RESUMEN
This work evaluates the feasibility of alkaline hydrogen evolution reaction (HER) using Pt single-atoms (1.0 wt %) on defect-rich ceria (Pt1/CeOx) as an active and stable dual-site catalyst. The catalyst displayed a low overpotential and a small Tafel slope in an alkaline medium. Moreover, Pt1/CeOx presented a high mass activity and excellent durability, competing with those of the commercial Pt/C (20 wt %). In this picture, the defective CeOx is active for water adsorption and dissociation to create H* intermediates, providing the first site where the reaction occurs. The H* intermediate species then migrate to adsorb and react on the Pt2+ isolated atoms, the site where H2 is formed and released. DFT calculations were also performed to obtain mechanistic insight on the Pt1/CeOx catalyst for the HER. The results indicate a new possibility to improve the state-of-the-art alkaline HER catalysts via a combined effect of the O vacancies on the ceria support and Pt2+ single atoms.
RESUMEN
As cost-effective catalysts, platinum (Pt) single-atom catalysts (SACs) have attracted substantial attention. However, most studies indicate that Pt SACs in acidic hydrogen evolution reaction (HER) follow the slow Volmer-Heyrovsky (VH) mechanism instead of the fast kinetic Volmer-Tafel (VT) pathway. Here, this work propose that the VH mechanism in Pt SACs can be switched to the faster VT pathway for efficient HER by correlating Pt single atoms (SAs) with Pt clusters (Cs). Our calculations reveal that the correlation between Pt SAs and Cs significantly impacts the electronic structure of exposed Pt atoms, lowering the adsorption barrier for atomic hydrogen and enabling a faster VT mechanism. To validate these findings, this work purposely synthesize three catalysts: l-Pt@MoS2, m-Pt@MoS2 and h-Pt@MoS2 with low, moderate, and high Pt-loading, having different distributions of Pt SAs and Cs. The m-Pt@MoS2 catalyst with properly correlating Pt SAs and Cs exhibits outstanding performance with an overpotential of 47 mV and Tafel slope of 32 mV dec-1. Further analysis of the Tafel values confirms that the m-Pt@MoS2 sample indeed follows the VT reaction mechanism, aligning with the theoretical findings. This study offers a deep understanding of the synergistic mechanism, paving a way for designing novel-advanced catalysts.
RESUMEN
Fabrication of robust isolated atom catalysts has been a research hotspot in the environment catalysis field for the removal of various contaminants, but there are still challenges in improving the reactivity and stability. Herein, through facile doping alkali metals in Pt catalyst on zirconia (Pt-Na/ZrO2), the atomically dispersed Ptδ+-O(OH)x- associated with alkali metal via oxygen bridge was successfully fabricated. This novel catalyst presented remarkably higher CO and hydrocarbon (HCs: C3H8, C7H8, C3H6, and CH4) oxidation activity than its counterpart (Pt/ZrO2). Systematically direct and solid evidence from experiments and density functional theory calculations demonstrated that the fabricated electron-rich Ptδ+-O(OH)x- related to Na species rather than the original Ptδ+-O(OH)x-, serving as the catalytically active species, can readily react with CO adsorbed on Ptδ+ to produce CO2 with significantly decreasing energy barrier in the rate-determining step from 1.97 to 0.93 eV. Additionally, owing to the strongly adsorbed and activated water by Na species, those fabricated single-site Ptδ+-O(OH)x- linked by Na species could be easily regenerated during the oxidation reaction, thus considerably boosting its oxidation reactivity and durability. Such facile construction of the alkali ion-linked active hydroxyl group was also realized by Li and K modification which could guide to the design of efficient catalysts for the removal of CO and HCs from industrial exhaust.
Asunto(s)
Oxidación-Reducción , Circonio , Catálisis , Circonio/química , Álcalis/química , Platino (Metal)/químicaRESUMEN
Electrocatalysts facilitating chlorine evolution reaction (ClER) play a vital role in chlor-alkali industries. Owing to a huge amount of chlorine consumed worldwide, inexpensive high-performing catalysts for Cl2 production are highly demanded. Here, a superb ClER catalyst fabricated through uniform dispersion of Pt single atoms (SAs) in C2 N2 moieties of N-doped graphene (denoted as Pt-1) is presented, which demonstrates near 100% exclusive ClER selectivity, long-term durability, extraordinary Cl2 production rate (3500 mmol h-1 gPt -1 ), and >140 000-fold increased mass activity over industrial electrodes in acidic medium. Excitingly, at the typical chlor-alkali industries' operating temperature (80 °C), Pt-1 supported on carbon paper electrode requires a near thermoneutral ultralow overpotential of 5 mV at 1 mA cm-2 current density to initiate the ClER, consistent with the predicted density functional theory (DFT) calculations. Altogether these results show the promising electrocatalyst of Pt-1 toward ClER.
RESUMEN
Platinum is one of the best-performing catalysts for the hydrogen evolution reaction (HER). However, high cost and scarcity severely hinder the large-scale application of Pt electrocatalysts. Constructing highly dispersed ultrasmall Platinum entities is thereby a very effective strategy to increase Pt utilization and mass activities, and reduce costs. Herein, highly dispersed Pt entities composed of a mixture of Pt single atoms, clusters, and nanoparticles are synthesized on mesoporous N-doped carbon nanospheres. The presence of Pt single atoms, clusters, and nanoparticles is demonstrated by combining among others aberration-corrected annular dark-field scanning transmission electron microscopy, X-ray absorption spectroscopy, and electrochemical CO stripping. The best catalyst exhibits excellent geometric and Pt HER mass activity, respectively ≈4 and 26 times higher than that of a commercial Pt/C reference and a Pt catalyst supported on nonporous N-doped carbon nanofibers with similar Pt loadings. Noteworthily, after optimization of the geometrical Pt electrode loading, the best catalyst exhibits ultrahigh Pt and catalyst mass activities (56 ± 3 A mg-1 Pt and 11.7 ± 0.6 A mg-1 Cat at -50 mV vs. reversible hydrogen electrode), which are respectively ≈1.5 and 58 times higher than the highest Pt and catalyst mass activities for Pt single-atom and cluster-based catalysts reported so far.
RESUMEN
Near-infrared (NIR) light-driven overall water splitting beyond 800â nm remains a high-priority target yet great challenge. Here we report that efficient utilization of photogenerated electrons in a photosensitized system prepared by site-selective photodeposition of platinum single atoms/clusters (Pt-SACs) on Ni-phytate (PA-Ni)-sensitized polymeric carbon nitride (PCN). The optimal catalyst presents simultaneous hydrogen (H2 ) and oxygen (O2 ) evolution with an H2 evolution amount of 1.4â µmol at λ>800â nm for 24â hours, which its activity was approximately 140â times higher than that of a system without Pt-SAC modification (PA-Ni1.1 @PCN). This work represents the first NIR-light responsive photosensitized system for overall water splitting, and may open an avenue for precisely manipulating cocatalyst positions at the atomic level to improve NIR-light-driven overall water splitting via photosensitization.
RESUMEN
Engineering noble metal nanostructures at the atomic level can significantly optimize their electrocatalytic performance and remarkably reduce their usage. We report the synthesis of atomically dispersed Pt on screw-like Pd/Au nanowires by using ultrafine Pd nanowires as seeds. Au can selectively grow on the surface of Pd nanowires by an island growth pattern to fabricate surface defect sites to load atomically dispersed Pt, which can be confirmed by X-ray absorption fine structure measurements and aberration corrected HRTEM images. The nanowires with 2.74â at % Pt exhibit superior HER properties in acidic solution with an overpotential of 20.6â mV at 10â mA cm-2 and enhanced alkaline ORR performance with a mass activity over 15â times greater than the commercial platinum/carbon (Pt/C) catalysts.
RESUMEN
Monitoring ascorbic acid (AA) levels in human body can provide valuable clues for disease diagnosis. Anchoring noble metal single atoms on perovskite substrate is a promising strategy to design electrocatalysts with outstanding electrocatalytic performance. Herein, we design an electrochemical method for detecting AA by utilizing Pt single atoms-doped CsPbBr3 nanocrystals (Pt SA/CsPbBr3 NCs) fixed on a glassy carbon electrode as an electrochemical catalyst. The uncharged 3,5,3',5'-tetramethylbenzidine (TMB) undergoes oxidation to form the positively charged oxidized TMB (oxTMB) owing to the exceptional electrochemical catalytic performance of Pt SA/CsPbBr3 NCs. Subsequently, the target AA reduces oxTMB to TMB, which is then electrocatalytically oxidized to oxTMB, producing significant oxidation current. In this way, such characteristic provides a sensitive electrochemical strategy for AA detection, achieving a concentration range of 50-fold with the detection limit of 0.0369 µM. The developed electrochemical method also successfully generates accurate detection response of AA in complex sample media (urine). Overall, this approach is expected to offer a novel way for early disease diagnosis.
Asunto(s)
Ácido Ascórbico , Técnicas Electroquímicas , Nanopartículas , Platino (Metal) , Ácido Ascórbico/análisis , Ácido Ascórbico/química , Platino (Metal)/química , Catálisis , Técnicas Electroquímicas/métodos , Nanopartículas/química , Electrodos , Humanos , Límite de Detección , Oxidación-Reducción , Bencidinas/químicaRESUMEN
Single-atom (SA) catalysts with nearly 100% atom utilization have been widely employed in electrolysis for decades, due to the outperforming catalytic activity and selectivity. However, most of the reported SA catalysts are fixed through the strong bonding between the dispersed single metallic atoms with nonmetallic atoms of the substrates, which greatly limits the controllable regulation of electrocatalytic activity of SA catalysts. In this work, Pt-Ni bonded Pt SA catalyst with adjustable electronic states was successfully constructed through a controllable electrochemical reduction on the coordination unsaturated amorphous Ni(OH)2 nanosheet arrays. Based on the X-ray absorption fine structure analysis and first-principles calculations, Pt SA was bonded with Ni sites of amorphous Ni(OH)2, rather than conventional O sites, resulting in negatively charged Ptδ-. In situ Raman spectroscopy revealed that the changed configuration and electronic states greatly enhanced absorbability for activated hydrogen atoms, which were the essential intermediate for alkaline hydrogen evolution reaction. The hydrogen spillover process was revealed from amorphous Ni(OH)2 that effectively cleave the H-O-H bond of H2O and produce H atom to the Pt SA sites, leading to a low overpotential of 48 mV in alkaline electrolyte at -1000 mA cm-2 mg-1Pt, evidently better than commercial Pt/C catalysts. This work provided new strategy for the controllable modulation of the local structure of SA catalysts and the systematic regulation of the electronic states.
RESUMEN
Pursuing high power density with low platinum catalysts loading is a huge challenge for developing high-performance fuel cells (FCs). Herein, a new super fuel cell (SFC) is proposed with ultrahigh output power via specific electric double-layer capacitance (EDLC) + oxygen reduction reaction (ORR) parallel discharge, which is achieved using the newly prepared catalyst, single-atomic platinum on bimetallic metal-organic framework (MOF)-derived hollow porous carbon nanorods (PtSA /HPCNR). The PtSA-1.74 /HPCNR-based SFC has a 3.4-time higher transient specific power density and 13.3-time longer discharge time with unique in situ self-charge and energy storage ability than 20% Pt/C-based FCs. X-ray absorption fine structure, aberration-corrected high-angle annular dark-field scanning transmission electron microscope, and density functional theory calculations demonstrate that the synergistic effect of Pt single-atoms anchored on carbon defects significantly boosts its electron transfer, ORR catalytic activity, durability, and rate performance, realizing rapid " ORR+EDLC" parallel discharge mechanism to overcome the sluggish ORR process of traditional FCs. The promising SFC leads to a new pathway to boost the power density of FCs with extra-low Pt loading.
RESUMEN
High-performance production of green hydrogen gas is necessary to develop renewable energy generation technology and to safeguard the living environment. This study reports a controllable engineering approach to tailor the structure of nickel-layered double hydroxides via doped and absorbed platinum single atoms (PtSA) promoted by low electronegative transition metal (Mn, Fe) moieties (PtSA-Mn,Fe-Ni LDHs). We explore that the electron donation from neighboring transition metal moieties results in the well-adjusted d-band center with the low valence states of PtSA(doped) and PtSA(ads.), thus optimizing adsorption energy to effectively accelerate the H2 release. Meanwhile, a tailored local chemical environment on transition metal centers with unique charge redistribution and high valence states functions as the main center for H2O catalytic dissociation into oxygen. Therefore, the PtSA-Mn,Fe-Ni LDH material possesses a small overpotential of 42 and 288 mV to reach 10 mA·cm-2 for hydrogen and oxygen evolution, respectively, superior to most reported LDH-based catalysts. Additionally, the mass activity of PtSA-Mn,Fe-Ni LDHs proves to be 15.45 times higher than that of commercial Pt-C. The anion exchange membrane electrolyzer stack of PtSA-Mn,Fe-Ni LDHs(+,-) delivers a cell voltage of 1.79 V at 0.5 A·cm-2 and excellent durability over 600 h. This study presents a promising electrocatalyst for a practical water splitting process.
RESUMEN
The degradation of volatile organic compounds (VOCs) at low temperature remains a big challenge. Photothermal catalysis coupling the advantages of photocatalysis and thermocatalysis is promising to address this issue. However, there is still a long way to construct highly active catalysts and deeply understand the mechanism of photothermal catalysis. Herein, maganese oxide (MnO2)catalysts embedded with Pt single-atoms (0.11 wt% Pt) have achieved greatly enhanced toluene conversion of 95%, far surpassing most supported Pt photothermal catalysts. The excellent catalytic activity has been disclosed to derive from the synergetic effect oflight-driven thermocatalysis and photocatalysis. The light-driven thermocatalysis predominates and the strong electron transfer from Pt single-atoms to MnO2 improves the activity of surface lattice oxygen to boost the generation of benzoic acid and the mineralization of toluene. Meanwhile, in photocatalytic process, Pt single-atoms accelerate the generation of superoxide radicals (O2-), which facilitate the ring-opening and deep oxidation of toluene. This understanding on the photothermal synergetic mechanism will inspire the design of highly efficient catalysts for VOCs oxidation.
RESUMEN
Achieving high atomic utilization and low cost of desirable Pt/TiO2 catalysts is a major challenge for room temperature HCHO oxidation. Here, the strategy of anchoring stable Pt single atoms by abundant oxygen vacancies over TiO2-nanosheet-assembled hierarchical spheres (Pt1/TiO2-HS) was designed to eliminate HCHO. A superior HCHO oxidation activity and CO2 yield (â¼100% CO2 yield) at relative humidity (RH) > 50% over Pt1/TiO2-HS is achieved for long-term run. We attribute the excellent HCHO oxidation performance to the stable isolated Pt single atoms anchored on the defective TiO2-HS surface. The Ptδ+ on the Pt1/TiO2-HS surface has a facile intense electron transfer with the support by forming Pt-O-Ti linkages, driving HCHO oxidation effectively. Further in situ HCHO-DRIFTS revealed that the dioxymethylene (DOM) and HCOOH/HCOO- intermediates were further degraded via active OH- and adsorbed oxygen on the Pt1/TiO2-HS surface, respectively. This work may pave the way for the next generation of advanced catalytic materials for high-efficiency catalytic HCHO oxidation at room temperature.
RESUMEN
In the energy transition context, the design and synthesis of high-performance Pt-based photocatalysts with low Pt content and ultrahigh atom-utilization efficiency for hydrogen production are essential. Herein, a facile approach for decorating atomically dispersed Pt cocatalysts having single-atom (SA) and atomic cluster (C) dual active sites on CdS nanorods (PtSA+C /CdS) via atomic layer deposition is reported. The size of the cocatalyst and the spatial intimacy of the cocatalyst active sites are precisely engineered at the atomic scale. The PtSA+C /CdS photocatalysts show the optimized photocatalytic hydrogen evolution activity, achieving a reaction rate of 80.4 mmol h-1 g-1 , which is 1.6- and 7.3-fold higher than those of the PtSA /CdS and PtNP /CdS photocatalysts, respectively. Thorough characterization and theoretical calculations reveal that the enhanced photocatalytic activity is due to a remarkable synergy between SAs and atomic clusters as dual active sites, which are responsible for water adsorption-dissociation and hydrogen desorption, respectively. A similar synergetic effect is found in a representative Pt/TiO2 system, indicating the generality of the strategy. This study demonstrates the significance of the synergy between active sites for enhancing the reaction efficiency, opening a new avenue for the rational design of atomically dispersed photocatalysts with high efficiency.
RESUMEN
Rationally designing broad-spectrum photocatalysts to harvest whole visible-light region photons and enhance solar energy conversion is a "holy grail" for researchers, but is still a challenging issue. Herein, based on the common polymeric carbon nitride (PCN), a hybrid co-catalysts system comprising plasmonic Au nanoparticles (NPs) and atomically dispersed Pt single atoms (PtSAs) with different functions was constructed to address this challenge. For the dual co-catalysts decorated PCN (PtSAs-Au2.5/PCN), the PCN is photoexcited to generate electrons under UV and short-wavelength visible light, and the synergetic Au NPs and PtSAs not only accelerate charge separation and transfer though Schottky junctions and metal-support bond but also act as the co-catalysts for H2 evolution. Furthermore, the Au NPs absorb long-wavelength visible light owing to its localized surface plasmon resonance, and the adjacent PtSAs trap the plasmonic hot-electrons for H2 evolution via direct electron transfer effect. Consequently, the PtSAs-Au2.5/PCN exhibits excellent broad-spectrum photocatalytic H2 evolution activity with the H2 evolution rate of 8.8 mmol g-1 h-1 at 420 nm and 264 µmol g-1 h-1 at 550 nm, much higher than that of Au2.5/PCN and PtSAs-PCN, respectively. This work provides a new strategy to design broad-spectrum photocatalysts for energy conversion reaction.
RESUMEN
Electrocatalysis in neutral conditions is appealing for hydrogen production by utilizing abundant wastewater or seawater resources. Single-atom catalysts (SACs) immobilized on supports are considered one of the most promising strategies for electrocatalysis research. While they have principally exhibited breakthrough activity and selectivity for the hydrogen evolution reaction (HER) electrocatalysis in alkaline or acidic conditions, few SACs were reported for HER in neutral media. Herein, we report a facile strategy to tailor the water dissociation active sites on the NiFe LDH by inducing Mo species and an ultralow single atomic Pt loading. The defected NiFeMo LDH (V-NiFeMo LDH) shows HER activity with an overpotential of 89 mV at 10 mA cm-2 in 1 M phosphate buffer solutions. The induced Mo species and the transformed NiO/Ni phases after etching significantly increase the electron conductivity and the catalytic active sites. A further enhancement can be achieved by modulating the ultralow single atom Pt anchored on the V-NiFeMo LDH by potentiostatic polarization. A potential as low as 37 mV is obtained at 10 mA cm-2 with a pronounced long-term durability over 110 h, surpassing its crystalline LDH materials and most of the HER catalysts in neutral medium. Experimental and density functional theory calculation results have demonstrated that the synergistic effects of Mo/SAs Pt and phase transformation into NiFe LDH reduce the kinetic energy barrier of the water dissociation process and promote the H* conversion for accelerating the neutral HER.
RESUMEN
Maintaining high activity during prolonged catalysis is always the pursuit in catalytic degradation of organic pollutants. For indoor formaldehyde (HCHO) degradation, the accumulation of intermediates is the major factor limiting the conversion of HCHO to final product CO2 (HCHO-to-CO2 conversion) and long-lasting catalysis. Herein, a three-dimensional radialized nanostructure catalyst self-assembled by MnOOH/MnO2 nanosheets anchored with Pt single atoms (PtSA-MnOOH/MnO2 with a trace platinum loading amount of 0.09%) is developed by thermally assisted two-step electrochemical method, which achieves enhanced CO2 production in catalytic HCHO degradation at the room temperature by the collaborative action of active hydroxyl (OH*) and active oxygen species (O2*). By boosting intermediates' decomposing, the catalyst implements real-time HCHO-to-CO2 conversion (â¼85.7%) and long-term continuous HCHO removal (â¼98%) during 100 h in a 15 ppm HCHO atmosphere at 25 °C under a weight hourly space velocity of 30000 mL/gcatâh. Density functional theory calculation shows that the formation energy of O2* from O2 over PtSA-MnOOH/MnO2 is nearly half lower than that over Pt-MnO2 catalyst. And decomposing accumulated intermediates gives the credit to OH* species sustainably generated by the combined action of MnOOH and O2*. The synergistic action between PtSA and MnOOH contributes to the continuous production of O2* and OH* for enhancing CO2 production in indoor catalytic formaldehyde degradation.
Asunto(s)
Contaminantes Ambientales , Platino (Metal) , Especies Reactivas de Oxígeno , Compuestos de Manganeso/química , Dióxido de Carbono , Oxidación-Reducción , Óxidos/química , Catálisis , Formaldehído/química , Radical HidroxiloRESUMEN
The electronic metal-support interaction (EMSI) plays a crucial role in catalysis as it can induce electron transfer between metal and support, modulate the electronic state of the supported metal, and optimize the reduction of intermediate species. In this work, the tailoring of electronic structure of Pt single atoms supported on N-doped mesoporous hollow carbon spheres (Pt1 /NMHCS) via strong EMSI engineering is reported. The Pt1 /NMHCS composite is much more active and stable than the nanoparticle (PtNP ) counterpart and commercial 20 wt% Pt/C for catalyzing the electrocatalytic hydrogen evolution reaction (HER), exhibiting a low overpotential of 40 mV at a current density of 10 mA cm-2 , a high mass activity of 2.07 A mg-1 Pt at 50 mV overpotential, a large turnover frequency of 20.18 s-1 at 300 mV overpotential, and outstanding durability in acidic electrolyte. Detailed spectroscopic characterizations and theoretical simulations reveal that the strong EMSI effect in a unique N1 -Pt1 -C2 coordination structure significantly tailors the electronic structure of Pt 5d states, resulting in promoted reduction of adsorbed proton, facilitated H-H coupling, and thus Pt-like HER activity. This work provides a constructive route for precisely designing single-Pt-atom-based robust electrocatalysts with high HER activity and durability.
RESUMEN
Platinum-based single-atom catalysts (SACs) are among the most promising candidates for the practical applications of electrochemical hydrogen evolution reaction (HER), but their catalytic efficiency remains to be further enhanced. Herein, a well-designed nanoarray-structured nitrogen-doped graphite foil (NNGF) substrate is introduced to support Pt SACs in Pt-N4 construction (Pt1/NNGF) for HER. Within NNGF, the constructed nanoarray-structured surficial layer for supporting Pt SACs could enhance the exposure of active sites to the electrolyte and improve the reaction and diffusion kinetics; meanwhile, the retained graphite structures in bulk NNGF provide not only the required electrical conductivity but also the mechanical stability and flexibility. Because of such double-layer structures of NNGF, stable Pt-N4 construction, and binder-free advantages, the Pt1/NNGF electrode exhibits a low overpotential of 0.023 V at 10 mA cm-2 and a small Tafel slope of 29.1 mV dec-1 as well as an excellent long-term durability.
RESUMEN
Identification of the chemical states of catalytic sites is critical for an atomic-level understanding of catalytic mechanisms. Herein, hydrogen thermal pretreatment of the Pt single atoms on porous nanorods of CeO2 (Pt1/ PN-CeO2) induced the formation of isolated bimetallic PtCe sites as a new type of active center for CO oxidation. The evolutions of Pt1/ PN-CeO2 catalysts during the hydrogen pretreatment and CO oxidation were examined by various in situ techniques including infrared, ambient-pressure X-ray photoelectron and X-ray absorption spectroscopy. The experimental results demonstrate that these bimetallic sites can be partially preserved or reoxidized into Pt-O-Ce with a low coordination number with oxygen under realistic conditions, leading to the appropriate CO adsorption and activating the efficient activity of Pt1/ PN-CeO2 for CO oxidation at low temperature.