Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Viruses ; 15(7)2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37515286

RESUMEN

Viruses, such as Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), infect hosts and take advantage of host cellular machinery for genome replication and new virion production. Identifying and elucidating host pathways for viral infection is critical for understanding the development of the viral life cycle and novel therapeutics. The SARS-CoV-2 N protein is critical for viral RNA (vRNA) genome packaging in new virion formation. Using our quantitative Förster energy transfer/Mass spectrometry (qFRET/MS) coupled method and immunofluorescence imaging, we identified three SUMOylation sites of the SARS-CoV-2 N protein. We found that (1) Small Ubiquitin-like modifier (SUMO) modification in Nucleocapsid (N) protein interaction affinity increased, leading to enhanced oligomerization of the N protein; (2) one of the identified SUMOylation sites, K65, is critical for its nuclear translocation. These results suggest that the host human SUMOylation pathway may be critical for N protein functions in viral replication and pathology in vivo. Thus, blocking essential host pathways could provide a novel strategy for future anti-viral therapeutics development, such as for SARS-CoV-2 and other viruses.


Asunto(s)
COVID-19 , Sumoilación , Humanos , SARS-CoV-2 , Procesamiento Proteico-Postraduccional , Replicación Viral
2.
Biomolecules ; 11(5)2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946350

RESUMEN

Isopeptidase activity of proteases plays critical roles in physiological and pathological processes in living organisms, such as protein stability in cancers and protein activity in infectious diseases. However, the kinetics of protease isopeptidase activity has not been explored before due to a lack of methodology. Here, we report the development of novel qFRET-based protease assay for characterizing the isopeptidase kinetics of SENP1. The reversible process of SUMOylation in vivo requires an enzymatic cascade that includes E1, E2, and E3 enzymes and Sentrin/SUMO-specific proteases (SENPs), which can act either as endopeptidases that process the pre-SUMO before its conjugation, or as isopeptidases to deconjugate SUMO from its target substrate. We first produced the isopeptidase substrate of CyPet-SUMO1/YPet-RanGAP1c by SUMOylation reaction in the presence of SUMO E1 and E2 enzymes. Then a qFRET analyses of real-time FRET signal reduction of the conjugated substrate of CyPet-SUMO1/YPet-RanGAP1c to free CyPet-SUMO1 and YPet-RanGAP1c by the SENP1 were able to obtain the kinetic parameters, Kcat, KM, and catalytic efficiency (Kcat/KM) of SENP1. This represents a pioneer effort in isopeptidase kinetics determination. Importantly, the general methodology of qFRET-based protease isopeptidase kinetic determination can also be applied to other proteases.


Asunto(s)
Liasas de Carbono-Nitrógeno/química , Liasas de Carbono-Nitrógeno/metabolismo , Pruebas de Enzimas/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Dominio Catalítico , Cisteína Endopeptidasas , Humanos , Cinética , Plásmidos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sensibilidad y Especificidad , Sumoilación
3.
Int J Biol Macromol ; 193(Pt B): 1481-1487, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34780893

RESUMEN

Product inhibition is a common phenomenon during enzyme-catalyzed reactions. Almost all product molecules of an enzyme reaction should have some structural similarities to the substrate, and can thus still have affinities to the active site of the enzyme as product inhibitor. Currently, the characterizations of product inhibition are generally carried out by different methods to determine product binding affinity to the enzyme and the enzyme kinetics parameters, and then these parameters are combined to determine product inhibition. However, due to different sensitivity and variations, kinetics parameters determined from different methods are often not compatible, resulting in not accurate measurement. Here, we report a novel method that determines the two different classes of kinetics parameters, IC50 and Ki(or KD), Kcat and KM, using one single assay method-quantitative FRET(qFRET) assay for characterizing the product inhibition of pre-SUMO1's maturation by its protease SENP1. One method to determine all kinetics parameters provides, for the first time, not only a convenient method to determine all kinetics parameters, but more importantly, a novel approach to combine different measurements with mutually compatible results and errors.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Péptido Hidrolasas/metabolismo , Dominio Catalítico , Pruebas de Enzimas/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Cinética , Especificidad por Sustrato
4.
J Biomol Screen ; 19(7): 1107-15, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24619116

RESUMEN

The target of this study, the PfM18 aspartyl aminopeptidase (PfM18AAP), is the only AAP present in the genome of the malaria parasite Plasmodium falciparum. PfM18AAP is a metallo-exopeptidase that exclusively cleaves N-terminal acidic amino acids glutamate and aspartate. It is expressed in parasite cytoplasm and may function in concert with other aminopeptidases in protein degradation, of, for example, hemoglobin. Previous antisense knockdown experiments identified a lethal phenotype associated with PfM18AAP, suggesting that it is a valid target for new antimalaria therapies. To identify inhibitors of PfM18AAP function, a fluorescence enzymatic assay was developed using recombinant PfM18AAP enzyme and a fluorogenic peptide substrate (H-Glu-NHMec). This was screened against the Molecular Libraries Probe Production Centers Network collection of ~292,000 compounds (the Molecular Libraries Small Molecule Repository). A cathepsin L1 (CTSL1) enzyme-based assay was developed and used as a counter screen to identify compounds with nonspecific activity. Enzymology and phenotypic assays were used to determine mechanism of action and efficacy of selective and potent compounds identified from high-throughput screening. Two structurally related compounds, CID 6852389 and CID 23724194, yielded micromolar potency and were inactive in CTSL1 titration experiments (IC50>59.6 µM). As measured by the K(i) assay, both compounds demonstrated micromolar noncompetitive inhibition in the PfM18AAP enzyme assay. Both CID 6852389 and CID 23724194 demonstrated potency in malaria growth assays (IC504 µM and 1.3 µM, respectively).


Asunto(s)
Aminopeptidasas/antagonistas & inhibidores , Antimaláricos/química , Glutamil Aminopeptidasa/antagonistas & inhibidores , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Animales , Antimaláricos/farmacología , Catepsina L/química , Análisis por Conglomerados , Diseño de Fármacos , Eritrocitos/parasitología , Fasciola hepatica/enzimología , Glutamil Aminopeptidasa/química , Humanos , Concentración 50 Inhibidora , Cinética , Péptidos/metabolismo , Plasmodium falciparum/enzimología , Proteínas Recombinantes/química , Bibliotecas de Moléculas Pequeñas/química , Programas Informáticos , Espectrometría de Fluorescencia , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA