Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 21(1): 322, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34225654

RESUMEN

BACKGROUND: Flexibility of plant metabolism is supported by redox regulation of enzymes via posttranslational modification of cysteine residues, especially in plastids. Here, the redox states of cysteine residues are partly coupled to the thioredoxin system and partly to the glutathione pool for reduction. Moreover, several plastid enzymes involved in reactive oxygen species (ROS) scavenging and damage repair draw electrons from glutathione. In addition, cysteine residues can be post-translationally modified by forming a mixed disulfide with glutathione (S-glutathionylation), which protects thiol groups from further oxidation and can influence protein activity. However, the evolution of the plastid glutathione-dependent redox network in land plants and the conservation of cysteine residues undergoing S-glutathionylation is largely unclear. RESULTS: We analysed the genomes of nine representative model species from streptophyte algae to angiosperms and found that the antioxidant enzymes and redox proteins belonging to the plastid glutathione-dependent redox network are largely conserved, except for lambda- and the closely related iota-glutathione S-transferases. Focussing on glutathione-dependent redox modifications, we screened the literature for target thiols of S-glutathionylation, and found that 151 plastid proteins have been identified as glutathionylation targets, while the exact cysteine residue is only known for 17% (26 proteins), with one or multiple sites per protein, resulting in 37 known S-glutathionylation sites for plastids. However, 38% (14) of the known sites were completely conserved in model species from green algae to flowering plants, with 22% (8) on non-catalytic cysteines. Variable conservation of the remaining sites indicates independent gains and losses of cysteines at the same position during land plant evolution. CONCLUSIONS: We conclude that the glutathione-dependent redox network in plastids is highly conserved in streptophytes with some variability in scavenging and damage repair enzymes. Our analysis of cysteine conservation suggests that S-glutathionylation in plastids plays an important and yet under-investigated role in redox regulation and stress response.


Asunto(s)
Glutatión/metabolismo , Plastidios/metabolismo , Embryophyta/metabolismo , Evolución Molecular , Oxidación-Reducción , Filogenia , Streptophyta/metabolismo
2.
J Proteome Res ; 19(1): 1-17, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31647248

RESUMEN

Redox proteomics is a field of proteomics that is concerned with the characterization of the oxidation state of proteins to gain information about their modulated structure, function, activity, and involvement in different physiological pathways. Oxidative modifications of proteins have been shown to be implicated in normal physiological processes of cells as well as in pathomechanisms leading to the development of cancer, diabetes, neurodegenerative diseases, and some rare hereditary metabolic diseases, like classic galactosemia. Reactive oxygen species generate a variety of reversible and irreversible modifications in amino acid residue side chains and within the protein backbone. These oxidative post-translational modifications (Ox-PTMs) can participate in the activation of signal transduction pathways and mediate the toxicity of harmful oxidants. Thus the application of advanced redox proteomics technologies is important for gaining insights into molecular mechanisms of diseases. Mass-spectrometry-based proteomics is one of the most powerful methods that can be used to give detailed qualitative and quantitative information on protein modifications and allows us to characterize redox proteomes associated with diseases. This Review illustrates the role and biological consequences of Ox-PTMs under basal and oxidative stress conditions by focusing on protein carbonylation and S-glutathionylation, two abundant modifications with an impact on cellular pathways that have been intensively studied during the past decade.


Asunto(s)
Proteoma , Proteómica , Humanos , Oxidación-Reducción , Estrés Oxidativo , Carbonilación Proteica , Procesamiento Proteico-Postraduccional , Especies Reactivas de Oxígeno/metabolismo
3.
Biochem Biophys Res Commun ; 525(2): 528-535, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32113683

RESUMEN

Glutaredoxin 1 (Grx1) is an important thiol transferase that catalyses the deglutathionylation of proteins through its active site. Deletion of Grx1 increases levels of glutathione-protein adducts and improves ischaemic revascularization. In this study, we investigated whether the absence of Grx1 ameliorates pathological changes in blood vessels and alveoli in a mouse model exposed to hyperoxic conditions. High oxygen exposure for three consecutive weeks increased the levels of Grx1 in the lungs of hyperoxic mice from control levels, while Grx1 levels in Grx1 knockout (KO) mice were significantly reduced under high oxygen conditions. Exposure to 85% oxygen for 21 days reduced alveolarization in wild-type (WT) mice but increased the numbers of alveoli and the survival rate of Grx1 KO littermates. Importantly, vascular endothelial growth factor receptor 2 (VEGFR2) and vascular endothelial growth factor A (VEGFA) expressions were increased in Grx1 KO mice after hyperoxia treatment, and these effects were probably attributable to increased hypoxia-inducible factor (HIF)-1α expression. On the other hand, in response to nuclear factor (NF)-κB inhibition by Grx1 ablation, chemokine and caspase-3 levels were reduced, although the Bcl-2:Bax ratio was increased. Here, we provide evidence that Grx1 plays an important role in regulating pathological damage under hyperoxic conditions by promoting HIF-1α stability and inhibiting the NF-κB pathway in vivo. Our study highlights the functional importance of the Grx1/protein S-glutathionylation (PSSG) redox module in the regulation of ischaemic revascularization, indicating potential clinical and therapeutic applications.


Asunto(s)
Glutarredoxinas/genética , Hiperoxia/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Pulmón/irrigación sanguínea , Pulmón/patología , FN-kappa B/metabolismo , Animales , Eliminación de Gen , Glutarredoxinas/metabolismo , Hiperoxia/genética , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Fisiológica , Estabilidad Proteica , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo
4.
Anal Biochem ; 568: 24-30, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30597126

RESUMEN

Glutathione is an abundant low-molecular-weight thiol, up to 10 mM in mammalian cells, and exists in three major forms: reduced sulphydryl (GSH), glutathione disulfide (GSSG) or bound to Cys residues in proteins (PSSG). The ratio GSH/GSSG has been used as an indicator of the cells redox level but this parameter can also be estimated by the quantification of PSSG. In fact, PSSGs have the advantage of being more stable than GSSG. Here we present a highly sensitive fluorescent-based method for detection of low concentrations of glutathione in complex samples such as cell lysates, tissues and plasma. The method is based on our previously described protocol to study Glutaredoxin (Grx) activity. The whole procedure was optimized to measure the fluorescence increase of the di-eosin-glutathione disulfide (Di-E-GSSG) reduced by Grx in the presence of Glutathione Reductase and NADPH, keeping GSH as the limiting factor to drive the reaction. The methods to selectively measure PSSG are expensive and not widely accessible, therefore we optimized our glutaredoxin protocol to quantify this post-translational modification using common laboratory equipments. Overall, our method has simplicity and rapidity combined with high sensitivity as its main advantages; therefore, it may be particularly suitable for large-scale clinical studies.


Asunto(s)
Fluorescencia , Glutarredoxinas/metabolismo , Glutatión/análisis , Células Cultivadas , Glutarredoxinas/química , Glutatión/metabolismo , Humanos
5.
Adv Exp Med Biol ; 1158: 197-216, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31452142

RESUMEN

Mitochondria are dynamic organelles that perform a number of interconnected tasks that are elegantly intertwined with the regulation of cell functions. This includes the provision of ATP, reactive oxygen species (ROS), and building blocks for the biosynthesis of macromolecules while also serving as signaling platforms for the cell. Although the functions executed by mitochondria are complex, at its core these roles are, to a certain degree, fulfilled by electron transfer reactions and the establishment of a protonmotive force (PMF). Indeed, mitochondria are energy conserving organelles that extract electrons from nutrients to establish a PMF, which is then used to drive ATP and NADPH production, solute import, and many other functions including the propagation of cell signals. These same electrons extracted from nutrients are also used to produce ROS, pro-oxidants that can have potentially damaging effects at high levels, but also serve as secondary messengers at low amounts. Mitochondria are also enriched with antioxidant defenses, which are required to buffer cellular ROS. These same redox buffering networks also fulfill another important role; regulation of proteins through the reversible oxidation of cysteine switches. The modification of cysteine switches with the antioxidant glutathione, a process called protein S-glutathionylation, has been found to play an integral role in controlling various mitochondrial functions. In addition, recent findings have demonstrated that disrupting mitochondrial protein S-glutathionylation reactions can have some dire pathological consequences. Accordingly, this chapter focuses on the role of mitochondrial cysteine switches in the modulation of different physiological functions and how defects in these pathways contribute to the development of disease.


Asunto(s)
Cisteína , Metabolismo Energético , Mitocondrias , Especies Reactivas de Oxígeno , Animales , Cisteína/metabolismo , Humanos , Mitocondrias/metabolismo , Oxidación-Reducción
6.
Am J Respir Cell Mol Biol ; 55(3): 377-86, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27035878

RESUMEN

Protein S-glutathionylation (PSSG) is an oxidant-induced post-translational modification of protein cysteines that impacts structure and function. The oxidoreductase glutaredoxin-1 (Glrx1) under physiological conditions catalyzes deglutathionylation and restores the protein thiol group. The involvement of Glrx1/PSSG in allergic inflammation induced by asthma-relevant allergens remains unknown. In the present study, we examined the impact of genetic ablation of Glrx1 in the pathogenesis of house dust mite (HDM)-induced allergic airways disease in mice. Wild-type (WT) or Glrx1(-/-) mice were instilled intranasally with HDM on 5 consecutive days for 3 weeks. As expected, overall PSSG was increased in Glrx1(-/-) HDM mice as compared with WT animals. Total cells in bronchoalveolar lavage fluid were similarly increased in HDM-treated WT and Glrx1(-/-) mice. However, in response to HDM, mice lacking Glrx1 demonstrated significantly more neutrophils and macrophages but fewer eosinophils as compared with HDM-exposed WT mice. mRNA expression of the Th2-associated cytokines IL-13 and IL-6, as well as mucin-5AC (Muc5ac), was significantly attenuated in Glrx1(-/-) HDM-treated mice. Conversely, mRNA expression of IFN-γ and IL-17A was increased in Glrx1(-/-) HDM mice compared with WT littermates. Restimulation of single-cell suspensions isolated from lungs or spleens with HDM resulted in enhanced IL-17A and decreased IL-5 production in cells derived from inflamed Glrx1(-/-) mice compared with WT animals. Finally, HDM-induced tissue damping and elastance were significantly attenuated in Glrx1(-/-) mice compared with WT littermates. These results demonstrate that the Glrx1-PSSG axis plays a pivotal role in HDM-induced allergic airways disease in association with enhanced type 2 inflammation and restriction of IFN-γ and IL-17A.


Asunto(s)
Glutarredoxinas/metabolismo , Hipersensibilidad/patología , Hipersensibilidad/parasitología , Pulmón/patología , Pulmón/parasitología , Pyroglyphidae/fisiología , Animales , Citocinas/genética , Citocinas/metabolismo , Glutatión/metabolismo , Hiperplasia , Hipersensibilidad/sangre , Hipersensibilidad/complicaciones , Inmunoglobulina E/sangre , Inmunoglobulina G/sangre , Ratones Endogámicos BALB C , Moco/metabolismo , Neumonía/sangre , Neumonía/complicaciones , Neumonía/parasitología , Neumonía/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Hipersensibilidad Respiratoria/sangre , Hipersensibilidad Respiratoria/parasitología , Hipersensibilidad Respiratoria/patología , Hipersensibilidad Respiratoria/fisiopatología , Mecánica Respiratoria , Células Th2/inmunología
7.
J Cell Biochem ; 114(9): 1962-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23554102

RESUMEN

Glutathione has traditionally been considered as an antioxidant that protects cells against oxidative stress. Hence, the loss of reduced glutathione and formation of glutathione disulfide is considered a classical parameter of oxidative stress that is increased in diseases. Recent studies have emerged that demonstrate that glutathione plays a more direct role in biological and pathophysiological processes through covalent modification to reactive cysteines within proteins, a process known as S-glutathionylation. The formation of an S-glutathionylated moiety within the protein can lead to structural and functional modifications. Activation, inactivation, loss of function, and gain of function have all been attributed to S-glutathionylation. In pathophysiological settings, S-glutathionylation is tightly regulated. This perspective offers a concise overview of the emerging field of protein thiol redox modifications. We will also cover newly developed methodology to detect S-glutathionylation in situ, which will enable further discovery into the role of S-glutathionylation in biology and disease.


Asunto(s)
Glutatión/metabolismo , Animales , Biotina/metabolismo , Glutarredoxinas/metabolismo , Humanos , Oxidación-Reducción , Compuestos de Sulfhidrilo/metabolismo
8.
Toxicol In Vitro ; 91: 105616, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37279824

RESUMEN

Cellulose nanocrystals (CNCs) display remarkable strength and physicochemical properties with significant potential applications. To better understand the potential adjuvanticity of a nanomaterial, it is important to investigate the extent of the immunological response, the mechanisms by which they elicit this response, and how this response is associated with their physicochemical characteristics. In this study, we investigated the potential mechanisms of immunomodulation and redox activity of two chemically related cationic CNC derivatives (CNC-METAC-1B and CNC-METAC-2B), using human peripheral blood mononuclear cells and mouse macrophage cells (J774A.1). Our data demonstrated that the biological effects caused by these nanomaterials occurred mainly with short term exposure. We observed opposite immunomodulatory activity between the tested nanomaterials. CNC-METAC-2B, induced IL-1ß secretion at 2 h while CNC-METAC-1B decreased it at 24 h of treatment. In addition, both nanomaterials caused more noticeable increases in mitochondrial reactive oxygen species (ROS) at early time. The differences in apparent sizes of the two cationic nanomaterials could explain, at least in part, the discrepancies in biological effects, despite their closely related surface charges. This work provides initial insights about the complexity of the in vitro mechanism of action of these nanomaterials as well as foundation knowledge for the development of cationic CNCs as potential immunomodulators.


Asunto(s)
Celulosa , Nanoestructuras , Animales , Humanos , Ratones , Celulosa/toxicidad , Leucocitos Mononucleares , Nanopartículas/toxicidad , Nanopartículas/química , Nanoestructuras/toxicidad , Especies Reactivas de Oxígeno
9.
Metabolism ; 145: 155610, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37277061

RESUMEN

OBJECTIVE: Cholesterol gallstone disease (CGD) is closely related to cholesterol metabolic disorder. Glutaredoxin-1 (Glrx1) and Glrx1-related protein S-glutathionylation are increasingly being observed to drive various physiological and pathological processes, especially in metabolic diseases such as diabetes, obesity and fatty liver. However, Glrx1 has been minimally explored in cholesterol metabolism and gallstone disease. METHODS: We first investigated whether Glrx1 plays a role in gallstone formation in lithogenic diet-fed mice using immunoblotting and quantitative real-time PCR. Then a whole-body Glrx1-deficient (Glrx1-/-) mice and hepatic-specific Glrx1-overexpressing (AAV8-TBG-Glrx1) mice were generated, in which we analyzed the effects of Glrx1 on lipid metabolism upon LGD feeding. Quantitative proteomic analysis and immunoprecipitation (IP) of glutathionylated proteins were performed. RESULTS: We found that protein S-glutathionylation was markedly decreased and the deglutathionylating enzyme Glrx1 was greatly increased in the liver of lithogenic diet-fed mice. Glrx1-/- mice were protected from gallstone disease induced by a lithogenic diet because their biliary cholesterol and cholesterol saturation index (CSI) were reduced. Conversely, AAV8-TBG-Glrx1 mice showed greater gallstone progression with increased cholesterol secretion and CSI. Further studies showed that Glrx1-overexpressing greatly altered bile acid levels and/or composition to increase intestinal cholesterol absorption by upregulating Cyp8b1. In addition, liquid chromatography-mass spectrometry and IP analysis revealed that Glrx1 also affected the function of asialoglycoprotein receptor 1 (ASGR1) by mediating its deglutathionylation, thereby altering the expression of LXRα and controlling cholesterol secretion. CONCLUSION: Our findings present novel roles of Glrx1 and Glrx1-regulated protein S-glutathionylation in gallstone formation through the targeting of cholesterol metabolism. Our data advises Glrx1 significantly increased gallstone formation by simultaneously increase bile-acid-dependent cholesterol absorption and ASGR1- LXRα-dependent cholesterol efflux. Our work suggests the potential effects of inhibiting Glrx1 activity to treat cholelithiasis.


Asunto(s)
Cálculos Biliares , Animales , Ratones , Ácidos y Sales Biliares/metabolismo , Colesterol/metabolismo , Cálculos Biliares/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutarredoxinas/farmacología , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Ratones Endogámicos C57BL , Proteína S/metabolismo , Proteína S/farmacología , Proteómica
10.
Antioxid Redox Signal ; 37(13-15): 1051-1071, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35459416

RESUMEN

Aims: During calcific aortic valve stenosis (CAVS) progression, oxidative stress and endothelial dysfunction mark the initial pathogenic steps with a parallel dysregulation of the antioxidant systems. Here, we tested whether oxidation-induced protein S-glutathionylation (P-SSG) accounts for a phenotypic switch in human aortic valvular tissue, eventually leading to calcium deposition. Next, we tested whether countering this reactive oxygen species (ROS) surge would prevent these perturbations. Results: We employed state-of-the-art technologies, such as electron paramagnetic resonance (EPR), liquid chromatography-tandem mass spectrometry, imaging flow-cytometry, and live-cell imaging on human excised aortic valves and primary valve endothelial cells (VECs). We observed that a net rise in EPR-detected ROS emission marked the transition from fibrotic to calcific in human CAVS specimens, coupled to a progressive increment in P-SSG deposition. In human VECs (hVECs), treatment with 2-acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanylthiocarbonylamino)phenylthiocarbamoylsulfanyl]propionic acid triggered highly oxidizing conditions prompting P-SSG accumulation, damaging mitochondria, and inducing endothelial nitric oxide synthase uncoupling. All the events conjured up in morphing these cells from their native endothelial phenotype into a damaged calcification-inducing one. As proof of principle, the use of the antioxidant N-acetyl-L-cysteine prevented these alterations. Innovation: Borne as a compensatory system to face excessive oxidative burden, with time, P-SSG contributes to the morphing of hVECs from their innate phenotype into a damaged one, paving the way to calcium deposition. Conclusion: Our data suggest that, in the human aortic valve, unremitted ROS emission along with a P-SSG build-up occurs and accounts, at least in part, for the morphological/functional changes leading to CAVS. Antioxid. Redox Signal. 37, 1051-1071.


Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Humanos , Válvula Aórtica/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Células Endoteliales/metabolismo , Calcio/metabolismo , Estenosis de la Válvula Aórtica/metabolismo , Fenotipo
11.
Life Sci ; 264: 118678, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33127518

RESUMEN

AIMS: The reversible protein S-glutathionylation (PSSG) modification of Fas augments apoptosis, which can be reversed by the cytosolic deglutathionylation enzyme glutaredoxin-1 (Grx1), but its roles in alcoholic liver injury remain unknown. Therefore, the objective of this study was to investigate the impact of genetic ablation of Grx1 on Fas S-glutathionylation (Fas-SSG) in regulating ethanol-induced injury. MATERIALS AND METHODS: We evaluated the Grx1 activity and oxidative damage, hepatic injury related indicators, Fas-SSG, we also assess the nuclear factor-κB (NF-κB) signaling, its downstream signal, and Akt signaling cascades, Furthermore, the number of Kupffer cells and related proinflammatory cytokines between WT and Grx1- groups after alcohol exposure. KEY FINDINGS: Ethanol-fed mice had increased Grx1 activity and oxidative damage in the liver. Grx1-deficient mice had more serious liver damage when exposed to ethanol compared to that of wild-type mice, accompanied by increased alanine aminotransferase and aspartate aminotransferase levels, Fas-SSG, cleaved caspase-3 and hepatocyte apoptosis. Grx1 ablation resulted in the suppression of ethanol-induced NF-κB signaling, its downstream signal, and Akt signaling cascades, which are required for protection against Fas-mediated apoptosis. Accordingly, blocking NK-κB prevented Fas-induced apoptosis in WT mice but not Grx1-/- mice. Furthermore, the number of Kupffer cells and related proinflammatory cytokines, including Akt, were lower in Grx1-/- livers than those of the controls. SIGNIFICANCE: Grx1 is essential for adaptation to alcohol exposure-induced oxidative injury by modulating Fas-SSG and Fas-induced apoptosis.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Etanol/toxicidad , Glutarredoxinas/deficiencia , Glutatión/metabolismo , Receptor fas/metabolismo , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Femenino , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Noqueados
12.
Redox Biol ; 43: 101995, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33979767

RESUMEN

Our lungs are exposed daily to airborne pollutants, particulate matter, pathogens as well as lung allergens and irritants. Exposure to these substances can lead to inflammatory responses and may induce endogenous oxidant production, which can cause chronic inflammation, tissue damage and remodeling. Notably, the development of asthma and Chronic Obstructive Pulmonary Disease (COPD) is linked to the aforementioned irritants. Some inhaled foreign chemical compounds are rapidly absorbed and processed by phase I and II enzyme systems critical in the detoxification of xenobiotics including the glutathione-conjugating enzymes Glutathione S-transferases (GSTs). GSTs, and in particular genetic variants of GSTs that alter their activities, have been found to be implicated in the susceptibility to and progression of these lung diseases. Beyond their roles in phase II metabolism, evidence suggests that GSTs are also important mediators of normal lung growth. Therefore, the contribution of GSTs to the development of lung diseases in adults may already start in utero, and continues through infancy, childhood, and adult life. GSTs are also known to scavenge oxidants and affect signaling pathways by protein-protein interaction. Moreover, GSTs regulate reversible oxidative post-translational modifications of proteins, known as protein S-glutathionylation. Therefore, GSTs display an array of functions that impact the pathogenesis of asthma and COPD. In this review we will provide an overview of the specific functions of each class of mammalian cytosolic GSTs. This is followed by a comprehensive analysis of their expression profiles in the lung in healthy subjects, as well as alterations that have been described in (epithelial cells of) asthmatics and COPD patients. Particular emphasis is placed on the emerging evidence of the regulatory properties of GSTs beyond detoxification and their contribution to (un)healthy lungs throughout life. By providing a more thorough understanding, tailored therapeutic strategies can be designed to affect specific functions of particular GSTs.


Asunto(s)
Asma , Enfermedad Pulmonar Obstructiva Crónica , Animales , Niño , Glutatión , Glutatión Transferasa , Humanos , Pulmón
13.
Front Cardiovasc Med ; 8: 649813, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33796575

RESUMEN

Background: Binge drinking has become the most common and deadly pattern of excessive alcohol use in the United States, especially among younger adults. It is closely related to the increased risk of cardiovascular disease. Oxidative stress as a result of ethanol metabolism is the primary pathogenic factor for alcohol-induced end organ injury, but the role of protein S-glutathionylation-a reversible oxidative modification of protein cysteine thiol groups that mediates cellular actions by oxidants-in binge drinking-associated cardiovascular disease has not been explored. The present study defines the effect of alcohol binge drinking on the formation of protein S-glutathionylation in a mouse model of atherosclerosis. Methods and Results: To mimic the weekend binge drinking pattern in humans, ApoE deficient (ApoE -/-) mice on the Lieber-DeCarli liquid diet received ethanol or isocaloric maltose (as a control) gavages (5 g/kg/day, 2 consecutive days/week) for 6 weeks. The primary alcohol-targeted organs (liver, brain), and cardiovascular system (heart, aorta, lung) of these two groups of the mice were determined by measuring the protein S-glutathionylation levels and its regulatory enzymes including [Glutaredoxin1(Grx1), glutathione reductase (GR), glutathione-S-transferase Pi (GST-π)], as well as by assessing aortic endothelial function and liver lipid levels. Our results showed that binge drinking selectively stimulated protein S-glutathionylation in aorta, liver, and brain, which coincided with altered glutathionylation regulatory enzyme expression that is downregulated Grx1 and upregulated GST-π in aorta, massive upregulation of GST-π in liver, and no changes in Grx1 and GST-π in brain. Functionally, binge drinking induced aortic endothelial cell function, as reflected by increased aortic permeability and reduced flow-mediated vasodilation. Conclusions: This study is the first to provide in vivo evidence for differential effects of binge drinking on formation of protein S-glutathionylation and its enzymatic regulation system in major alcohol-target organs and cardiovascular system. The selective induction of protein S-glutathionylation in aorta and liver is associated with aortic endothelial dysfunction and fatty liver, which may be a potential redox mechanism for the increased risk of vascular disease in human binge-drinkers.

14.
Antioxidants (Basel) ; 8(1)2019 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30658464

RESUMEN

Loss-of-function mutations in the KRIT1 gene are associated with the pathogenesis of cerebral cavernous malformations (CCMs), a major cerebrovascular disease still awaiting therapies. Accumulating evidence demonstrates that KRIT1 plays an important role in major redox-sensitive mechanisms, including transcriptional pathways and autophagy, which play major roles in cellular homeostasis and defense against oxidative stress, raising the possibility that KRIT1 loss has pleiotropic effects on multiple redox-sensitive systems. Using previously established cellular models, we found that KRIT1 loss-of-function affects the glutathione (GSH) redox system, causing a significant decrease in total GSH levels and increase in oxidized glutathione disulfide (GSSG), with a consequent deficit in the GSH/GSSG redox ratio and GSH-mediated antioxidant capacity. Redox proteomic analyses showed that these effects are associated with increased S-glutathionylation of distinct proteins involved in adaptive responses to oxidative stress, including redox-sensitive chaperonins, metabolic enzymes, and cytoskeletal proteins, suggesting a novel molecular signature of KRIT1 loss-of-function. Besides providing further insights into the emerging pleiotropic functions of KRIT1, these findings point definitively to KRIT1 as a major player in redox biology, shedding new light on the mechanistic relationship between KRIT1 loss-of-function and enhanced cell sensitivity to oxidative stress, which may eventually lead to cellular dysfunctions and CCM disease pathogenesis.

15.
Antioxid Redox Signal ; 27(9): 517-533, 2017 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-28338335

RESUMEN

AIMS: Trypanosomatids have a unique trypanothione-based thiol redox metabolism. The parasite-specific dithiol is synthesized from glutathione and spermidine, with glutathionylspermidine as intermediate catalyzed by trypanothione synthetase. In this study, we address the oxidative stress response of African trypanosomes with special focus on putative protein S-thiolation. RESULTS: Challenging bloodstream Trypanosoma brucei with diamide, H2O2 or hypochlorite results in distinct levels of reversible overall protein S-thiolation. Quantitative proteome analyses reveal 84 proteins oxidized in diamide-stressed parasites. Fourteen of them, including several essential thiol redox proteins and chaperones, are also enriched when glutathione/glutaredoxin serves as a reducing system indicating S-thiolation. In parasites exposed to H2O2, other sets of proteins are modified. Only three proteins are S-thiolated under all stress conditions studied in accordance with a highly specific response. H2O2 causes primarily the formation of free disulfides. In contrast, in diamide-treated cells, glutathione, glutathionylspermidine, and trypanothione are almost completely protein bound. Remarkably, the total level of trypanothione is decreased, whereas those of glutathione and glutathionylspermidine are increased, indicating partial hydrolysis of protein-bound trypanothione. Depletion of trypanothione synthetase exclusively induces protein S-glutathionylation. Total mass analyses of a recombinant peroxidase treated with T(SH)2 and either diamide or hydrogen peroxide verify protein S-trypanothionylation as stable modification. INNOVATION: Our data reveal for the first time that trypanosomes employ protein S-thiolation when exposed to exogenous and endogenous oxidative stresses and trypanothione, despite its dithiol character, forms protein-mixed disulfides. CONCLUSION: The stress-specific responses shown here emphasize protein S-trypanothionylation and S-glutathionylation as reversible protection mechanism in these parasites. Antioxid. Redox Signal. 27, 517-533.


Asunto(s)
Glutatión/análogos & derivados , Glutatión/metabolismo , Proteína S/metabolismo , Espermidina/análogos & derivados , Trypanosoma brucei brucei/metabolismo , Diamida/farmacología , Humanos , Peróxido de Hidrógeno/farmacología , Ácido Hipocloroso/farmacología , Estrés Oxidativo , Proteoma/análisis , Proteínas Protozoarias/análisis , Espermidina/metabolismo , Compuestos de Sulfhidrilo/análisis
16.
Free Radic Biol Med ; 113: 236-243, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28982600

RESUMEN

Neutrophil-derived myeloperoxidase (MPO) is recognized as a major source of oxidative stress at the airway surface of a cystic fibrosis (CF) lung where, despite limited evidence, the antioxidant glutathione is widely considered to be low. The aims of this study were to establish whether oxidative stress or glutathione status are associated with bronchiectasis and whether glutathione deficiency is inherently linked to CF or a consequence of oxidative stress. MPO was measured by ELISA in 577 bronchoalveolar lavage samples from 205 clinically-phenotyped infants and children with CF and 58 children without CF (ages 0.2-6.92 years). Reduced glutathione (GSH), oxidized glutathione species (GSSG; glutathione attached to proteins, GSSP; glutathione sulfonamide, GSA) and allantoin, an oxidation product of uric acid, were measured by mass spectrometry. The odds of having bronchiectasis were associated with MPO and GSSP. GSH was low in children with CF irrespective of oxidation. Oxidized glutathione species were significantly elevated in CF children with pulmonary infections compared to uninfected CF children. In non-CF children, infections had no effect on glutathione levels. An inadequate antioxidant response to neutrophil-mediated oxidative stress during infections exists in CF due to an inherent glutathione deficiency. Effective delivery of glutathione and inhibition of MPO may slow the development of bronchiectasis.


Asunto(s)
Bronquiectasia/metabolismo , Fibrosis Quística/metabolismo , Glutatión/deficiencia , Pulmón/metabolismo , Neutrófilos/enzimología , Peroxidasa/metabolismo , Edad de Inicio , Alantoína/metabolismo , Bronquiectasia/patología , Líquido del Lavado Bronquioalveolar/química , Estudios de Casos y Controles , Niño , Preescolar , Fibrosis Quística/patología , Femenino , Glutatión/análogos & derivados , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Humanos , Lactante , Inflamación , Pulmón/patología , Masculino , Neutrófilos/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Sulfonas/metabolismo
17.
Redox Biol ; 9: 306-319, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27693992

RESUMEN

BACKGROUND: Oxidative stress is implicated in increased vascular permeability associated with metabolic disorders, but the underlying redox mechanism is poorly defined. S-glutathionylation, a stable adduct of glutathione with protein sulfhydryl, is a reversible oxidative modification of protein and is emerging as an important redox signaling paradigm in cardiovascular physiopathology. The present study determines the role of protein S-glutathionylation in metabolic stress-induced endothelial cell permeability. METHODS AND RESULTS: In endothelial cells isolated from patients with type-2 diabetes mellitus, protein S-glutathionylation level was increased. This change was also observed in aortic endothelium in ApoE deficient (ApoE-/-) mice fed on Western diet. Metabolic stress-induced protein S-glutathionylation in human aortic endothelial cells (HAEC) was positively correlated with elevated endothelial cell permeability, as reflected by disassembly of cell-cell adherens junctions and cortical actin structures. These impairments were reversed by adenoviral overexpression of a specific de-glutathionylation enzyme, glutaredoxin-1 in cultured HAECs. Consistently, transgenic overexpression of human Glrx-1 in ApoE-/- mice fed the Western diet attenuated endothelial protein S-glutathionylation, actin cytoskeletal disorganization, and vascular permeability in the aorta. Mechanistically, glutathionylation and inactivation of Rac1, a small RhoGPase, were associated with endothelial hyperpermeability caused by metabolic stress. Glutathionylation of Rac1 on cysteine 81 and 157 located adjacent to guanine nucleotide binding site was required for the metabolic stress to inhibit Rac1 activity and promote endothelial hyperpermeability. CONCLUSIONS: Glutathionylation and inactivation of Rac1 in endothelial cells represent a novel redox mechanism of vascular barrier dysfunction associated with metabolic disorders.


Asunto(s)
Endotelio Vascular/metabolismo , Enfermedades Metabólicas/metabolismo , Oxidación-Reducción , Animales , Aorta/metabolismo , Apolipoproteínas E/genética , Permeabilidad Capilar , Línea Celular , Cisteína , Células Endoteliales/metabolismo , Expresión Génica , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutatión/metabolismo , Humanos , Masculino , Enfermedades Metabólicas/genética , Ratones , Ratones Noqueados , Mutación , Procesamiento Proteico-Postraduccional , Estrés Fisiológico , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
18.
Free Radic Biol Med ; 73: 143-53, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24816292

RESUMEN

Interleukin-17A (IL-17A) is a newly emerging player in the pathogenesis of chronic lung diseases that amplifies inflammatory responses and promotes tissue remodeling. Stimulation of lung epithelial cells with IL-17A leads to activation of the transcription factor nuclear factor κB (NF-κB), a key player in the orchestration of lung inflammation. We have previously demonstrated the importance of the redox-dependent posttranslational modification S-glutathionylation in limiting activation of NF-κB and downstream gene induction. Under physiological conditions, the enzyme glutaredoxin 1 (Grx1) acts to deglutathionylate NF-κB proteins, which restores functional activity. In this study, we sought to determine the impact of S-glutathionylation on IL-17A-induced NF-κB activation and expression of proinflammatory mediators. C10 mouse lung alveolar epithelial cells or primary mouse tracheal epithelial cells exposed to IL-17A show rapid activation of NF-κB and the induction of proinflammatory genes. Upon IL-17A exposure, sulfenic acid formation and S-glutathionylated proteins increased. Assessment of S-glutathionylation of NF-κB pathway components revealed S-glutathionylation of RelA (RelA-SSG) and inhibitory κB kinase α (IKKα-SSG) after stimulation with IL-17A. SiRNA-mediated ablation of Grx1 increased both RelA-SSG and IKKα-SSG and acutely increased nuclear content of RelA and tended to decrease nuclear RelB. SiRNA-mediated ablation or genetic ablation of Glrx1 decreased the expression of the NF-κB-regulated genes KC and CCL20 in response to IL-17A, but conversely increased the expression of IL-6. Last, siRNA-mediated ablation of IKKα attenuated nuclear RelA and RelB content and decreased expression of KC and CCL20 in response to IL-17A. Together, these data demonstrate a critical role for the S-glutathionylation/Grx1 redox axis in regulating IKKα and RelA S-glutathionylation and the responsiveness of epithelial cells to IL-17A.


Asunto(s)
Glutarredoxinas/genética , Quinasa I-kappa B/metabolismo , Interleucina-17/metabolismo , Factor de Transcripción ReIA/metabolismo , Factor de Transcripción ReIB/metabolismo , Animales , Células Cultivadas , Quimiocina CCL20/biosíntesis , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Glutatión/química , Quinasa I-kappa B/genética , Inflamación/inmunología , Inflamación/patología , Interleucina-6/biosíntesis , Pulmón/citología , Enfermedades Pulmonares/patología , Ratones , Ratones Noqueados , Oxidación-Reducción , Procesamiento Proteico-Postraduccional , Interferencia de ARN , ARN Interferente Pequeño , Mucosa Respiratoria/citología , Ácidos Sulfénicos/metabolismo , Tráquea/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA