol Appl ; 31(4): e02314, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33636036

RESUMEN

There is considerable evidence that keeping propagule pressure low can drastically reduce establishment probability of potential invasive species. Yet, most management plans and research efforts fail to explicitly acknowledge all three of the components of propagule pressure: size, number, and the risk-release relationship. It is unclear how failing to specify one or more of these components can influence the efficacy of management plans in preventing invasive species establishment. Furthermore, even if all components are acknowledged and quantified, there currently is no mathematical tool available to calculate the levels of propagule pressure that ensure attainment of a predetermined, and system-specific, target establishment probability. Here, we quantify the resulting uncertainty in establishment probability when one or more components of propagule pressure is unknown by using parameter uncertainty analysis on realistic values of propagule pressure. In addition, to aid in the development of management plans that explicitly set propagule pressure limits, we develop a propagule-pressure sensitivity analysis that we use to determine the required reduction in levels for propagule size and number (representative of management actions) to maintain a target establishment probability. We show that the precision of establishment estimates is highly dependent on knowledge of all three propagule pressure components, where the possible range of values for establishment probability can vary by over 50% without full specification. In addition, our sensitivity analysis showed that propagule size and number can be altered independently or in conjunction to lower establishment probability below a target level. Importantly, our sensitivity analysis was able to specifically quantify how much reduction in a propagule pressure component(s) is needed to reach a given target establishment probability. Our findings suggest that quantifying the three components of propagule pressure should be a priority for invasive species prevention moving forward. Furthermore, our sensitivity analysis tool can serve to guide the development of new invasive species management plans in a transparent and quantitative manner. Together with information on the costs associated with approaches to reducing propagule pressure, our tool can be used to identify the most cost-effective approach to prevent invasive species establishments.


Asunto(s)
Especies Introducidas
20.
Microb Ecol ; 81(2): 283-292, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32920663

RESUMEN

Dispersal is a critical ecological process that modulates gene flow and contributes to the maintenance of genetic and taxonomic diversity within ecosystems. Despite an increasing global understanding of the arbuscular mycorrhizal (AM) fungal diversity, distribution and prevalence in different biomes, we have largely ignored the main dispersal mechanisms of these organisms. To provide a geographical and scientific overview of the available data, we systematically searched for the direct evidence on the AM fungal dispersal agents (abiotic and biotic) and different propagule types (i.e. spores, extraradical hyphae or colonized root fragments). We show that the available data (37 articles) on AM fungal dispersal originates mostly from North America, from temperate ecosystems, from biotic dispersal agents (small mammals) and AM fungal spores as propagule type. Much lesser evidence exists from South American, Asian and African tropical systems and other dispersers such as large-bodied birds and mammals and non-spore propagule types. We did not find strong evidence that spore size varies across dispersal agents, but wind and large animals seem to be more efficient dispersers. However, the data is still too scarce to draw firm conclusions from this finding. We further discuss and propose critical research questions and potential approaches to advance the understanding of the ecology of AM fungi dispersal.


Asunto(s)
Micorrizas/fisiología , Animales , Biota , Ambiente , Geografía , Hifa/citología , Hifa/fisiología , Micorrizas/citología , Micorrizas/aislamiento & purificación , Raíces de Plantas/microbiología , Esporas Fúngicas/citología , Esporas Fúngicas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA