Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 810
Filtrar
Más filtros

Intervalo de año de publicación
1.
EMBO J ; 43(18): 4068-4091, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39122924

RESUMEN

How the timing of development is linked to organismal size is a longstanding question. Although numerous studies have reported a correlation of temporal and spatial traits, the developmental or selective constraints underlying this link remain largely unexplored. We address this question by studying the periodic process of embryonic axis segmentation in-vivo in Oryzias fish. Interspecies comparisons reveal that the timing of segmentation correlates to segment, tissue and organismal size. Segment size in turn scales according to tissue and organism size. To probe for underlying causes, we genetically hybridised two closely related species. Quantitative analysis in ~600 phenotypically diverse F2 embryos reveals a decoupling of timing from size control, while spatial scaling is preserved. Using developmental quantitative trait loci (devQTL) mapping we identify distinct genetic loci linked to either the control of segmentation timing or tissue size. This study demonstrates that a developmental constraint mechanism underlies spatial scaling of axis segmentation, while its spatial and temporal control are dissociable modules.


Asunto(s)
Oryzias , Sitios de Carácter Cuantitativo , Animales , Oryzias/genética , Oryzias/embriología , Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Tamaño Corporal
2.
Trends Genet ; 40(1): 24-38, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38707509

RESUMEN

How genotype determines phenotype is a well-explored question, but genotype-environment interactions and their heritable impact on phenotype over the course of evolution are not as thoroughly investigated. The fish Astyanax mexicanus, consisting of surface and cave ecotypes, is an ideal emerging model to study the genetic basis of adaptation to new environments. This model has permitted quantitative trait locus mapping and whole-genome comparisons to identify the genetic bases of traits such as albinism and insulin resistance and has helped to better understand fundamental evolutionary mechanisms. In this review, we summarize recent advances in A. mexicanus genetics and discuss their broader impact on the fields of adaptation and evolutionary genetics.


Asunto(s)
Cuevas , Characidae , Sitios de Carácter Cuantitativo , Animales , Sitios de Carácter Cuantitativo/genética , Characidae/genética , Adaptación Fisiológica/genética , Evolución Biológica , Fenotipo , Genotipo , Evolución Molecular , Interacción Gen-Ambiente , Peces/genética
3.
Am J Hum Genet ; 110(12): 2077-2091, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38065072

RESUMEN

Understanding the genetic basis of complex phenotypes is a central pursuit of genetics. Genome-wide association studies (GWASs) are a powerful way to find genetic loci associated with phenotypes. GWASs are widely and successfully used, but they face challenges related to the fact that variants are tested for association with a phenotype independently, whereas in reality variants at different sites are correlated because of their shared evolutionary history. One way to model this shared history is through the ancestral recombination graph (ARG), which encodes a series of local coalescent trees. Recent computational and methodological breakthroughs have made it feasible to estimate approximate ARGs from large-scale samples. Here, we explore the potential of an ARG-based approach to quantitative-trait locus (QTL) mapping, echoing existing variance-components approaches. We propose a framework that relies on the conditional expectation of a local genetic relatedness matrix (local eGRM) given the ARG. Simulations show that our method is especially beneficial for finding QTLs in the presence of allelic heterogeneity. By framing QTL mapping in terms of the estimated ARG, we can also facilitate the detection of QTLs in understudied populations. We use local eGRM to analyze two chromosomes containing known body size loci in a sample of Native Hawaiians. Our investigations can provide intuition about the benefits of using estimated ARGs in population- and statistical-genetic methods in general.


Asunto(s)
Genética de Población , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Humanos , Mapeo Cromosómico/métodos , Modelos Genéticos , Fenotipo , Sitios de Carácter Cuantitativo/genética , Nativos de Hawái y Otras Islas del Pacífico/genética
4.
Plant J ; 117(5): 1487-1502, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38048475

RESUMEN

Powdery mildew (PM) is one of the most serious fungal diseases affecting cucumbers (Cucumis sativus L.). The mechanism of PM resistance in cucumber is intricate and remains fragmentary as it is controlled by several genes. In this study, we detected the major-effect Quantitative Trait Locus (QTL), PM5.2, involved in PM resistance by QTL mapping. Through fine mapping, the dominant PM resistance gene, CsPM5.2, was cloned and its function was confirmed by transgenic complementation and natural variation identification. In cultivar 9930, a dysfunctional CsPM5.2 mutant resulted from a single nucleotide polymorphism in the coding region and endowed susceptibility to PM. CsPM5.2 encodes a phosphate transporter-like protein PHO1; H3. The expression of CsPM5.2 is ubiquitous and induced by the PM pathogen. In cucumber, both CsPM5.2 and Cspm5.1 (Csmlo1) are required for PM resistance. Transcriptome analysis suggested that the salicylic acid (SA) pathway may play an important role in CsPM5.2-mediated PM resistance. Our findings help parse the mechanisms of PM resistance and provide strategies for breeding PM-resistant cucumber cultivars.


Asunto(s)
Ascomicetos , Cucumis sativus , Cucumis sativus/genética , Fosfatos , Ascomicetos/genética , Fitomejoramiento , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
5.
Plant J ; 118(6): 2003-2019, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38536089

RESUMEN

Plant height (PH) is an important factor affecting bast fiber yield in jute. Here, we report the mechanism of dwarfism in the 'Guangbaai' (gba) of jute. The mutant gba had shorter internode length and cell length compared to the standard cultivar 'TaiZi 4' (TZ4). Exogenous GA3 treatment indicated that gba is a GA-insensitive dwarf mutant. Quantitative trait locus (QTL) analysis of three PH-related traits via a high-density genetic linkage map according to re-seq showed that a total of 25 QTLs were identified, including 13 QTLs for PH, with phenotypic variation explained ranging from 2.42 to 74.16%. Notably, the functional mechanism of the candidate gene CoGID1a, the gibberellic acid receptor, of the major locus qPHIL5 was evaluated by transgenic analysis and virus-induced gene silencing. A dwarf phenotype-related single nucleotide mutation in CoGID1a was identified in gba, which was also unique to the dwarf phenotype of gba among 57 cultivars. Cogid1a was unable to interact with the growth-repressor DELLA even in the presence of highly accumulated gibberellins in gba. Differentially expressed genes between transcriptomes of gba and TZ4 after GA3 treatment indicated up-regulation of genes involved in gibberellin and cellulose synthesis in gba. Interestingly, it was found that up-regulation of CoMYB46, a key transcription factor in the secondary cell wall, by the highly accumulated gibberellins in gba promoted the expression of cellulose synthase genes CoCesA4 and CoCesA7. These findings provide valuable insights into fiber development affected by endogenous gibberellin accumulation in plants.


Asunto(s)
Celulosa , Corchorus , Proteínas de Plantas , Tallos de la Planta , Celulosa/metabolismo , Clonación Molecular , Corchorus/genética , Corchorus/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Giberelinas/metabolismo , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Sitios de Carácter Cuantitativo/genética
6.
Mol Biol Evol ; 41(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38857185

RESUMEN

Body shape and size diversity and their evolutionary rates correlate with species richness at the macroevolutionary scale. However, the molecular genetic mechanisms underlying the morphological diversification across related species are poorly understood. In beetles, which account for one-fourth of the known species, adaptation to different trophic niches through morphological diversification appears to have contributed to species radiation. Here, we explored the key genes for the morphological divergence of the slender to stout body shape related to divergent feeding methods on large to small snails within the genus Carabus. We show that the zinc-finger transcription factor encoded by odd-paired (opa) controls morphological variation in the snail-feeding ground beetle Carabus blaptoides. Specifically, opa was identified as the gene underlying the slender to stout morphological difference between subspecies through genetic mapping and functional analysis via gene knockdown. Further analyses revealed that changes in opa cis-regulatory sequences likely contributed to the differences in body shape and size between C. blaptoides subspecies. Among opa cis-regulatory sequences, single nucleotide polymorphisms on the transcription factor binding sites may be associated with the morphological differences between C. blaptoides subspecies. opa was highly conserved in a wide range of taxa, especially in beetles. Therefore, opa may play an important role in adaptive morphological divergence in beetles.


Asunto(s)
Escarabajos , Caracoles , Factores de Transcripción , Animales , Escarabajos/genética , Escarabajos/anatomía & histología , Caracoles/genética , Caracoles/anatomía & histología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Evolución Biológica , Polimorfismo de Nucleótido Simple
7.
Mol Plant Microbe Interact ; 37(9): 676-687, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38888557

RESUMEN

Barley net form net blotch (NFNB) is a destructive foliar disease caused by Pyrenophora teres f. teres. Barley line CIho5791, which harbors the broadly effective chromosome 6H resistance gene Rpt5, displays dominant resistance to P. teres f. teres. To genetically characterize P. teres f. teres avirulence/virulence on the barley line CIho5791, we generated a P. teres f. teres mapping population using a cross between the Moroccan CIho5791-virulent isolate MorSM40-3 and the avirulent reference isolate 0-1. Full genome sequences were generated for 103 progenies. Saturated chromosome-level genetic maps were generated, and quantitative trait locus (QTL) mapping identified two major QTL associated with P. teres f. teres avirulence/virulence on CIho5791. The most significant QTL mapped to chromosome (Ch) 1, where the virulent allele was contributed by MorSM40-3. A second QTL mapped to Ch8; however, this virulent allele was contributed by the avirulent parent 0-1. The Ch1 and Ch8 loci accounted for 27 and 15% of the disease variation, respectively, and the avirulent allele at the Ch1 locus was epistatic over the virulent allele at the Ch8 locus. As a validation, we used a natural P. teres f. teres population in a genome-wide association study that identified the same Ch1 and Ch8 loci. We then generated a new reference quality genome assembly of parental isolate MorSM40-3 with annotation supported by deep transcriptome sequencing of infection time points. The annotation identified candidate genes predicted to encode small, secreted proteins, one or more of which are likely responsible for overcoming the CIho5791 resistance. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.


Asunto(s)
Ascomicetos , Mapeo Cromosómico , Cromosomas de las Plantas , Resistencia a la Enfermedad , Hordeum , Enfermedades de las Plantas , Sitios de Carácter Cuantitativo , Hordeum/genética , Hordeum/microbiología , Ascomicetos/genética , Ascomicetos/patogenicidad , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo/genética , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Virulencia/genética
8.
Trends Genet ; 37(2): 109-124, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32912663

RESUMEN

Most disease-associated variants, although located in putatively regulatory regions, do not have detectable effects on gene expression. One explanation could be that we have not examined gene expression in the cell types or conditions that are most relevant for disease. Even large-scale efforts to study gene expression across tissues are limited to human samples obtained opportunistically or postmortem, mostly from adults. In this review we evaluate recent findings and suggest an alternative strategy, drawing on the dynamic and highly context-specific nature of gene regulation. We discuss new technologies that can extend the standard regulatory mapping framework to more diverse, disease-relevant cell types and states.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Sitios de Carácter Cuantitativo/genética , Animales , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Humanos , Secuencias Reguladoras de Ácidos Nucleicos/genética
9.
BMC Plant Biol ; 24(1): 338, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664642

RESUMEN

Proper pericarp thickness protects the maize kernel against pests and diseases, moreover, thinner pericarp improves the eating quality in fresh corn. In this study, we aimed to investigate the dynamic changes in maize pericarp during kernel development and identified the major quantitative trait loci (QTLs) for maize pericarp thickness. It was observed that maize pericarp thickness first increased and then decreased. During the growth and formation stages, the pericarp thickness gradually increased and reached the maximum, after which it gradually decreased and reached the minimum during maturity. To identify the QTLs for pericarp thickness, a BC4F4 population was constructed using maize inbred lines B73 (recurrent parent with thick pericarp) and Baimaya (donor parent with thin pericarp). In addition, a high-density genetic map was constructed using maize 10 K SNP microarray. A total of 17 QTLs related to pericarp thickness were identified in combination with the phenotypic data. The results revealed that the heritability of the thickness of upper germinal side of pericarp (UG) was 0.63. The major QTL controlling UG was qPT1-1, which was located on chromosome 1 (212,215,145-212,948,882). The heritability of the thickness of upper abgerminal side of pericarp (UA) was 0.70. The major QTL controlling UA was qPT2-1, which was located on chromosome 2 (2,550,197-14,732,993). In addition, a combination of functional annotation, DNA sequencing analysis and quantitative real-time PCR (qPCR) screened two candidate genes, Zm00001d001964 and Zm00001d002283, that could potentially control maize pericarp thickness. This study provides valuable insights into the improvement of maize pericarp thickness during breeding.


Asunto(s)
Mapeo Cromosómico , Sitios de Carácter Cuantitativo , Zea mays , Sitios de Carácter Cuantitativo/genética , Zea mays/genética , Zea mays/anatomía & histología , Zea mays/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/anatomía & histología , Fenotipo , Cromosomas de las Plantas/genética , Polimorfismo de Nucleótido Simple
10.
BMC Plant Biol ; 24(1): 583, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38898384

RESUMEN

BACKGROUND: Leaf morphology plays a crucial role in photosynthetic efficiency and yield potential in crops. Cigar tobacco plants, which are derived from common tobacco (Nicotiana tabacum L.), possess special leaf characteristics including thin and delicate leaves with few visible veins, making it a good system for studying the genetic basis of leaf morphological characters. RESULTS: In this study, GWAS and QTL mapping were simultaneously performed using a natural population containing 185 accessions collected worldwide and an F2 population consisting of 240 individuals, respectively. A total of 26 QTLs related to leaf morphological traits were mapped in the F2 population at three different developmental stages, and some QTL intervals were repeatedly detected for different traits and at different developmental stages. Among the 206 significant SNPs identified in the natural population using GWAS, several associated with the leaf thickness phenotype were co-mapped via QTL mapping. By analyzing linkage disequilibrium and transcriptome data from different tissues combined with gene functional annotations, 7 candidate genes from the co-mapped region were identified as the potential causative genes associated with leaf thickness. CONCLUSIONS: These results presented a valuable cigar tobacco resource showing the genetic diversity regarding its leaf morphological traits at different developmental stages. It also provides valuable information for novel genes and molecular markers that will be useful for further functional verification and for molecular breeding of leaf morphological traits in crops in the future.


Asunto(s)
Mapeo Cromosómico , Estudio de Asociación del Genoma Completo , Nicotiana , Hojas de la Planta , Sitios de Carácter Cuantitativo , Nicotiana/genética , Nicotiana/anatomía & histología , Nicotiana/crecimiento & desarrollo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Fenotipo , Polimorfismo de Nucleótido Simple , Desequilibrio de Ligamiento
11.
BMC Plant Biol ; 24(1): 155, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38424508

RESUMEN

BACKGROUND: Powdery mildew (PM) is one of the important soybean diseases, and host resistance could practically contribute to soybean PM management. To date, only the Rmd locus on chromosome (Chr) 16 was identified through traditional QTL mapping and GWAS, and it remains unclear if the bulk segregant RNA-Seq (BSR-Seq) methodology is feasible to explore additional PM resistance that might exist in other varieties. RESULTS: BSR-Seq was applied to contrast genotypes and gene expressions between the resistant bulk (R bulk) and the susceptible bulk (S bulk), as well as the parents. The ∆(SNP-index) and G' value identified several QTL and significant SNPs/Indels on Chr06, Chr15, and Chr16. Differentially expressed genes (DEGs) located within these QTL were identified using HISAT2 and Kallisto, and allele-specific primers (AS-primers) were designed to validate the accuracy of phenotypic prediction. While the AS-primers on Chr06 or Chr15 cannot distinguish the resistant and susceptible phenotypes, AS-primers on Chr16 exhibited 82% accuracy prediction with an additive effect, similar to the SSR marker Satt431. CONCLUSIONS: Evaluation of additional AS-primers in the linkage disequilibrium (LD) block on Chr16 further confirmed the resistant locus, derived from the resistant parental variety 'Kaohsiung 11' ('KS11'), not only overlaps with the Rmd locus with unique up-regulated LRR genes (Glyma.16G213700 and Glyma.16G215100), but also harbors a down-regulated MLO gene (Glyma.16G145600). Accordingly, this study exemplified the feasibility of BSR-Seq in studying biotrophic disease resistance in soybean, and showed the genetic makeup of soybean variety 'KS11' comprising the Rmd locus and one MLO gene.


Asunto(s)
Resistencia a la Enfermedad , Glycine max , Glycine max/genética , RNA-Seq , Alelos , Mapeo Cromosómico/métodos , Fenotipo , Resistencia a la Enfermedad/genética , Erysiphe , Enfermedades de las Plantas/genética
12.
Plant Biotechnol J ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38923713

RESUMEN

Developing early maturing lentil has the potential to minimize yield losses, mainly during terminal drought. Whole-genome resequencing (WGRS) based QTL-seq identified the loci governing earliness in lentil. The genetic analysis for maturity duration provided a good fit to 3:1 segregation (F2), indicating earliness as a recessive trait. WGRS of Globe Mutant (late parent), late-flowering, and early-flowering bulks (from RILs) has generated 1124.57, 1052.24 million raw and clean reads, respectively. The QTL-Seq identified three QTLs (LcqDTF3.1, LcqDTF3.2, and LcqDTF3.3) on chromosome 3 having 246244 SNPs and 15577 insertions/deletions (InDels) and 13 flowering pathway genes. Of these, 11 exhibited sequence variations between bulks and validation (qPCR) revealed a significant difference in the expression of nine candidate genes (LcGA20oxG, LcFRI, LcLFY, LcSPL13a, Lcu.2RBY.3g060720, Lcu.2RBY.3g062540, Lcu.2RBY.3g062760, LcELF3a, and LcEMF1). Interestingly, the LcELF3a gene showed significantly higher expression in late-flowering genotype and exhibited substantial involvement in promoting lateness. Subsequently, an InDel marker (I-SP-383.9; LcELF3a gene) developed from LcqDTF3.2 QTL region showed 82.35% PVE (phenotypic variation explained) for earliness. The cloning, sequencing, and comparative analysis of the LcELF3a gene from both parents revealed 23 SNPs and InDels. Interestingly, a 52 bp deletion was recorded in the LcELF3a gene of L4775, predicted to cause premature termination of protein synthesis after 4 missense amino acids beyond the 351st amino acid due to the frameshift during translation. The identified InDel marker holds significant potential for breeding early maturing lentil varieties.

13.
Mol Syst Biol ; 19(8): e11493, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37485750

RESUMEN

The complexity of many cellular and organismal traits results from the integration of genetic and environmental factors via molecular networks. Network structure and effect propagation are best understood at the level of functional modules, but so far, no concept has been established to include the global network state. Here, we show when and how genetic perturbations lead to molecular changes that are confined to small parts of a network versus when they lead to modulation of network states. Integrating multi-omics profiling of genetically heterogeneous budding and fission yeast strains with an array of cellular traits identified a central state transition of the yeast molecular network that is related to PKA and TOR (PT) signaling. Genetic variants affecting this PT state globally shifted the molecular network along a single-dimensional axis, thereby modulating processes including energy and amino acid metabolism, transcription, translation, cell cycle control, and cellular stress response. We propose that genetic effects can propagate through large parts of molecular networks because of the functional requirement to centrally coordinate the activity of fundamental cellular processes.


Asunto(s)
Herencia Multifactorial , Proteínas de Saccharomyces cerevisiae , Transducción de Señal/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fenotipo
14.
Mol Ecol ; 33(5): e17268, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38230514

RESUMEN

Ecological divergence due to habitat difference plays a prominent role in the formation of new species, but the genetic architecture during ecological speciation and the mechanism underlying phenotypic divergence remain less understood. Two wild ancestors of rice (Oryza rufipogon and Oryza nivara) are a progenitor-derivative species pair with ecological divergence and provide a unique system for studying ecological adaptation/speciation. Here, we constructed a high-resolution linkage map and conducted a quantitative trait locus (QTL) analysis of 19 phenotypic traits using an F2 population generated from a cross between the two Oryza species. We identified 113 QTLs associated with interspecific divergence of 16 quantitative traits, with effect sizes ranging from 1.61% to 34.1% in terms of the percentage of variation explained (PVE). The distribution of effect sizes of QTLs followed a negative exponential, suggesting that a few genes of large effect and many genes of small effect were responsible for the phenotypic divergence. We observed 18 clusters of QTLs (QTL hotspots) on 11 chromosomes, significantly more than that expected by chance, demonstrating the importance of coinheritance of loci/genes in ecological adaptation/speciation. Analysis of effect direction and v-test statistics revealed that interspecific differentiation of most traits was driven by divergent natural selection, supporting the argument that ecological adaptation/speciation would proceed rapidly under coordinated selection on multiple traits. Our findings provide new insights into the understanding of genetic architecture of ecological adaptation and speciation in plants and help effective manipulation of specific genes or gene cluster in rice breeding.


Asunto(s)
Oryza , Oryza/genética , Fitomejoramiento , Mapeo Cromosómico , Fenotipo , Sitios de Carácter Cuantitativo/genética
15.
Plant Cell Environ ; 47(2): 442-459, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37969013

RESUMEN

Late flowering is a serious bottleneck in pumpkin (Cucurbita moschata Duch.) agriculture production. Although key genes governing flowering time have been reported in many species, the regulatory network of flowering in pumpkin remains largely obscure, thereby impeding the resolution of industry-wide challenges associated with delayed fruit ripening in pumpkin cultivation. Here, we report an early flowering pumpkin germplasm accession (LXX-4). Using LXX-4 and a late flowering germplasm accession (HYM-9), we constructed an F2 segregation population. A significant difference in FLOWERING LOCUS T-LIKE 2 (FTL2) expression level was identified to be the causal factor of the flowering time trait discrepancy in LXX-4 and HYM-9. Moreover, we have shown that a 21 bp InDel in the FTL2 promoter was the key reason for the waxing and waning of its transcript level. The 21 bp deletion excluded a repressor-AGL19 and recruited activators-BBX7, WRKY40 and SVP to the FTL2 promoter in LXX-4. Together, our data add a useful element to our knowledge which could be used to simplify breeding efforts for early-maturing pumpkin.


Asunto(s)
Cucurbita , Cucurbita/genética , Cucurbita/metabolismo , Fenotipo
16.
J Exp Bot ; 75(3): 1051-1062, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-37864556

RESUMEN

Identification and characterization of soybean germplasm and gene(s)/allele(s) for salt tolerance is an effective way to develop improved varieties for saline soils. Previous studies identified GmCHX1 (Glyma03g32900) as a major salt tolerance gene in soybean, and two main functional variations were found in the promoter region (148/150 bp insertion) and the third exon with a retrotransposon insertion (3.78 kb). In the current study, we identified four salt-tolerant soybean lines, including PI 483460B (Glycine soja), carrying the previously identified salt-sensitive variations at GmCHX1, suggesting new gene(s) or new functional allele(s) of GmCHX1 in these soybean lines. Subsequently, we conducted quantitative trait locus (QTL) mapping in a recombinant-inbred line population (Williams 82 (salt-sensitive) × PI 483460B) to identify the new salt tolerance loci/alleles. A new locus, qSalt_Gm18, was mapped on chromosome 18 associated with leaf scorch score. Another major QTL, qSalt_Gm03, was identified to be associated with chlorophyll content ratio and leaf scorch score in the same chromosomal region of GmCHX1 on chromosome 3. Novel variations in a STRE (stress response element) cis-element in the promoter region of GmCHX1 were found to regulate the salt-inducible expression of the gene in these four newly identified salt-tolerant lines including PI 483460B. This new allele of GmCHX1 with salt-inducible expression pattern provides an energy cost efficient (conditional gene expression) strategy to protect soybean yield in saline soils without yield penalty under non-stress conditions. Our results suggest that there might be no other major salt tolerance locus similar to GmCHX1 in soybean germplasm, and further improvement of salt tolerance in soybean may rely on gene-editing techniques instead of looking for natural variations.


Asunto(s)
Glycine max , Sitios de Carácter Cuantitativo , Glycine max/genética , Tolerancia a la Sal/genética , Regiones Promotoras Genéticas/genética , Suelo , Expresión Génica
17.
Ann Bot ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115051

RESUMEN

BACKGROUND AND AIMS: Leaf variegation is common in plants and confers diverse adaptive functions. However, its genetic underpinnings remain largely unresolved; this is particularly true for variegation that arises through modified leaf tissue structure that affects light reflection. White clover is naturally polymorphic for structure-based white leaf mark variegation. It therefore provides a useful system to examine the genetic basis of this phenotype, and to assess potential costs to photosynthetic efficiency resulting from modified leaf structures. This study sought to map the loci controlling the white leaf mark in white clover and evaluate the relationship between white leaf mark, leaf thickness, and photosynthetic efficiency. METHODS: We generated a high-density genetic linkage map from an F3 mapping population, employing reference genome-based SNP markers. White leaf mark was quantified through detailed phenotypic evaluations alongside leaf thickness to test how tissue thickness may affect the variegation phenotype. Quantitative trait locus (QTL) mapping was performed to characterize their genetic bases. Photosynthetic efficiency measurements were used to test for physiological trade-offs between variegation and photosynthetic output. KEY RESULTS: The V locus, a major gene responsible for the white leaf mark polymorphism, was mapped to the distal end of chromosome 5, and several modifier loci were also mapped that contribute additively to variegation intensity. The presence and intensity of white leaf mark was associated with greater leaf thickness; however, increased variegation did not detectably affect photosynthetic efficiency. CONCLUSIONS: We have successfully mapped the major locus governing the white leaf mark in white clover, along with several modifier loci, revealing a complex basis for this structure-based variegation. The apparent absence of compromised photosynthesis in variegated leaves challenges the notion that variegation creates fitness trade-offs between photosynthetic efficiency and other adaptive functions. This finding suggests that other factors may maintain the white leaf mark polymorphism in white clover.

18.
Mol Breed ; 44(3): 23, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38449537

RESUMEN

Stripe rust is a devastating disease of wheat worldwide. Chinese wheat cultivar Lanhangxuan 121 (LHX121), selected from an advanced line L92-47 population that had been subjected to space mutation breeding displayed a consistently higher level of resistance to stipe rust than its parent in multiple field environments. The aim of this research was to establish the number and types of resistance genes in parental lines L92-47 and LHX121 using separate segregating populations. The first population developed from a cross between LHX121 and susceptible cultivar Xinong 822 comprised 278 F2:3 lines. The second validation population comprised 301 F2:3 lines from a cross between L92-47 and susceptible cultivar Xinong 979. Lines of two population were evaluated for stripe rust response at three sites during the 2018-2020 cropping season. Affymetrix 660 K SNP arrays were used to genotype the lines and parents. Inclusive composite interval mapping detected QTL QYrLHX.nwafu-2BS, QYrLHX.nwafu-3BS, and QYrLHX.nwafu-5BS for resistance in all three environments. Based on previous studies and pedigree information, QYrLHX.nwafu-2BS and QYrLHX.nwafu-3BS were likely to be Yr27 and Yr30 that are present in the L92-47 parent. QYrLHX.nwafu-5BS (YrL121) detected only in LHX121 was mapped to a 7.60 cM interval and explained 10.67-22.57% of the phenotypic variation. Compared to stripe rust resistance genes previously mapped to chromosome 5B, YrL121 might be a new adult plant resistance QTL. Furthermore, there were a number of variations signals using 35 K SNP array and differentially expressed genes using RNA-seq between L92-47 and LHX121 in the YrL121 region, indicating that they probably impair the presence and/or function of YrL121. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01461-0.

19.
Mol Breed ; 44(10): 63, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39295771

RESUMEN

Late blight (LB), caused by oomycete Phytophthora infestans, is one of the most destructive diseases of the cultivated tomato, Solanum lycopersicum. Since new and aggressive clonal lineages of P. infestans, many of which overcoming formerly effective fungicides or host resistance genes, have continued to emerge, it is crucial to identify, characterize, and utilize new sources of host resistance in tomato breeding. A recent screening of tomato germplasm identified Solanum pimpinellifolium accession PI 224710 with very strong resistance to several current P. infestans clonal lineages. The present study aimed to identify and characterize QTLs associated with LB resistance in PI 224710. Disease screening of a large F2 population (n = 1721), derived from a cross between PI 224710 and LB-susceptible tomato breeding line Fla. 8059, followed by F3 progeny testing, resulted in the identification of 43 highly-resistant and 27 highly-susceptible F2 individuals. A selective genotyping approach, using 469 non-identical SNP markers, resulted in the construction of a genetic linkage map and identification of three LB-resistance QTLs on chromosomes 6, 9 and 10 of PI 224710. A comparison of the QTLs genomic locations with the tomato physical map resulted in the identification of several candidate genes, which might be underpinning the LB-resistance QTLs in PI 224710. The identified markers associated with the LB-resistance QTLs can be utilized in breeding programs to transfer resistance from PI 224710 into tomato breeding lines and hybrid cultivars via marker-assisted breeding; they also can be used to develop near-isogenic lines for fine mapping of the QTLs. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01498-1.

20.
Phytopathology ; 114(1): 193-199, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37386751

RESUMEN

Net form net blotch (NFNB), caused by Pyrenophora teres f. teres, is an important barley disease. The centromeric region of barley chromosome 6H has often been associated with resistance or susceptibility to NFNB, including the broadly effective dominant resistance gene Rpt5 derived from barley line CIho 5791. We characterized a population of Moroccan P. teres f. teres isolates that had overcome Rpt5 resistance and identified quantitative trait loci (QTL) that were effective against these isolates. Eight Moroccan P. teres f. teres isolates were phenotyped on barley lines CIho 5791 and Tifang. Six isolates were virulent on CIho 5791, and two were avirulent. A CIho 5791 × Tifang recombinant inbred line (RIL) population was phenotyped with all eight isolates and confirmed the defeat of the 6H resistance locus formerly mapped as Rpt5 in barley line CI9819. A major QTL on chromosome 3H with the resistance allele derived from Tifang, as well as minor QTL, was identified and provided resistance against these isolates. F2 segregation ratios supported dominant inheritance for both the 3H and 6H resistance. Furthermore, inoculation of progeny isolates derived from a cross of P. teres f. teres isolates 0-1 (virulent on Tifang/avirulent on CIho 5791) and MorSM 40-3 (avirulent on Tifang/virulent on CIho 5791) onto the RIL and F2 populations determined that recombination between isolates can generate novel genotypes that overcome both resistance genes. Markers linked to the QTL identified in this study can be used to incorporate both resistance loci into elite barley cultivars for durable resistance.


Asunto(s)
Ascomicetos , Hordeum , Mapeo Cromosómico , Hordeum/genética , Enfermedades de las Plantas/genética , Polimorfismo de Nucleótido Simple , Cromosomas de las Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA