Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80.300
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(14): 3506-3530, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38996486

RESUMEN

Fibrotic interstitial lung diseases (fILDs) have poor survival rates and lack effective therapies. Despite evidence for immune mechanisms in lung fibrosis, immunotherapies have been unsuccessful for major types of fILD. Here, we review immunological mechanisms in lung fibrosis that have the potential to impact clinical practice. We first examine innate immunity, which is broadly involved across fILD subtypes. We illustrate how innate immunity in fILD involves a complex interplay of multiple cell subpopulations and molecular pathways. We then review the growing evidence for adaptive immunity in lung fibrosis to provoke a re-examination of its role in clinical fILD. We close with future directions to address key knowledge gaps in fILD pathobiology: (1) longitudinal studies emphasizing early-stage clinical disease, (2) immune mechanisms of acute exacerbations, and (3) next-generation immunophenotyping integrating spatial, genetic, and single-cell approaches. Advances in these areas are essential for the future of precision medicine and immunotherapy in fILD.


Asunto(s)
Inmunidad Innata , Enfermedades Pulmonares Intersticiales , Humanos , Enfermedades Pulmonares Intersticiales/inmunología , Enfermedades Pulmonares Intersticiales/patología , Animales , Inmunidad Adaptativa , Inmunoterapia , Fibrosis Pulmonar/inmunología , Fibrosis Pulmonar/patología , Pulmón/patología , Pulmón/inmunología
2.
Cell ; 184(5): 1362-1376.e18, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33545087

RESUMEN

Lungfishes are the closest extant relatives of tetrapods and preserve ancestral traits linked with the water-to-land transition. However, their huge genome sizes have hindered understanding of this key transition in evolution. Here, we report a 40-Gb chromosome-level assembly of the African lungfish (Protopterus annectens) genome, which is the largest genome assembly ever reported and has a contig and chromosome N50 of 1.60 Mb and 2.81 Gb, respectively. The large size of the lungfish genome is due mainly to retrotransposons. Genes with ultra-long length show similar expression levels to other genes, indicating that lungfishes have evolved high transcription efficacy to keep gene expression balanced. Together with transcriptome and experimental data, we identified potential genes and regulatory elements related to such terrestrial adaptation traits as pulmonary surfactant, anxiolytic ability, pentadactyl limbs, and pharyngeal remodeling. Our results provide insights and key resources for understanding the evolutionary pathway leading from fishes to humans.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Peces/genética , Secuenciación Completa del Genoma , Aletas de Animales/anatomía & histología , Aletas de Animales/fisiología , Animales , Extremidades/anatomía & histología , Extremidades/fisiología , Peces/anatomía & histología , Peces/clasificación , Peces/fisiología , Filogenia , Fenómenos Fisiológicos Respiratorios , Sistema Respiratorio/anatomía & histología , Vertebrados/genética
3.
Cell ; 184(26): 6243-6261.e27, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34914922

RESUMEN

COVID-19-induced "acute respiratory distress syndrome" (ARDS) is associated with prolonged respiratory failure and high mortality, but the mechanistic basis of lung injury remains incompletely understood. Here, we analyze pulmonary immune responses and lung pathology in two cohorts of patients with COVID-19 ARDS using functional single-cell genomics, immunohistology, and electron microscopy. We describe an accumulation of CD163-expressing monocyte-derived macrophages that acquired a profibrotic transcriptional phenotype during COVID-19 ARDS. Gene set enrichment and computational data integration revealed a significant similarity between COVID-19-associated macrophages and profibrotic macrophage populations identified in idiopathic pulmonary fibrosis. COVID-19 ARDS was associated with clinical, radiographic, histopathological, and ultrastructural hallmarks of pulmonary fibrosis. Exposure of human monocytes to SARS-CoV-2, but not influenza A virus or viral RNA analogs, was sufficient to induce a similar profibrotic phenotype in vitro. In conclusion, we demonstrate that SARS-CoV-2 triggers profibrotic macrophage responses and pronounced fibroproliferative ARDS.


Asunto(s)
COVID-19/patología , COVID-19/virología , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/virología , Macrófagos/patología , Macrófagos/virología , SARS-CoV-2/fisiología , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , COVID-19/diagnóstico por imagen , Comunicación Celular , Estudios de Cohortes , Fibroblastos/patología , Regulación de la Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Fibrosis Pulmonar Idiopática/genética , Células Madre Mesenquimatosas/patología , Fenotipo , Proteoma/metabolismo , Receptores de Superficie Celular/metabolismo , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/virología , Tomografía Computarizada por Rayos X , Transcripción Genética
4.
Cell ; 184(8): 1990-2019, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33811810

RESUMEN

The population is aging at a rate never seen before in human history. As the number of elderly adults grows, it is imperative we expand our understanding of the underpinnings of aging biology. Human lungs are composed of a unique panoply of cell types that face ongoing chemical, mechanical, biological, immunological, and xenobiotic stress over a lifetime. Yet, we do not fully appreciate the mechanistic drivers of lung aging and why age increases the risk of parenchymal lung disease, fatal respiratory infection, and primary lung cancer. Here, we review the molecular and cellular aspects of lung aging, local stress response pathways, and how the aging process predisposes to the pathogenesis of pulmonary disease. We place these insights into context of the COVID-19 pandemic and discuss how innate and adaptive immunity within the lung is altered with age.


Asunto(s)
Envejecimiento , Senescencia Celular , Enfermedades Pulmonares , Pulmón , Inmunidad Adaptativa , Anciano , Envejecimiento/inmunología , Envejecimiento/patología , COVID-19/inmunología , COVID-19/patología , Humanos , Pulmón/inmunología , Pulmón/patología , Enfermedades Pulmonares/inmunología , Enfermedades Pulmonares/patología , Estrés Oxidativo
5.
Cell ; 183(2): 442-456.e16, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32937107

RESUMEN

Hantaviruses are rodent-borne viruses causing serious zoonotic outbreaks worldwide for which no treatment is available. Hantavirus particles are pleomorphic and display a characteristic square surface lattice. The envelope glycoproteins Gn and Gc form heterodimers that further assemble into tetrameric spikes, the lattice building blocks. The glycoproteins, which are the sole targets of neutralizing antibodies, drive virus entry via receptor-mediated endocytosis and endosomal membrane fusion. Here we describe the high-resolution X-ray structures of the heterodimer of Gc and the Gn head and of the homotetrameric Gn base. Docking them into an 11.4-Å-resolution cryoelectron tomography map of the hantavirus surface accounted for the complete extramembrane portion of the viral glycoprotein shell and allowed a detailed description of the surface organization of these pleomorphic virions. Our results, which further revealed a built-in mechanism controlling Gc membrane insertion for fusion, pave the way for immunogen design to protect against pathogenic hantaviruses.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/ultraestructura , Orthohantavirus/química , Glicoproteínas/química , Glicoproteínas/ultraestructura , Orthohantavirus/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/fisiología , Conformación Proteica , Virus ARN , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/ultraestructura , Virión , Internalización del Virus
6.
Cell ; 169(3): 497-509.e13, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28431248

RESUMEN

The environmentally widespread polysaccharide chitin is degraded and recycled by ubiquitous bacterial and fungal chitinases. Although vertebrates express active chitinases from evolutionarily conserved loci, their role in mammalian physiology is unclear. We show that distinct lung epithelial cells secrete acidic mammalian chitinase (AMCase), which is required for airway chitinase activity. AMCase-deficient mice exhibit premature morbidity and mortality, concomitant with accumulation of environmentally derived chitin polymers in the airways and expression of pro-fibrotic cytokines. Over time, these mice develop spontaneous pulmonary fibrosis, which is ameliorated by restoration of lung chitinase activity by genetic or therapeutic approaches. AMCase-deficient epithelial cells express fibrosis-associated gene sets linked with cell stress pathways. Mice with lung fibrosis due to telomere dysfunction and humans with interstitial lung disease also accumulate excess chitin polymers in their airways. These data suggest that altered chitin clearance could exacerbate fibrogenic pathways in the setting of lung diseases characterized by epithelial cell dysfunction.


Asunto(s)
Envejecimiento/patología , Quitina/toxicidad , Quitinasas/metabolismo , Enfermedades Pulmonares/patología , Animales , Aspergillus niger , Quitinasas/genética , Citocinas/metabolismo , Células Epiteliales/patología , Fibrosis/patología , Técnicas de Sustitución del Gen , Inflamación/patología , Pulmón/patología , Ratones , Ratones Noqueados , Pyroglyphidae/química , Transducción de Señal
7.
Immunity ; 55(9): 1564-1580, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36103853

RESUMEN

Tissue-resident alveolar and interstitial macrophages and recruited macrophages are critical players in innate immunity and maintenance of lung homeostasis. Until recently, assessing the differential functional contributions of tissue-resident versus recruited macrophages has been challenging because they share overlapping cell surface markers, making it difficult to separate them using conventional methods. This review describes how scRNA-seq and spatial transcriptomics can separate these subpopulations and help unravel the complexity of macrophage biology in homeostasis and disease. First, we provide a guide to identifying and distinguishing lung macrophages from other mononuclear phagocytes in humans and mice. Second, we outline emerging concepts related to the development and function of the various lung macrophages in the alveolar, perivascular, and interstitial niches. Finally, we describe how different tissue states profoundly alter their functions, including acute and chronic lung disease, cancer, and aging.


Asunto(s)
Enfermedades Pulmonares , Macrófagos Alveolares , Animales , Biología , Humanos , Pulmón , Macrófagos , Ratones
8.
Physiol Rev ; 103(3): 1827-1897, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36422993

RESUMEN

The pulmonary circulation is a low-resistance, low-pressure, and high-compliance system that allows the lungs to receive the entire cardiac output. Pulmonary arterial pressure is a function of cardiac output and pulmonary vascular resistance, and pulmonary vascular resistance is inversely proportional to the fourth power of the intraluminal radius of the pulmonary artery. Therefore, a very small decrease of the pulmonary vascular lumen diameter results in a significant increase in pulmonary vascular resistance and pulmonary arterial pressure. Pulmonary arterial hypertension is a fatal and progressive disease with poor prognosis. Regardless of the initial pathogenic triggers, sustained pulmonary vasoconstriction, concentric vascular remodeling, occlusive intimal lesions, in situ thrombosis, and vascular wall stiffening are the major and direct causes for elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension and other forms of precapillary pulmonary hypertension. In this review, we aim to discuss the basic principles and physiological mechanisms involved in the regulation of lung vascular hemodynamics and pulmonary vascular function, the changes in the pulmonary vasculature that contribute to the increased vascular resistance and arterial pressure, and the pathogenic mechanisms involved in the development and progression of pulmonary hypertension. We focus on reviewing the pathogenic roles of membrane receptors, ion channels, and intracellular Ca2+ signaling in pulmonary vascular smooth muscle cells in the development and progression of pulmonary hypertension.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Humanos , Hipertensión Arterial Pulmonar/patología , Canales Iónicos , Pulmón , Vasoconstricción/fisiología , Señalización del Calcio/fisiología , Miocitos del Músculo Liso
9.
Immunity ; 54(9): 2042-2056.e8, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34407391

RESUMEN

Recruitment of immune cells to the site of inflammation by the chemokine CCL1 is important in the pathology of inflammatory diseases. Here, we examined the role of CCL1 in pulmonary fibrosis (PF). Bronchoalveolar lavage fluid from PF mouse models contained high amounts of CCL1, as did lung biopsies from PF patients. Immunofluorescence analyses revealed that alveolar macrophages and CD4+ T cells were major producers of CCL1 and targeted deletion of Ccl1 in these cells blunted pathology. Deletion of the CCL1 receptor Ccr8 in fibroblasts limited migration, but not activation, in response to CCL1. Mass spectrometry analyses of CCL1 complexes identified AMFR as a CCL1 receptor, and deletion of Amfr impaired fibroblast activation. Mechanistically, CCL1 binding triggered ubiquitination of the ERK inhibitor Spry1 by AMFR, thus activating Ras-mediated profibrotic protein synthesis. Antibody blockade of CCL1 ameliorated PF pathology, supporting the therapeutic potential of targeting this pathway for treating fibroproliferative lung diseases.


Asunto(s)
Quimiocina CCL1/metabolismo , Fibroblastos/metabolismo , Proteínas de la Membrana/metabolismo , Miofibroblastos/metabolismo , Fosfoproteínas/metabolismo , Fibrosis Pulmonar/metabolismo , Receptores del Factor Autocrino de Motilidad/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Diferenciación Celular/fisiología , Fibroblastos/patología , Humanos , Ratones , Miofibroblastos/patología , Fibrosis Pulmonar/patología , Transducción de Señal/fisiología
10.
Immunity ; 54(6): 1200-1218.e9, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33951416

RESUMEN

Tissue macrophages self-renew during homeostasis and produce inflammatory mediators upon microbial infection. We examined the relationship between proliferative and inflammatory properties of tissue macrophages by defining the impact of the Wnt/ß-catenin pathway, a central regulator of self-renewal, in alveolar macrophages (AMs). Activation of ß-catenin by Wnt ligand inhibited AM proliferation and stemness, but promoted inflammatory activity. In a murine influenza viral pneumonia model, ß-catenin-mediated AM inflammatory activity promoted acute host morbidity; in contrast, AM proliferation enabled repopulation of reparative AMs and tissue recovery following viral clearance. Mechanistically, Wnt treatment promoted ß-catenin-HIF-1α interaction and glycolysis-dependent inflammation while suppressing mitochondrial metabolism and thereby, AM proliferation. Differential HIF-1α activities distinguished proliferative and inflammatory AMs in vivo. This ß-catenin-HIF-1α axis was conserved in human AMs and enhanced HIF-1α expression associated with macrophage inflammation in COVID-19 patients. Thus, inflammatory and reparative activities of lung macrophages are regulated by ß-catenin-HIF-1α signaling, with implications for the treatment of severe respiratory diseases.


Asunto(s)
COVID-19/inmunología , COVID-19/virología , Autorrenovación de las Células/inmunología , Interacciones Huésped-Patógeno/inmunología , Macrófagos/inmunología , SARS-CoV-2/inmunología , Biomarcadores , COVID-19/metabolismo , Citocinas/metabolismo , Susceptibilidad a Enfermedades/inmunología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Mediadores de Inflamación/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Transducción de Señal
11.
Physiol Rev ; 102(4): 1703-1720, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35532056

RESUMEN

Parenchymal lung disease is the fourth leading cause of death in the United States; among the top causes, it continues on the rise. Telomeres and telomerase have historically been linked to cellular processes related to aging and cancer, but surprisingly, in the recent decade genetic discoveries have linked the most apparent manifestations of telomere and telomerase dysfunction in humans to the etiology of lung disease: both idiopathic pulmonary fibrosis (IPF) and emphysema. The short telomere defect is pervasive in a subset of IPF patients, and human IPF is the phenotype most intimately tied to germline defects in telomere maintenance. One-third of families with pulmonary fibrosis carry germline mutations in telomerase or other telomere maintenance genes, and one-half of patients with apparently sporadic IPF have short telomere length. Beyond explaining genetic susceptibility, short telomere length uncovers clinically relevant syndromic extrapulmonary disease, including a T-cell immunodeficiency and a propensity to myeloid malignancies. Recognition of this subset of patients who share a unifying molecular defect has provided a precision medicine paradigm wherein the telomere-mediated lung disease diagnosis provides more prognostic value than histopathology or multidisciplinary evaluation. Here, we critically evaluate this progress, emphasizing how the genetic findings put forth a new pathogenesis paradigm of age-related lung disease that links telomere abnormalities to alveolar stem senescence, remodeling, and defective gas exchange.


Asunto(s)
Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares , Telomerasa , Humanos , Fibrosis Pulmonar Idiopática/genética , Pulmón/metabolismo , Enfermedades Pulmonares/genética , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo , Telómero/patología
12.
Immunity ; 51(3): 522-534.e7, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31471107

RESUMEN

Although recent progress provides mechanistic insights into the pathogenesis of pulmonary fibrosis (PF), rare anti-PF therapeutics show definitive promise for treating this disease. Repeated lung epithelial injury results in injury-repairing response and inflammation, which drive the development of PF. Here, we report that chronic lung injury inactivated the ubiquitin-editing enzyme A20, causing progressive accumulation of the transcription factor C/EBPß in alveolar macrophages (AMs) from PF patients and mice, which upregulated a number of immunosuppressive and profibrotic factors promoting PF development. In response to chronic lung injury, elevated glycogen synthase kinase-3ß (GSK-3ß) interacted with and phosphorylated A20 to suppress C/EBPß degradation. Ectopic expression of A20 or pharmacological restoration of A20 activity by disturbing the A20-GSK-3ß interaction accelerated C/EBPß degradation and showed potent therapeutic efficacy against experimental PF. Our study indicates that a regulatory mechanism of the GSK-3ß-A20-C/EBPß axis in AMs may be a potential target for treating PF and fibroproliferative lung diseases.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Macrófagos/metabolismo , Fibrosis Pulmonar/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo , Animales , Línea Celular , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células HEK293 , Humanos , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Fosforilación/fisiología , Transducción de Señal/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/fisiología , Regulación hacia Arriba/fisiología
13.
Immunity ; 50(3): 692-706.e7, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30824326

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a severe form of lung fibrosis with a high mortality rate. However, the etiology of IPF remains unknown. Here, we report that alterations in lung microbiota critically promote pulmonary fibrosis pathogenesis. We found that lung microbiota was dysregulated, and the dysregulated microbiota in turn induced production of interleukin-17B (IL-17B) during bleomycin-induced mouse lung fibrosis. Either lung-microbiota depletion or IL-17B deficiency ameliorated the disease progression. IL-17B cooperated with tumor necrosis factor-α to induce expression of neutrophil-recruiting genes and T helper 17 (Th17)-cell-promoting genes. Three pulmonary commensal microbes, which belong to the genera Bacteroides and Prevotella, were identified to promote fibrotic pathogenesis through IL-17R signaling. We further defined that the outer membrane vesicles (OMVs) that were derived from the identified commensal microbes induced IL-17B production through Toll-like receptor-Myd88 adaptor signaling. Together our data demonstrate that specific pulmonary symbiotic commensals can promote lung fibrosis by regulating a profibrotic inflammatory cytokine network.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/microbiología , Interleucina-17/metabolismo , Pulmón/metabolismo , Pulmón/microbiología , Microbiota/fisiología , Animales , Bacteroides/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/metabolismo , Neutrófilos/metabolismo , Prevotella/metabolismo , Transducción de Señal/fisiología , Receptores Toll-Like/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
14.
Semin Immunol ; 65: 101672, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36469987

RESUMEN

Treatment of tuberculosis (TB) involves the administration of anti-mycobacterial drugs for several months. The emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb, the causative agent) together with increased disease severity in people with co-morbidities such as diabetes mellitus and HIV have hampered efforts to reduce case fatality. In severe disease, TB pathology is largely attributable to over-exuberant host immune responses targeted at controlling bacterial replication. Non-resolving inflammation driven by host pro-inflammatory mediators in response to high bacterial load leads to pulmonary pathology including cavitation and fibrosis. The need to improve clinical outcomes and reduce treatment times has led to a two-pronged approach involving the development of novel antimicrobials as well as host-directed therapies (HDT) that favourably modulate immune responses to Mtb. HDT strategies incorporate aspects of immune modulation aimed at downregulating non-productive inflammatory responses and augmenting antimicrobial effector mechanisms to minimise pulmonary pathology and accelerate symptom resolution. HDT in combination with existing antimycobacterial agents offers a potentially promising strategy to improve the long-term outcome for TB patients. In this review, we describe components of the host immune response that contribute to inflammation and tissue damage in pulmonary TB, including cytokines, matrix metalloproteinases, lipid mediators, and neutrophil extracellular traps. We then proceed to review HDT directed at these pathways.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Pulmonar , Tuberculosis , Humanos , Antituberculosos/uso terapéutico , Tuberculosis Pulmonar/tratamiento farmacológico , Inflamación
15.
Proc Natl Acad Sci U S A ; 121(16): e2315123121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38602915

RESUMEN

Pulmonary arterial hypertension (PAH) is characterized by stenosis and occlusions of small pulmonary arteries, leading to elevated pulmonary arterial pressure and right heart failure. Although accumulating evidence shows the importance of interleukin (IL)-6 in the pathogenesis of PAH, the target cells of IL-6 are poorly understood. Using mice harboring the floxed allele of gp130, a subunit of the IL-6 receptor, we found substantial Cre recombination in all hematopoietic cell lineages from the primitive hematopoietic stem cell level in SM22α-Cre mice. We also revealed that a CD4+ cell-specific gp130 deletion ameliorated the phenotype of hypoxia-induced pulmonary hypertension in mice. Disruption of IL-6 signaling via deletion of gp130 in CD4+ T cells inhibited phosphorylation of signal transducer and activator of transcription 3 (STAT3) and suppressed the hypoxia-induced increase in T helper 17 cells. To further examine the role of IL-6/gp130 signaling in more severe PH models, we developed Il6 knockout (KO) rats using the CRISPR/Cas9 system and showed that IL-6 deficiency could improve the pathophysiology in hypoxia-, monocrotaline-, and Sugen5416/hypoxia (SuHx)-induced rat PH models. Phosphorylation of STAT3 in CD4+ cells was also observed around the vascular lesions in the lungs of the SuHx rat model, but not in Il6 KO rats. Blockade of IL-6 signaling had an additive effect on conventional PAH therapeutics, such as endothelin receptor antagonist (macitentan) and soluble guanylyl cyclase stimulator (BAY41-2272). These findings suggest that IL-6/gp130 signaling in CD4+ cells plays a critical role in the pathogenesis of PAH.


Asunto(s)
Hipertensión Pulmonar , Interleucina-6 , Animales , Ratones , Ratas , Linfocitos T CD4-Positivos/patología , Receptor gp130 de Citocinas/genética , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Hipoxia/patología , Interleucina-6/genética , Arteria Pulmonar/patología
16.
Annu Rev Physiol ; 85: 47-69, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36351366

RESUMEN

The human lung cellular portfolio, traditionally characterized by cellular morphology and individual markers, is highly diverse, with over 40 cell types and a complex branching structure highly adapted for agile airflow and gas exchange. While constant during adulthood, lung cellular content changes in response to exposure, injury, and infection. Some changes are temporary, but others are persistent, leading to structural changes and progressive lung disease. The recent advance of single-cell profiling technologies allows an unprecedented level of detail and scale to cellular measurements, leading to the rise of comprehensive cell atlas styles of reporting. In this review, we chronical the rise of cell atlases and explore their contributions to human lung biology in health and disease.


Asunto(s)
Pulmón , Humanos , Adulto , Pulmón/fisiología
17.
Immunol Rev ; 317(1): 166-186, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37144896

RESUMEN

The pulmonary surfactant system of the lung is a lipid and protein complex, which regulates the biophysical properties of the alveoli to prevent lung collapse and the innate immune system in the lung. Pulmonary surfactant is a lipoprotein complex consisting of 90% phospholipids and 10% protein, by weight. Two minor components of pulmonary surfactant phospholipids, phosphatidylglycerol (PG) and phosphatidylinositol (PI), exist at very high concentrations in the extracellular alveolar compartments. We have reported that one of the most dominant molecular species of PG, palmitoyl-oleoyl-phosphatidylglycerol (POPG) and PI inhibit inflammatory responses induced by multiple toll-like receptors (TLR2/1, TLR3, TLR4, and TLR2/6) by interacting with subsets of multiprotein receptor components. These lipids also exert potent antiviral effects against RSV and influenza A, in vitro, by inhibiting virus binding to host cells. POPG and PI inhibit these viral infections in vivo, in multiple animal models. Especially noteworthy, these lipids markedly attenuate SARS-CoV-2 infection including its variants. These lipids are natural compounds that already exist in the lung and, thus, are less likely to cause adverse immune responses by hosts. Collectively, these data demonstrate that POPG and PI have strong potential as novel therapeutics for applications as anti-inflammatory compounds and preventatives, as treatments for broad ranges of RNA respiratory viruses.


Asunto(s)
COVID-19 , Surfactantes Pulmonares , Animales , Humanos , Fosfolípidos/metabolismo , Surfactantes Pulmonares/uso terapéutico , Surfactantes Pulmonares/química , Surfactantes Pulmonares/metabolismo , Antivirales/farmacología , Antivirales/uso terapéutico , Receptor Toll-Like 2 , SARS-CoV-2 , Pulmón/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Fosfatidilgliceroles/uso terapéutico , Fosfatidilgliceroles/farmacología
18.
Hum Mol Genet ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38776952

RESUMEN

Pulmonary arterial hypertension (PAH) is a disorder with a large genetic component. Biallelic mutations of EIF2AK4, which encodes the kinase GCN2, are causal in two ultra-rare subtypes of PAH, pulmonary veno-occlusive disease and pulmonary capillary haemangiomatosis. EIF2AK4 variants of unknown significance have also been identified in patients with classical PAH, though their relationship to disease remains unclear. To provide patients with diagnostic information and enable family testing, the functional consequences of such rare variants must be determined, but existing computational methods are imperfect. We applied a suite of bioinformatic and experimental approaches to sixteen EIF2AK4 variants that had been identified in patients. By experimentally testing the functional integrity of the integrated stress response (ISR) downstream of GCN2, we determined that existing computational tools have insufficient sensitivity to reliably predict impaired kinase function. We determined experimentally that several EIF2AK4 variants identified in patients with classical PAH had preserved function and are therefore likely to be non-pathogenic. The dysfunctional variants of GCN2 that we identified could be subclassified into three groups: misfolded, kinase-dead, and hypomorphic. Intriguingly, members of the hypomorphic group were amenable to paradoxical activation by a type-1½ GCN2 kinase inhibitor. This experiment approach may aid in the clinical stratification of EIF2AK4 variants and potentially identify hypomorophic alleles receptive to pharmacological activation.

19.
Hum Mol Genet ; 33(7): 612-623, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38176734

RESUMEN

Telomeres are nucleoprotein structures that protect the chromosome ends from degradation and fusion. Telomerase is a ribonucleoprotein complex essential to maintain the length of telomeres. Germline defects that lead to short and/or dysfunctional telomeres cause telomere biology disorders (TBDs), a group of rare and heterogeneous Mendelian diseases including pulmonary fibrosis, dyskeratosis congenita, and Høyeraal-Hreidarsson syndrome. TPP1, a telomeric factor encoded by the gene ACD, recruits telomerase at telomere and stimulates its activity via its TEL-patch domain that directly interacts with TERT, the catalytic subunit of telomerase. TBDs due to TPP1 deficiency have been reported only in 11 individuals. We here report four unrelated individuals with a wide spectrum of TBD manifestations carrying either heterozygous or homozygous ACD variants consisting in the recurrent and previously described in-frame deletion of K170 (K170∆) and three novel missense mutations G179D, L184R, and E215V. Structural and functional analyses demonstrated that the four variants affect the TEL-patch domain of TPP1 and impair telomerase activity. In addition, we identified in the ACD gene several motifs associated with small deletion hotspots that could explain the recurrence of the K170∆ mutation. Finally, we detected in a subset of blood cells from one patient, a somatic TERT promoter-activating mutation that likely provides a selective advantage over non-modified cells, a phenomenon known as indirect somatic genetic rescue. Together, our results broaden the genetic and clinical spectrum of TPP1 deficiency and specify new residues in the TEL-patch domain that are crucial for length maintenance and stability of human telomeres in vivo.


Asunto(s)
Complejo Shelterina , Telomerasa , Proteínas de Unión a Telómeros , Humanos , Biología , Mutación , Complejo Shelterina/genética , Telomerasa/genética , Telómero/genética , Telómero/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
20.
Annu Rev Med ; 75: 353-367, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-37582489

RESUMEN

Cannabis, the most commonly used recreational drug, is illicit in many areas of the world. With increasing decriminalization and legalization, cannabis use is increasing in the United States and other countries. The adverse effects of cannabis are unclear because its status as a Schedule 1 drug in the United States restricts research. Despite a paucity of data, cannabis is commonly perceived as a benign or even beneficial drug. However, recent studies show that cannabis has adverse cardiovascular and pulmonary effects and is linked with malignancy. Moreover, case reports have shown an association between cannabis use and neuropsychiatric disorders. With growing availability, cannabis misuse by minors has led to increasing incidences of overdose and toxicity. Though difficult to detect, cannabis intoxication may be linked to impaired driving and motor vehicle accidents. Overall, cannabis use is on the rise, and adverse effects are becoming apparent in clinical data sets.


Asunto(s)
Cannabis , Sobredosis de Droga , Humanos , Cannabis/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA