Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 468
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Microb Pathog ; 189: 106598, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423403

RESUMEN

Propionibacterium acnes (P. acnes) is an anaerobic and gram-positive bacterium involved in the pathogenesis and inflammation of acne vulgaris. This study particularly focuses on the antimicrobial effect of Lacticaseibacillus paracasei LPH01 against P. acnes, a bacterium that causes acne vulgaris. Fifty-seven Lactobacillus strains were tested for their ability to inhibit P. acnes growth employing the Oxford Cup and double dilution methods. The cell-free supernatant (CFS) of L. paracasei LPH01 demonstrated a strong inhibitory effect, with an inhibition zone diameter of 24.65 ± 0.27 mm and a minimum inhibitory concentration of 12.5 mg/mL. Among the CFS, the fraction over 10 kDa (CFS-10) revealed the best antibacterial effect. Confocal laser scanning microscopes and flow cytometry showed that CFS-10 could reduce cell metabolic activity and cell viability and destroy the integrity and permeability of the cell membrane. A scanning electron microscope revealed that bacterial cells exhibited obvious morphological and ultrastructural changes, which further confirmed the damage of CFS-10 to the cell membrane and cell wall. Findings demonstrated that CFS-10 inhibited the conversion of triglycerides, decreased the production of free fatty acids, and down-regulated the extracellular expression of the lipase gene. This study provides a theoretical basis for the metabolite of L. paracasei LPH01 as a potential antibiotic alternative in cosmeceutical skincare products.


Asunto(s)
Acné Vulgar , Lacticaseibacillus paracasei , Humanos , Propionibacterium acnes , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Acné Vulgar/tratamiento farmacológico , Acné Vulgar/microbiología , Inflamación/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
2.
Microb Pathog ; : 106834, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094711

RESUMEN

Acne is one of the most common skin conditions worldwide, with multifactorial origins it affects areas of the skin with hair follicles and sebaceous glands that become clogged. Bacterial incidence aggravates treatment due to resistance to antimicrobial agents and production of virulence factors such as biofilm formation. Considering the above, this study aims to conduct in vitro evaluations of the antibacterial activity of essential oils (EOs), alone and in combination, against Propionibacterium acnes, Staphylococcus aureus, and Staphylococcus epidermidis in planktonic and biofilm forms. This study also assessed the anti-inflammatory potential (TNF-α) and the effects of EOs on the viability of human keratinocytes (HaCaT), murine fibroblasts (3T3-L1), and bone marrow-derived macrophages (BMDMs). Of all EOs tested, 13 had active action against P. acnes, 9 against S. aureus, and 9 against S. epidermidis at concentrations of 0.125 to 2.0 mg/mL. Among the most active plant species, a blend of essential oil (BEOs) was selected, with Cymbopogon martini (Roxb.) Will. Watson, Eugenia uniflora L., and Varronia curassavica Jacq., the latter due to its anti-inflammatory action. This BEOs showed higher inhibition rates when compared to chloramphenicol against S. aureus and S. epidermidis, and higher eradication rates when compared to chloramphenicol for the three target species. The BEOs did not affect the cell viability of cell lines evaluated, and the levels of TNF-α decreased. According to these results, the BEOs evaluated showed potential for the development of an alternative natural formulation for the treatment of acne.

3.
Arch Microbiol ; 206(8): 347, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985339

RESUMEN

Essential oils are among the most well-known phyto-compounds, and since ancient times, they have been utilized in medicine. Over 100 essential oils have been identified and utilized as therapies for various skin infections and related ailments. While numerous commercial medicines are available in different dosage forms to treat skin diseases, the persisting issues include their side effects, toxicity, and low efficacy. As a result, researchers are seeking novel classes of compounds as substitutes for synthetic drugs, aiming for minimal side effects, no toxicity, and high efficacy. Essential oils have shown promising antimicrobial activity against skin-associated pathogens. This review presents essential knowledge and scientific information regarding essential oil's antimicrobial capabilities against microorganisms that cause skin infections. Essential oils mechanisms against different pathogens have also been explored. Many essential oils exhibit promising activity against various microbes, which has been qualitatively assessed using the agar disc diffusion experiment, followed by determining the minimum inhibitory concentration for quantitative evaluation. It has been observed that Staphylococcus aureus and Candida albicans have been extensively researched in the context of skin-related infections and their antimicrobial activity, including established modes of action. In contrast, other skin pathogens such as Staphylococcus epidermidis, Streptococcus pyogens, Propionibacterium acnes, and Malassezia furfur have received less attention or neglected. This review report provides an updated understanding of the mechanisms of action of various essential oils with antimicrobial properties. This review explores the anti-infectious activity and mode of action of essential against distinct skin pathogens. Such knowledge can be valuable in treating skin infections and related ailments.


Asunto(s)
Aceites Volátiles , Aceites Volátiles/farmacología , Humanos , Piel/microbiología , Piel/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Candida albicans/efectos de los fármacos , Antibacterianos/farmacología
4.
J Shoulder Elbow Surg ; 33(7): 1457-1464, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38417732

RESUMEN

BACKGROUND: Periprosthetic joint infections (PJI) of the shoulder are a devastating complication of shoulder arthroplasty and are commonly caused by Staphylococcus and Cutibacterium acnes. Absorbable calcium sulfate (CS) beads are sometimes used for delivering antibiotics in PJI. This study evaluates the in vitro effect of different combinations of gentamicin, vancomycin, and ertapenem in beads made from CS cement on the growth of C acnes and coagulase-negative Staphylococcus (CNS) strains. METHODS: Three strains of C acnes and 5 strains of CNS from clinically proven shoulder PJI were cultured and plated with CS beads containing combinations of vancomycin, gentamicin, and ertapenem. Plates with C acnes were incubated anaerobically while plates with Staphylococcus were incubated aerobically at 37 °C. Zones of inhibition were measured at intervals of 3 and 7 days using a modified Kirby Bauer technique, and beads were moved to plates containing freshly streaked bacteria every seventh day. This process was run in triplicate over the course of 56 days. Statistical analysis was conducted using SPSS v. 28 with repeated measures analysis of variance (ANOVA) and pairwise comparisons with Tukey correction. RESULTS: In experiments with C acnes, beads containing ertapenem + vancomycin and vancomycin alone formed the largest zones of inhibition over time (P < .001). In experiments with Staphylococcus, beads containing vancomycin alone formed the largest zones of inhibition over time for all 5 strains (P < .001). Zones of inhibition were 1.4x larger for C acnes than for Staphylococcus with beads containing vancomycin alone. For both C acnes and Staphylococcus, beads containing ertapenem had the strongest initial effect, preventing all bacterial growth in C acnes and almost all growth for Staphylococcus during the first week but dropping substantially by the second week. Beads containing gentamicin alone consistently created smaller zones of inhibition than beads containing vancomycin alone, with vancomycin producing zones 5.3x larger than gentamicin in C acnes and 1.3x larger in Staphylococcus (P < .001). DISCUSSION: These data suggest that for both C acnes and Staphylococcal species, CS beads impregnated with vancomycin were most effective at producing a robust antibiotic effect. Additionally, ertapenem may be a viable supplement in order to create a more potent initial antibiotic effect but is not as effective as vancomycin when used alone. Gentamicin alone was not effective in maintaining consistent and long-term antibiotic effects. These results indicate that amongst the antibiotics currently commercially available to be used with CS, vancomycin is consistently superior to gentamicin in the setting of C. acnes and CNS.


Asunto(s)
Antibacterianos , Cementos para Huesos , Sulfato de Calcio , Propionibacterium acnes , Infecciones Relacionadas con Prótesis , Staphylococcus , Vancomicina , Humanos , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Infecciones Relacionadas con Prótesis/microbiología , Infecciones Relacionadas con Prótesis/tratamiento farmacológico , Staphylococcus/efectos de los fármacos , Vancomicina/farmacología , Vancomicina/administración & dosificación , Propionibacterium acnes/efectos de los fármacos , Gentamicinas/farmacología , Gentamicinas/administración & dosificación , Artroplastía de Reemplazo de Hombro , Ertapenem/farmacología , Articulación del Hombro/microbiología , Articulación del Hombro/cirugía , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Prótesis de Hombro/microbiología , Infecciones por Bacterias Grampositivas/microbiología , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , beta-Lactamas/farmacología , beta-Lactamas/administración & dosificación
5.
Int Orthop ; 48(2): 337-344, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37730929

RESUMEN

PURPOSE: Bone and joint infections are an important and increasing problem. Whether intraoperatively detected bacteria should be considered relevant or not is often difficult to assess. This retrospective cohort study analyzes the relevance of C. acnes cultured from deep intraoperative specimens. METHODS: All deep tissue samples collected intraoperatively between 2015 and 2020 from a quartiary care provider were evaluated for detection of C. acnes and its therapeutical consequences. Infection rates were determined according to a standardized definition and protocol and analyzed in dependence of patient's demographic data (age and gender), operative parameters (type of surgery, body region/location of surgery, and impression of the surgeon), and initiated therapy. RESULTS: In 270 cases of more than 8500 samples, C. acnes was detected. In 30%, the detection was considered an infection. The number of samples taken and tested positive for C. acnes correlated significantly with its classification as a cause of infection. If more than one sample of the patient was positive, the detection was significantly more likely to be treated as infection (p < 0.001). In 76% of cases, a consultation to the infectious diseases (ID) department took place regarding the classification of the pathogen detection and the therapy to be carried out. Almost all of the tested isolates demonstrated the wild-type susceptibility for penicillin and clindamycin. CONCLUSION: Intraoperative detection of skin-colonizing bacteria such as C. acnes is not always synonymous with infection. In particular, if other examination results contradict an infection (pathological sample without evidence of an infectious event, detection of malignant cells, etc.), the situation must be considered in a very differentiated manner. Interdisciplinary boards, for example, are suitable for this purpose. Care should be taken to obtain a sufficiently large number of tissue samples for microbiological examination to be able to better classify the result.


Asunto(s)
Artritis Infecciosa , Infecciones por Bacterias Grampositivas , Procedimientos Ortopédicos , Articulación del Hombro , Humanos , Estudios Retrospectivos , Propionibacterium acnes , Procedimientos Ortopédicos/efectos adversos , Artritis Infecciosa/cirugía , Piel/microbiología , Infecciones por Bacterias Grampositivas/diagnóstico , Infecciones por Bacterias Grampositivas/epidemiología , Infecciones por Bacterias Grampositivas/microbiología , Articulación del Hombro/cirugía
6.
Molecules ; 28(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36985768

RESUMEN

BACKGROUND: The genus Cistus L. (Cistaceae) includes several medicinal plants growing wild in the Moroccan area. Acne vulgaris (AV) is a chronic skin disorder treated with topical and systemic therapies that often lead to several side effects in addition to the development of antimicrobial resistance. Our study aimed to investigate the bioactivity of extracts of two Moroccan Cistus species, Cistus laurifolius L. and Cistus salviifolius L., in view of their use as potential coadjuvants in the treatment of mild acne vulgaris. METHODS: Targeted phytochemical profiles obtained by HPLC-DAD and HPLC-ESI/MS analyses and biological activities ascertained by several antioxidants in vitro chemical and cell-based assays of the leaf extracts. Moreover, antimicrobial activity against Gram-positive and Gram-negative bacteria, and Candida albicans was evaluated. RESULTS: Analyses revealed the presence of several polyphenols in the studied extracts, mainly flavonoids and tannins. Cistus laurifolius L. and Cistus salviifolius L. possessed good biological properties and all extracts showed antibacterial activity, particularly against Staphylococcus aureus, S. epidermidis, and Propionibacterium acnes, identified as the main acne-causing bacteria. CONCLUSION: The results suggest that examined extracts are promising agents worthy of further studies to develop coadjuvants/natural remedies for mild acne treatment.


Asunto(s)
Acné Vulgar , Cistus , Cistus/química , Antibacterianos , Antioxidantes/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Bacterias Gramnegativas , Bacterias Grampositivas , Antiinflamatorios/farmacología , Fitoquímicos/farmacología , Acné Vulgar/tratamiento farmacológico , Acné Vulgar/microbiología , Pruebas de Sensibilidad Microbiana
7.
Eur J Orthop Surg Traumatol ; 33(2): 315-320, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35031853

RESUMEN

BACKGROUND: Cutibacterium Acnes (C.acnes) has been linked to several shoulder pathologies. An alternative hypothesis suggests it only occurs in the joint secondary to previous instrumentation. Our hypothesis was patients with previous instrumentation would have C.acnes in their joint if it was in skin. MATERIALS AND METHODS: Sixty-six patients undergoing arthroscopic shoulder surgery had biopsies taken from the affected joint at the time of surgery, along with control biopsies of subdermal fat. The extended culture results were assessed and correlated to previous intervention. RESULTS: 35% tested positive for C.acnes in their joint. 78% were male. 53% had absence of C.acnes in both skin and joint and 29% had presence in both (p = 0.0001). 15% with previous surgery had C.acnes. 53% with previous injection had C.acnes. 25% of patients with virgin joints had C.acnes. There was no statistical difference in the presence of C.acnes in the joint between those with previous instrumentation and without. CONCLUSION: The significant factors for joint C.acnes were male sex and the presence of the bacteria in the fat. Previous instrumentation was not correlated with C.acnes in the joint. This raises the question of whether the process of biopsy itself may lead to inoculation of the joint.


Asunto(s)
Infecciones por Bacterias Grampositivas , Articulación del Hombro , Humanos , Masculino , Femenino , Articulación del Hombro/cirugía , Infecciones por Bacterias Grampositivas/microbiología , Hombro , Piel/microbiología , Propionibacterium acnes
8.
Glycobiology ; 32(2): 162-170, 2022 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-34792586

RESUMEN

Propionibacterium acnes, though generally considered part of the normal flora of human skin, is an opportunistic pathogen associated with acne vulgaris as well as other diseases, including endocarditis, endophthalmitis and prosthetic joint infections. Its virulence potential is also supported by knowledge gained from its sequenced genome. Indeed, a vaccine targeting a putative cell wall-anchored P. acnes sialidase has been shown to suppress cytotoxicity and pro-inflammatory cytokine release induced by the organism, and is proposed as an alternative treatment for P. acnes-associated diseases. Here, we report the crystal structures of the surface sialidase and its complex with the transition-state mimic Neu5Ac2en. Our structural and kinetic analyses, together with insight from a glycan array screen, which probes subtle specificities of the sialidase for α-2,3-sialosides, provide a basis for the structure-based design of novel small-molecule therapeutics against P. acnes infections.


Asunto(s)
Acné Vulgar , Propionibacterium acnes , Acné Vulgar/tratamiento farmacológico , Acné Vulgar/microbiología , Humanos , Neuraminidasa , Piel
9.
Microb Cell Fact ; 21(1): 245, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36419091

RESUMEN

The remains of the heart tissue of Thaddeus Kosciuszko have been investigated as the possible cause of disease and death of the hero of Polish and American nations. Three specimens, DNA isolated from scrappings of wax surface, from the surface of a wooden plate, and from the linen cloth that have had contact with the object were subjected to nanosequencing. From the first two, among all reads identified, only one classified as Propionibacterium acnes (synonymous current name Cutibacterium acnes), had a purported clinical significance. The observed identity between the P. acnes sequences and reference was 89-90% consistent with the hypothesis that the identified reads represent the ancient P. acnes DNA (aDNA), which underwent fragmentation and sequence changes caused by its long-time presence in the environmental conditions conducive to degradation. We present a reasonable and entirely new hypothesis that the analyzed samples could reflect the presence of the bacteria in the original Kosciuszko's heart tissue and that the process of C. acnes infection was progressing inside the organ (endocarditis), not on its surface (pericarditis) leading to rapid deterioration of health and eventually death. We again point out that normal skin and mucosal membranes commensal, a causative agent of common skin acne, may be associated with various severe organ infections posing a threat to health and life.


Asunto(s)
Endocarditis , Propionibacterium acnes , Humanos , Causas de Muerte , Polonia
10.
Appl Microbiol Biotechnol ; 106(2): 549-562, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34939137

RESUMEN

Accumulating evidence suggested that suppression of Propionibacterium acnes-induced inflammation was a promising strategy to alleviate acne vulgaris. This study evaluated the alleviating effect of surfactin-oleogel on P. acnes-induced inflammatory acne vulgaris in mice. Epidermis morphology and histopathological examination showed that surfactin-oleogel effectively ameliorated the P. acnes-induced epidermis swelling and erythema. Surfactin-oleogel reduced the epidermis thickness to 48.52% compared to the model control group. The colony of P. acnes in the epidermis was decreased by 1 log CFU/mL after receiving surfactin-oleogel treatment. Furthermore, surfactin-oleogel attenuated oxidative stress in the epidermis by increasing the activities of superoxide dismutase, catalase, and glutathione peroxidase. In addition, the expression of inducible nitric oxide synthase, nitric oxide, cyclooxygenase-2, pro-inflammatory cytokines (e.g. tumour necrosis factor-α and interleukin-1ß), and nuclear factor kappa-B in the epidermis were reduced after treating with surfactin-oleogel. Moreover, total cholesterol and free fatty acids were decreased, whereas the treatment of surfactin-oleogel increased triglycerides and linoleic acid content. Besides, immunohistochemical assay and real-time PCR analysis indicated that surfactin-oleogel blocked the TLR2-mediated NF-κB signalling pathways in the epidermis. Consequently, our results demonstrated that surfactin-oleogel had antibacterial and anti-inflammation activities to treat P. acnes-induced inflammatory acne vulgaris.Key points• Surfactin-oleogel effectively relieves inflammation and oxidative stress caused by P. acnes.• Surfactin-oleogel effectively reduced the P. acnes colony.• Surfactin-oleogel relieves P. acnes-induced inflammation by inactivated the TLR-mediated NF-κB.


Asunto(s)
Acné Vulgar , Propionibacterium acnes , Acné Vulgar/tratamiento farmacológico , Animales , Antiinflamatorios/uso terapéutico , Ratones , FN-kappa B , Compuestos Orgánicos
11.
Chem Biodivers ; 19(2): e202100799, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34935261

RESUMEN

This study aimed to revealed anti-inflammatory and antimicrobial activities of fermented Ocimum sanctum Linn. (FE). The fermentation process with Lactobacillus plantarum was compared with the solvent extraction methods. Antimicrobial activity against the growth of Staphylococcus aureus, Staphylococcus epidermidis, Propionibacterium acnes, Candida albicans, and Malassezia furfur was investigated via broth dilution method. High performance thin layer chromatography was used to determine eugenol content. The anti-inflammation was investigated by means of nuclear factor kappa B (NF-κB) expression inhibition by Western blot analysis. FE yielded the highest amount (11.93 % w/w), the highest eugenol content (39.3±12.6 % w/w), and the highest antimicrobial activities comparing to the extracts obtained from the solvent extractions. The fungal inhibition against M. furfur 656 was equivalent to that of ketoconazole. Furthermore, the bacterial inhibition on S. aureus and S. epidermidis was compared to that of Penicillin G at minimum inhibitory concentration (MIC) of 0.125 mg/mL and 0.25 mg/mL, respectively. Interestingly, FE had lower MIC and minimum bactericidal concentration against P. acnes than Penicillin G and also possessed comparable anti-inflammatory activity to indomethacin with the NF-κB suppression of 42.7±4.6 %. Therefore, FE are potentially natural anti-inflammation and antimicrobial agents for topical applications in the pharmaceutical and cosmetic industries.


Asunto(s)
Antiinfecciosos , Ocimum , Antiinfecciosos/farmacología , Antiinflamatorios/farmacología , Pruebas de Sensibilidad Microbiana , Ocimum/química , Ocimum sanctum , Extractos Vegetales/química , Cuero Cabelludo , Staphylococcus aureus
12.
J Shoulder Elbow Surg ; 31(6): 1115-1121, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35183744

RESUMEN

BACKGROUND: Preoperative skin preparations for total shoulder arthroplasty (TSA) are not standardized for Cutibacterium acnes eradication. Topical benzyl peroxide (BPO) and benzyl peroxide with clindamycin (BPO-C) have been shown to reduce the bacterial load of C acnes on the skin. Our aim was to investigate whether preoperative application of these topical antimicrobials reduced superficial colonization and deep tissue inoculation of C acnes in patients undergoing TSA. METHODS: In a prospective, single-blinded randomized controlled trial, 101 patients undergoing primary TSA were randomized to receive either topical pHisoHex (hexachlorophene [1% triclosan; sodium benzoate, 5 mg/mL; and benzyl alcohol, 5 mg/mL]) (n = 35), 5% BPO (n = 33), or 5% BPO with 1% clindamycin (n = 33). Skin swabs obtained prior to topical application and after topical application before surgery, as well as 3 intraoperative swabs (dermis after incision, on joint capsule entry, and dermis at wound closure), were cultured. The primary outcome was positive culture findings and successful decolonization. RESULTS: All 3 topical preparations were effective in decreasing the rate of C acnes. The application of pHisoHex reduced skin colonization by 50%, BPO reduced skin colonization by 73.7%, and BPO-C reduced skin colonization by 81.5%. The topical preparation of BPO-C was more effective in decreasing the rate of C acnes at the preoperative and intraoperative swab time points compared with pHisoHex and BPO (P = .003). Failure to eradicate C acnes with topical preparations consistently resulted in deep tissue inoculation. There was an increase in the C acnes contamination rate on the skin during closure (33%) compared with skin cultures taken at surgery commencement (22%). CONCLUSION: Topical application of BPO and BPO-C preoperatively is more effective than pHisoHex in reducing colonization and contamination of the surgical field with C acnes in patients undergoing TSA.


Asunto(s)
Artroplastía de Reemplazo de Hombro , Infecciones por Bacterias Grampositivas , Articulación del Hombro , Triclosán , Peróxido de Benzoílo , Clindamicina , Infecciones por Bacterias Grampositivas/epidemiología , Infecciones por Bacterias Grampositivas/prevención & control , Infecciones por Bacterias Grampositivas/cirugía , Humanos , Incidencia , Peróxidos , Propionibacterium acnes , Estudios Prospectivos , Articulación del Hombro/cirugía , Piel/microbiología
13.
Anaerobe ; 76: 102580, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35598875

RESUMEN

Cutibacterium acnes (formally Propionibacterium acnes) is frequently identified within surgical device related infections. It is often co-isolated from infection sites with other opportunistic pathogens. Recent studies have demonstrated that C. acnes is able to form biofilms and when co-cultured with Staphylococcus spp. both inhibitory and stimulatory effects have been reported across several studies. Here, we investigated the biofilm-forming ability of 100 clinical C. acnes isolates from various infection sites in human patients, both deep tissue and superficial, followed by an investigation of how the supernatants of C. acnes cultures influenced the attachment and maturation of Staphylococcusaureus NCTC 6571 biofilms. All of the C. acnes isolates were able to form biofilms in vitro, although biofilm biomass varied between isolates. Nineteen isolates were weakly adherent, 33 were moderately adherent and the majority (48) showed strong adherence. The presence of C. acnes sterile supernatants reduced the biomass of S. aureus cultures, with a > 90% reduction observed in the presence of several of the C. acnes isolates. We observed that this decrease was not due to C. acnes affecting S. aureus viability, nor due to the presence of propionic acid. Biofilm maturation was however delayed over a 24-h period as was biofilm surface structure, although initial (up to 8 h) surface attachment was not affected. We hypothesis that this defective biofilm maturation is the cause of the observed biomass decrease. In turn, these altered biofilms showed a greater susceptibility to antibiotic treatments. In contrast the presence of C. acnes supernatant in planktonic (defined as a free moving, non-surface attached population within the liquid column) S. aureus cultures increased antibiotic tolerance, via a currently undefined mechanism. This study suggests that complex interactions between C. acnes and other opportunistic pathogens are likely to exist during colonisation and infection events. Further investigation of these interactions may lead to increased treatment options and a better prognosis for patients.


Asunto(s)
Acné Vulgar , Propionibacterium acnes , Antibacterianos/farmacología , Biopelículas , Humanos , Staphylococcus , Staphylococcus aureus
14.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35269651

RESUMEN

Acne is a common inflammatory disorder of the human skin and a multifactorial disease caused by the sebaceous gland and Propionibacterium acnes (P. acnes). This study aimed to evaluate the anti-inflammatory effect of micro-current stimulation (MC) on peptidoglycan (PGN)-treated raw 264.7 macrophages and P. acnes-induced skin inflammation. To specify the intensity with anti-inflammatory effects, nitric oxide (NO) production was compared according to various levels of MC. As the lowest NO production was shown at an intensity of 50 µA, subsequent experiments used this intensity. The changes of expression of the proteins related to TLR2/NF-κB signaling were examined by immunoblotting. Also, immunofluorescence analysis was performed for observing NF-κB p65 localization. All of the expression levels of proteins regarding TLR2/NF-κB signaling were decreased by the application of MC. Moreover, the application of MC to PGN-treated raw 264.7 cells showed a significant decrease in the amount of nuclear p65-protein. In the case of animal models with P. acnes-induced skin inflammation, various pro-inflammatory cytokines and mediators significantly decreased in MC-applied mice. In particular, the concentration of IL-1ß in serum decreased, and the area of acne lesions, decreased from the histological analysis. We suggest for the first time that MC can be a novel treatment for acne.


Asunto(s)
Acné Vulgar , Dermatitis , Acné Vulgar/microbiología , Animales , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Macrófagos/metabolismo , Ratones , FN-kappa B/metabolismo , Peptidoglicano/metabolismo , Peptidoglicano/farmacología , Propionibacterium acnes , Transducción de Señal , Receptor Toll-Like 2/metabolismo
15.
Molecules ; 27(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35408688

RESUMEN

Acne vulgaris is a common skin disease mainly caused by the Gram-positive pathogenic bacterium, Propionibacterium acnes. This bacterium stimulates the inflammation process in human sebaceous glands. The giant African snail (Achatina fulica) is an alien species that rapidly reproduces and seriously damages agricultural products in Thailand. There were several research reports on the medical and pharmaceutical benefits of these snail mucus peptides and proteins. This study aimed to in silico predict multifunctional bioactive peptides from A. fulica mucus peptidome using bioinformatic tools for the determination of antimicrobial (iAMPpred), anti-biofilm (dPABBs), cytotoxic (ToxinPred) and cell-membrane-penetrating (CPPpred) peptides. Three candidate peptides with the highest predictive score were selected and re-designed/modified to improve the required activities. Structural and physicochemical properties of six anti-P. acnes (APA) peptide candidates were performed using the PEP-FOLD3 program and the four previous tools. All candidates had a random coiled structure and were named APAP-1 ori, APAP-2 ori, APAP-3 ori, APAP-1 mod, APAP-2 mod, and APAP-3 mod. To validate the APA activity, these peptide candidates were synthesized and tested against six isolates of P. acnes. The modified APA peptides showed high APA activity on three isolates. Therefore, our biomimetic mucus peptides could be useful for preventing acne vulgaris and further examined on other activities important to medical and pharmaceutical applications.


Asunto(s)
Acné Vulgar , Propionibacterium acnes , Animales , Humanos , Acné Vulgar/tratamiento farmacológico , Acné Vulgar/microbiología , Antibacterianos/química , Moco/química , Péptidos/química , Preparaciones Farmacéuticas/análisis , Propionibacterium acnes/metabolismo , Caracoles/química
16.
Pharm Dev Technol ; 27(3): 268-281, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35112652

RESUMEN

In this study, hydrogels containing azelaic acid were developed using chitosan or HPMC (1-7%) for local treatment of acne vulgaris. Physicochemical properties such as viscosity, pH and mechanical properties were evaluated. In vitro release and ex vivo permeability studies were performed using the Franz diffusion cell system. The pH of the hydrogels was highly compatible with the skin pH and varied between 4.38 and 5.84. The cumulative release percentages of the hydrogels at the end of 6 hours were 65-78%, whereas the marketed product yielded 50% drug release. According to the ex vivo permeability results, azelaic acid accumulated in the skin was found to be 9.38 ± 0.65% (marketed cream), 19.53 ± 1.06% (K3), 10.96 ± 1.91% (H6). The antiacne studies with Cutibacterium acnes revealed that K3 (29.45 ± 0.95) and H6 (32.35 ± 0.15) had higher inhibition zones compared to the marketed cream (24.50 ± 0.90). Additionally, the gels were found to be highly stable as a result of the stability studies for 6 months. Among the hydrogels that were prepared based on experimental findings, K3 (3% Chitosan) and H6 (6% HPMC) represented elevated in vitro release profile, higher permeability and increased antiacne activity. The findings of this research suggest that the developed hydrogels might be an alternative to the marketed product.


Asunto(s)
Acné Vulgar , Quitosano , Acné Vulgar/tratamiento farmacológico , Ácidos Dicarboxílicos/química , Humanos , Hidrogeles
17.
Yale J Biol Med ; 95(4): 429-443, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36568833

RESUMEN

Antimicrobial resistance is an increasing public health problem worldwide. The interest of a focus on antimicrobial resistance in acne lies on the facts that acne vulgaris (acne) is the most common skin disease worldwide, that the bacterium Cutibacterium acnes (C. acnes, formerly Propionibacterium acnes) plays a key role in the pathogenesis of acne, while at the same time being part of the skin flora, and that antibiotics are commonly recommended for acne treatment. The overuse of topical and/or systemic antibiotics, the long treatment courses used for acne, and the availability of over-the-counter antibiotic preparations, have led to the worldwide emergence of resistant strains in acne patients. In this review, we discuss the epidemiological trends of antimicrobial resistance in acne, the need to avoid the perturbation of the skin microbiome caused by anti-acne antibiotics, and the clinical practice considerations related to the emergence of resistant strains in acne patients. In light of the increasing risk of antimicrobial resistance, raising concerns over the misuse of antibiotics, prescribing patterns can be a critical target for antibiotic stewardship efforts. Also, the selection of non-antibiotic therapies for acne, whenever possible, may offer significant advantages.


Asunto(s)
Acné Vulgar , Antibacterianos , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana , Acné Vulgar/tratamiento farmacológico , Acné Vulgar/epidemiología , Acné Vulgar/microbiología , Piel , Propionibacterium acnes
18.
Indian J Microbiol ; 62(2): 167-174, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35462720

RESUMEN

Nanotechnology is a novel approach to dermatologic treatment. Nanomaterials are materials typically defined as less than 100 nm in size. As this size approaches molecular dimensions, the chemical and physical properties vastly change due to a relative increase in surface area to volume  ratio. Unique and altered properties ensue, such as carbon becoming an electrical conductant in the nano form, and glass becoming a liquid. The interaction of nanoparticles with biota likewise changes. Novel therapeutics may be possible with the use of nanomaterials. Advantages of nanoparticles include the ability to overcome microbial resistance and potentially induce immunomodulatory effects. Engineered nanomaterials or the development of nano-therapeutics with photo-induced antibacterial propensity and immunomodulatory activities has the potential to open new prospects for the treatment of ubiquitous cutaneous diseases, such as acne vulgaris.

19.
BMC Microbiol ; 21(1): 165, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34082713

RESUMEN

BACKGROUND: Lactobacillus rhamnosus GG (LGG) is the most widely used probiotic, but the mechanisms underlying its beneficial effects remain unresolved. Previous studies typically inoculated LGG in hosts with established gut microbiota, limiting the understanding of specific impacts of LGG on host due to numerous interactions among LGG, commensal microbes, and the host. There has been a scarcity of studies that used gnotobiotic animals to elucidate LGG-host interaction, in particular for gaining specific insights about how it modifies the metabolome. To evaluate whether LGG affects the metabolite output of pathobionts, we inoculated with LGG gnotobiotic mice containing Propionibacterium acnes, Turicibacter sanguinis, and Staphylococcus aureus (PTS). RESULTS: 16S rRNA sequencing of fecal samples by Ion Torrent and MinION platforms showed colonization of germ-free mice by PTS or by PTS plus LGG (LTS). Although the body weights and feeding rates of mice remained similar between PTS and LTS groups, co-associating LGG with PTS led to a pronounced reduction in abundance of P. acnes in the gut. Addition of LGG or its secretome inhibited P. acnes growth in culture. After optimizing procedures for fecal metabolite extraction and metabolomic liquid chromatography-mass spectrometry analysis, unsupervised and supervised multivariate analyses revealed a distinct separation among fecal metabolites of PTS, LTS, and germ-free groups. Variables-important-in-projection scores showed that LGG colonization robustly diminished guanine, ornitihine, and sorbitol while significantly elevating acetylated amino acids, ribitol, indolelactic acid, and histamine. In addition, carnitine, betaine, and glutamate increased while thymidine, quinic acid and biotin were reduced in both PTS and LTS groups. Furthermore, LGG association reduced intestinal mucosal expression levels of inflammatory cytokines, such as IL-1α, IL-1ß and TNF-α. CONCLUSIONS: LGG co-association had a negative impact on colonization of P. acnes, and markedly altered the metabolic output and inflammatory response elicited by pathobionts.


Asunto(s)
Infecciones por Bacterias Grampositivas/microbiología , Lacticaseibacillus rhamnosus/metabolismo , Probióticos/administración & dosificación , Animales , Citocinas/genética , Citocinas/metabolismo , Femenino , Firmicutes/crecimiento & desarrollo , Firmicutes/fisiología , Microbioma Gastrointestinal/efectos de los fármacos , Vida Libre de Gérmenes , Infecciones por Bacterias Grampositivas/genética , Infecciones por Bacterias Grampositivas/metabolismo , Humanos , Lacticaseibacillus rhamnosus/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Propionibacterium acnes/crecimiento & desarrollo , Propionibacterium acnes/fisiología , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/fisiología
20.
Exp Dermatol ; 30(10): 1471-1476, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34009698

RESUMEN

Cutibacterium acnes (also known as Propionibacterium acnes) has long been implicated in the pathogenesis of acne, inspiring both therapeutic and personal care approaches aiming to control the disease by controlling the bacterium. The purported association has made people with acne feel dirty and led to the-at times excessive-use of cleansers, antiseptics and antibiotics for the condition. However, recent evidence seems to weaken the case for C. acnes' involvement. New genetics and molecular biology findings strongly suggest that abnormal differentiation of sebaceous progenitor cells causes comedones, the primary lesions in acne. Comodegenesis is initiated by androgens and is unlikely to be triggered by C. acnes, which probably doesn't affect sebaceous differentiation. Is there still a place for it in this understanding of acne? It is necessary to critically address this question because it has consequences for treatment. Antibiotic use for acne noticeably contributes to microbial drug resistance, which we can ill afford. In this Viewpoint, we explore if and how C. acnes (still) fits into the developing view on acne. We also briefly discuss the implications for therapy in the light of antibiotic resistance and the need for more targeted therapies.


Asunto(s)
Acné Vulgar/tratamiento farmacológico , Acné Vulgar/microbiología , Antibacterianos/uso terapéutico , Sebo/microbiología , Humanos , Propionibacterium acnes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA