RESUMEN
The study aimed to improve the treatment of impetigo with naturally occurring quercetin and its copper-quercetin (Cu-Q) complex by preparing sustained-release (SR) nanoparticles of polycaprolactone (PCL). The solvent evaporation method was used for the copper-quercetin (Cu-Q) complex formation, and their PCL nanoparticles (PCL-NPs, Q-PCL-NPs, and Cu-Q-PCL-NPs) were prepared by the high-pressure homogenization method. Synthesis of nanoparticles was confirmed by their physicochemical and antibacterial properties of quercetin against Gram-positive as well as Gram-negative bacteria. The percentage loading efficiency of quercetin and release in 100 mM of phosphate buffer pH 7.4 and 5.5 at 37 °C was found to be more than 90% after 24 h with the zero-order release pattern. Minimum inhibitory concentration of nanoparticles was found to increase threefold in the case of Cu-Q-PCL-NPs may be due to the synergistic antibacterial behavior. Scanning electron microscopy showed spherical nanoparticles, and surface roughness was confirmed by atomic force microscopy analysis. Fortunately, no sign of irritation on rat skin even at 3%, was seen. In vitro antioxidant assay by 2,2-diphenyl-1-picrylhydrazyl reduction was found to be ≤80 ± 0.02% which confirmed their scavenging activity. Interestingly, for the ex vivo study, the tape-stripping model was applied against Staphylococcus aureus containing rats and showed the formation of the epidermal layer within 4-5 days. Confirmation of antibacterial activity of pure quercetin, from Cu-Q complex, and their SR release from Q-PCL-NPs and Cu-Q-PCL-NPs was considered an effective tool for the treatment of skin diseases and can be used as an alternative of already resistant ciprofloxacin in impetigo.
Asunto(s)
Impétigo , Nanopartículas , Ratas , Animales , Quercetina/farmacología , Quercetina/uso terapéutico , Quercetina/química , Cobre/química , Preparaciones de Acción Retardada , Nanopartículas/química , Antibacterianos/farmacología , Antibacterianos/químicaRESUMEN
Coenzyme Q (CoQ) serves as an electron carrier in aerobic respiration and has become an interesting target for biotechnological production due to its antioxidative effect and benefits in supplementation to patients with various diseases. Here, we review discovery of the pathway with a particular focus on its superstructuration and regulation, and we summarize the metabolic engineering strategies for overproduction of CoQ by microorganisms. Studies in model microorganisms elucidated the details of CoQ biosynthesis and revealed the existence of multiprotein complexes composed of several enzymes that catalyze consecutive reactions in the CoQ pathways of Saccharomyces cerevisiae and Escherichia coli. Recent findings indicate that the identity and the total number of proteins involved in CoQ biosynthesis vary between species, which raises interesting questions about the evolution of the pathway and could provide opportunities for easier engineering of CoQ production. For the biotechnological production, so far only microorganisms have been used that naturally synthesize CoQ10 or a related CoQ species. CoQ biosynthesis requires the aromatic precursor 4-hydroxybenzoic acid and the prenyl side chain that defines the CoQ species. Up to now, metabolic engineering strategies concentrated on the overproduction of the prenyl side chain as well as fine-tuning the expression of ubi genes from the ubiquinone modification pathway, resulting in high CoQ yields. With expanding knowledge about CoQ biosynthesis and exploration of new strategies for strain engineering, microbial CoQ production is expected to improve.
Asunto(s)
Proteínas de Saccharomyces cerevisiae , Ubiquinona , Antioxidantes/metabolismo , Humanos , Redes y Vías Metabólicas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genéticaRESUMEN
BACKGROUND: Mutations in ADCK4 (aarF domain containing kinase 4) generally manifest as steroid-resistant nephrotic syndrome and induce coenzyme Q10 (CoQ10) deficiency. However, the molecular mechanisms underlying steroid-resistant nephrotic syndrome resulting from ADCK4 mutations are not well understood, largely because the function of ADCK4 remains unknown. METHODS: To elucidate the ADCK4's function in podocytes, we generated a podocyte-specific, Adck4-knockout mouse model and a human podocyte cell line featuring knockout of ADCK4. These knockout mice and podocytes were then treated with 2,4-dihydroxybenzoic acid (2,4-diHB), a CoQ10 precursor analogue, or with a vehicle only. We also performed proteomic mass spectrometry analysis to further elucidate ADCK4's function. RESULTS: Absence of Adck4 in mouse podocytes caused FSGS and albuminuria, recapitulating features of nephrotic syndrome caused by ADCK4 mutations. In vitro studies revealed that ADCK4-knockout podocytes had significantly reduced CoQ10 concentration, respiratory chain activity, and mitochondrial potential, and subsequently displayed an increase in the number of dysmorphic mitochondria. However, treatment of 3-month-old knockout mice or ADCK4-knockout cells with 2,4-diHB prevented the development of renal dysfunction and reversed mitochondrial dysfunction in podocytes. Moreover, ADCK4 interacted with mitochondrial proteins such as COQ5, as well as cytoplasmic proteins such as myosin and heat shock proteins. Thus, ADCK4 knockout decreased the COQ complex level, but overexpression of ADCK4 in ADCK4-knockout podocytes transfected with wild-type ADCK4 rescued the COQ5 level. CONCLUSIONS: Our study shows that ADCK4 is required for CoQ10 biosynthesis and mitochondrial function in podocytes, and suggests that ADCK4 in podocytes stabilizes proteins in complex Q in podocytes. Our study also suggests a potential treatment strategy for nephrotic syndrome resulting from ADCK4 mutations.
Asunto(s)
Hidroxibenzoatos/farmacología , Proteínas Quinasas/fisiología , Ubiquinona/análogos & derivados , Animales , Estabilidad de Enzimas , Glomeruloesclerosis Focal y Segmentaria/etiología , Células HEK293 , Humanos , Metiltransferasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/fisiología , Proteínas Mitocondriales/metabolismo , Podocitos/enzimología , Ubiquinona/metabolismoRESUMEN
Streptococcus pyogenes secretes various virulence factors for evasion from complement-mediated bacteriolysis. However, full understanding of the molecules possessed by this organism that interact with complement C1q, an initiator of the classical complement pathway, remains elusive. In this study, we identified an endopeptidase of S. pyogenes, PepO, as an interacting molecule, and investigated its effects on complement immunity and pathogenesis. Enzyme-linked immunosorbent assay and surface plasmon resonance analysis findings revealed that S. pyogenes recombinant PepO bound to human C1q in a concentration-dependent manner under physiological conditions. Sites of inflammation are known to have decreased pH levels, thus the effects of PepO on bacterial evasion from complement immunity was analyzed in a low pH condition. Notably, under low pH conditions, PepO exhibited a higher affinity for C1q as compared with IgG, and PepO inhibited the binding of IgG to C1q. In addition, pepO deletion rendered S. pyogenes more susceptible to the bacteriocidal activity of human serum. Also, observations of the morphological features of the pepO mutant strain (ΔpepO) showed damaged irregular surfaces as compared with the wild-type strain (WT). WT-infected tissues exhibited greater severity and lower complement activity as compared with those infected by ΔpepO in a mouse skin infection model. Furthermore, WT infection resulted in a larger accumulation of C1q than that with ΔpepO. Our results suggest that interaction of S. pyogenes PepO with C1q interferes with the complement pathway, which enables S. pyogenes to evade complement-mediated bacteriolysis under acidic conditions, such as seen in inflammatory sites.
Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteriólisis/inmunología , Complemento C1q/metabolismo , Endopeptidasas/metabolismo , Infecciones Neumocócicas/inmunología , Enfermedades de la Piel/inmunología , Streptococcus pyogenes/metabolismo , Animales , Proteínas Bacterianas/inmunología , Adhesión Celular , Células Cultivadas , Complemento C1q/inmunología , Endopeptidasas/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Infecciones Neumocócicas/metabolismo , Enfermedades de la Piel/metabolismo , Streptococcus pyogenes/inmunología , Streptococcus pyogenes/patogenicidadRESUMEN
Parasitic nematodes manufacture various carbohydrate-linked phosphorylcholine (PCh)-containing molecules, including ES-62, a protein with an N-linked glycan terminally substituted with PCh. The PCh component is biologically important because it is required for immunomodulatory effects. We showed that most ES-62 was bound to a single protein, C-reactive protein (CRP), in normal human serum, displaying a calcium-dependent, high-avidity interaction and ability to form large complexes. Unexpectedly, CRP binding to ES-62 failed to efficiently activate complement as far as the C3 convertase stage in comparison with PCh-BSA and PCh-containing Streptococcus pneumoniae cell wall polysaccharide. C1q capture assays demonstrated an ES-62-CRP-C1q interaction in serum. The three ligands all activated C1 and generated C4b to similar extents. However, a C2a active site was not generated following ES-62 binding to CRP, demonstrating that C2 cleavage was far less efficient for ES-62-containing complexes. We proposed that failure of C2 cleavage was due to the flexible nature of carbohydrate-bound PCh and that reduced proximity of the C1 complex was the reason that C2 was poorly cleaved. This was confirmed using synthetic analogues that were similar to ES-62 only in respect of having a flexible PCh. Furthermore, ES-62 was shown to deplete early complement components, such as the rate-limiting C4, following CRP interaction and thereby inhibit classical pathway activation. Thus, flexible PCh-glycan represents a novel mechanism for subversion of complement activation. These data illustrate the importance of the rate-limiting C4/C2 stage of complement activation and reveal a new addition to the repertoire of ES-62 immunomodulatory mechanisms with possible therapeutic applications.
Asunto(s)
Conformación de Carbohidratos , Activación de Complemento/efectos de los fármacos , Complemento C2/metabolismo , Complemento C4/metabolismo , Vía Clásica del Complemento/efectos de los fármacos , Proteínas del Helminto/farmacología , Fosforilcolina/metabolismo , Sitios de Unión , Proteína C-Reactiva/metabolismo , Convertasas de Complemento C3-C5/metabolismo , Humanos , Resonancia por Plasmón de SuperficieRESUMEN
The motor neuron (MN) degenerative disease, spinal muscular atrophy (SMA) is caused by deficiency of SMN (survival motor neuron), a ubiquitous and indispensable protein essential for biogenesis of snRNPs, key components of pre-mRNA processing. However, SMA's hallmark MN pathology, including neuromuscular junction (NMJ) disruption and sensory-motor circuitry impairment, remains unexplained. Toward this end, we used deep RNA sequencing (RNA-seq) to determine if there are any transcriptome changes in MNs and surrounding spinal cord glial cells (white matter, WM) microdissected from SMN-deficient SMA mouse model at presymptomatic postnatal day 1 (P1), before detectable MN pathology (P4-P5). The RNA-seq results, previously unavailable for SMA at any stage, revealed cell-specific selective mRNA dysregulations (~300 of 11,000 expressed genes in each, MN and WM), many of which are known to impair neurons. Remarkably, these dysregulations include complete skipping of agrin's Z exons, critical for NMJ maintenance, strong up-regulation of synapse pruning-promoting complement factor C1q, and down-regulation of Etv1/ER81, a transcription factor required for establishing sensory-motor circuitry. We propose that dysregulation of such specific MN synaptogenesis genes, compounded by many additional transcriptome abnormalities in MNs and WM, link SMN deficiency to SMA's signature pathology.