Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.757
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 81(8): 1802-1815.e7, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33581077

RESUMEN

Measurements of cellular tRNA abundance are hampered by pervasive blocks to cDNA synthesis at modified nucleosides and the extensive similarity among tRNA genes. We overcome these limitations with modification-induced misincorporation tRNA sequencing (mim-tRNAseq), which combines a workflow for full-length cDNA library construction from endogenously modified tRNA with a comprehensive and user-friendly computational analysis toolkit. Our method accurately captures tRNA abundance and modification status in yeast, fly, and human cells and is applicable to any organism with a known genome. We applied mim-tRNAseq to discover a dramatic heterogeneity of tRNA isodecoder pools among diverse human cell lines and a surprising interdependence of modifications at distinct sites within the same tRNA transcript.


Asunto(s)
Eucariontes/genética , ARN de Transferencia/genética , Análisis de Secuencia de ARN/métodos , Animales , Línea Celular , Drosophila/genética , Genoma/genética , Células HEK293 , Humanos , Levaduras/genética
2.
Mol Cell Proteomics ; 22(2): 100491, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36603806

RESUMEN

Conventional proteomic approaches measure the averaged signal from mixed cell populations or bulk tissues, leading to the dilution of signals arising from subpopulations of cells that might serve as important biomarkers. Recent developments in bottom-up proteomics have enabled spatial mapping of cellular heterogeneity in tissue microenvironments. However, bottom-up proteomics cannot unambiguously define and quantify proteoforms, which are intact (i.e., functional) forms of proteins capturing genetic variations, alternatively spliced transcripts and posttranslational modifications. Herein, we described a spatially resolved top-down proteomics (TDP) platform for proteoform identification and quantitation directly from tissue sections. The spatial TDP platform consisted of a nanodroplet processing in one pot for trace samples-based sample preparation system and an laser capture microdissection-based cell isolation system. We improved the nanodroplet processing in one pot for trace samples sample preparation by adding benzonase in the extraction buffer to enhance the coverage of nucleus proteins. Using ∼200 cultured cells as test samples, this approach increased total proteoform identifications from 493 to 700; with newly identified proteoforms primarily corresponding to nuclear proteins. To demonstrate the spatial TDP platform in tissue samples, we analyzed laser capture microdissection-isolated tissue voxels from rat brain cortex and hypothalamus regions. We quantified 509 proteoforms within the union of top-down mass spectrometry-based proteoform identification and characterization and TDPortal identifications to match with features from protein mass extractor. Several proteoforms corresponding to the same gene exhibited mixed abundance profiles between two tissue regions, suggesting potential posttranslational modification-specific spatial distributions. The spatial TDP workflow has prospects for biomarker discovery at proteoform level from small tissue sections.


Asunto(s)
Proteoma , Proteómica , Proteoma/metabolismo , Microfluídica , Espectrometría de Masas , Proteínas de Unión al ADN
3.
Proteomics ; 24(1-2): e2300090, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37496303

RESUMEN

The coefficient of variation (CV) is often used in proteomics as a proxy to characterize the performance of a quantitation method and/or the related software. In this note, we question the excessive reliance on this metric in quantitative proteomics that may result in erroneous conclusions. We support this note using a ground-truth Human-Yeast-E. coli dataset demonstrating in a number of cases that erroneous data processing methods may lead to a low CV which has nothing to do with these methods' performances in quantitation.


Asunto(s)
Escherichia coli , Proteómica , Humanos , Espectrometría de Masas/métodos , Proteómica/métodos , Programas Informáticos , Saccharomyces cerevisiae
4.
Proteomics ; 24(10): e2300339, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38299459

RESUMEN

Detergent-based workflows incorporating sodium dodecyl sulfate (SDS) necessitate additional steps for detergent removal ahead of mass spectrometry (MS). These steps may lead to variable protein recovery, inconsistent enzyme digestion efficiency, and unreliable MS signals. To validate a detergent-based workflow for quantitative proteomics, we herein evaluate the precision of a bottom-up sample preparation strategy incorporating cartridge-based protein precipitation with organic solvent to deplete SDS. The variance of data-independent acquisition (SWATH-MS) data was isolated from sample preparation error by modelling the variance as a function of peptide signal intensity. Our SDS-assisted cartridge workflow yield a coefficient of variance (CV) of 13%-14%. By comparison, conventional (detergent-free) in-solution digestion increased the CV to 50%; in-gel digestion provided lower CVs between 14% and 20%. By filtering peptides predicting to display lower precision, we further enhance the validity of data in global comparative proteomics. These results demonstrate the detergent-based precipitation workflow is a reliable approach for in depth, label-free quantitative proteome analysis.


Asunto(s)
Precipitación Química , Detergentes , Proteómica , Dodecil Sulfato de Sodio , Flujo de Trabajo , Proteómica/métodos , Dodecil Sulfato de Sodio/química , Detergentes/química , Proteoma/análisis , Proteoma/química , Humanos , Péptidos/química , Péptidos/análisis
5.
Proteomics ; 24(15): e2300628, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38400697

RESUMEN

Botryllus schlosseri, is a model marine invertebrate for studying immunity, regeneration, and stress-induced evolution. Conditions for validating its predicted proteome were optimized using nanoElute® 2 deep-coverage LCMS, revealing up to 4930 protein groups and 20,984 unique peptides per sample. Spectral libraries were generated and filtered to remove interferences, low-quality transitions, and only retain proteins with >3 unique peptides. The resulting DIA assay library enabled label-free quantitation of 3426 protein groups represented by 22,593 unique peptides. Quantitative comparisons of single systems from a laboratory-raised with two field-collected populations revealed (1) a more unique proteome in the laboratory-raised population, and (2) proteins with high/low individual variabilities in each population. DNA repair/replication, ion transport, and intracellular signaling processes were distinct in laboratory-cultured colonies. Spliceosome and Wnt signaling proteins were the least variable (highly functionally constrained) in all populations. In conclusion, we present the first colonial tunicate's deep quantitative proteome analysis, identifying functional protein clusters associated with laboratory conditions, different habitats, and strong versus relaxed abundance constraints. These results empower research on B. schlosseri with proteomics resources and enable quantitative molecular phenotyping of changes associated with transfer from in situ to ex situ and from in vivo to in vitro culture conditions.


Asunto(s)
Proteoma , Proteómica , Urocordados , Animales , Proteómica/métodos , Urocordados/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Cromatografía Liquida/métodos
6.
J Proteome Res ; 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39475161

RESUMEN

Targeted mass spectrometry (MS) methods are powerful tools for the selective and sensitive analysis of peptides identified in global discovery experiments. Selected reaction monitoring (SRM) is the most widely accepted clinical MS method due to its reliability and performance. However, SRM and parallel reaction monitoring (PRM) are limited in throughput and are typically used for assays with around 100 targets or fewer. Here we introduce a new MS platform featuring a quadrupole mass filter, collision cell, and linear ion trap architecture, capable of targeting 5000-8000 peptides per hour. This high multiplexing capability is facilitated by acquisition rates of 70-100 Hz and real-time chromatogram alignment. We present a Skyline external software tool for building targeted methods based on data-independent acquisition chromatogram libraries or unscheduled analysis of heavy labeled standards. Our platform demonstrates ∼10× lower limits of quantitation (LOQs) than traditional SRM on a triple quadrupole instrument for highly multiplexed assays, due to parallel product ion accumulation. Finally, we explore how analytical figures of merit vary with method duration and the number of analytes, providing insights into optimizing assay performance.

7.
J Proteome Res ; 23(3): 1028-1038, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38275131

RESUMEN

In recent years, a plethora of different data-independent acquisition methods have been developed for proteomics to cover a wide range of requirements. Current deep proteome profiling methods rely on fractionations, elaborate chromatography, and mass spectrometry setups or display suboptimal quantitative precision. We set out to develop an easy-to-use one shot DIA method that achieves high quantitative precision and high proteome coverage. We achieve this by focusing on a small mass range of 430-670 m/z using small isolation windows without overlap. With this new method, we were able to quantify >9200 protein groups in HEK lysates with an average coefficient of variance of 3.2%. To demonstrate the power of our newly developed narrow mass range method, we applied it to investigate the effect of PGC-1α knockout on the skeletal muscle proteome in mice. Compared to a standard data-dependent acquisition method, we could double proteome coverage and, most importantly, achieve a significantly higher quantitative precision, as compared to a previously proposed DIA method. We believe that our method will be especially helpful in quantifying low abundant proteins in samples with a high dynamic range. All raw and result files are available at massive.ucsd.edu (MSV000092186).


Asunto(s)
Proteoma , Programas Informáticos , Animales , Ratones , Proteoma/análisis , Espectrometría de Masas/métodos , Proteómica/métodos
8.
J Proteome Res ; 23(8): 3052-3063, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38533909

RESUMEN

Quantitation of proteins using liquid chromatography-tandem mass spectrometry (LC-MS/MS) is complex, with a multiplicity of options ranging from label-free techniques to chemically and metabolically labeling proteins. Increasingly, for clinically relevant analyses, stable isotope-labeled (SIL) internal standards (ISs) represent the "gold standard" for quantitation due to their similar physiochemical properties to the analyte, wide availability, and ability to multiplex to several peptides. However, the purchase of SIL-ISs is a resource-intensive step in terms of cost and time, particularly for screening putative biomarker panels of hundreds of proteins. We demonstrate an alternative strategy utilizing nonhuman sera as the IS for quantitation of multiple human proteins. We demonstrate the effectiveness of this strategy using two high abundance clinically relevant analytes, vitamin D binding protein [Gc globulin] (DBP) and albumin (ALB). We extend this to three putative risk markers for cardiovascular disease: plasma protease C1 inhibitor (SERPING1), annexin A1 (ANXA1), and protein kinase, DNA-activated catalytic subunit (PRKDC). The results show highly specific, reproducible, and linear measurement of the proteins of interest with comparable precision and accuracy to the gold standard SIL-IS technique. This approach may not be applicable to every protein, but for many proteins it can offer a cost-effective solution to LC-MS/MS protein quantitation.


Asunto(s)
Cromatografía Líquida con Espectrometría de Masas , Espectrometría de Masas en Tándem , Animales , Humanos , Biomarcadores/sangre , Análisis Costo-Beneficio , Marcaje Isotópico/métodos , Cromatografía Líquida con Espectrometría de Masas/métodos , Péptidos/química , Péptidos/sangre , Péptidos/análisis , Proteómica/métodos , Proteómica/economía , Estándares de Referencia , Reproducibilidad de los Resultados , Albúmina Sérica/análisis , Albúmina Sérica/química , Espectrometría de Masas en Tándem/métodos , Tripsina/química , Tripsina/metabolismo , Proteína de Unión a Vitamina D/sangre , Proteína de Unión a Vitamina D/química
9.
J Proteome Res ; 23(1): 465-482, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38147655

RESUMEN

Temozolomide (TMZ) is the first line of chemotherapy to treat primary brain tumors of the type glioblastoma multiforme (GBM). TMZ resistance (TMZR) is one of the main barriers to successful treatment and is a principal factor in relapse, resulting in a poor median survival of 15 months. The present paper focuses on proteomic analyses of cytosolic fractions from TMZ-resistant (TMZR) LN-18 cells. The experimental workflow includes an easy, cost-effective, and reproducible method to isolate subcellular fraction of cytosolic (CYTO) proteins, mitochondria, and plasma membrane proteins for proteomic studies. For this study, enriched cytoplasmic fractions were analyzed in replicates by nanoflow liquid chromatography tandem high-resolution mass spectrometry (nLC-MS/MS), and proteins identified were quantified using a label-free approach (LFQ). Statistical analysis of control (CTRL) and temozolomide-resistant (TMZR) proteomes revealed proteins that appear to be differentially controlled in the cytoplasm. The functions of these proteins are discussed as well as their roles in other cancers and TMZ resistance in GBM. Key proteins are also described through biological processes related to gene ontology (GO), molecular functions, and cellular components. For protein-protein interactions (PPI), network and pathway involvement analyses have been performed, highlighting the roles of key proteins in the TMZ resistance phenotypes. This study provides a detailed insight into methods of subcellular fractionation for proteomic analysis of TMZ-resistant GBM cells and the potential to apply this approach to future large-scale studies. Several key proteins, protein-protein interactions (PPI), and pathways have been identified, underlying the TMZ resistance phenotype and highlighting the proteins' biological functions.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/patología , Proteómica , Espectrometría de Masas en Tándem , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Línea Celular Tumoral , Recurrencia Local de Neoplasia , Citoplasma/metabolismo , Resistencia a Antineoplásicos , Neoplasias Encefálicas/genética
10.
J Clin Microbiol ; 62(8): e0074324, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39072625

RESUMEN

Double-layer agar (DLA) overlay plaque assay is the gold standard for phage enumeration. However, it is cumbersome and time-consuming. Given the great interest in phage therapy, we explored alternative assays for phage quantitation. A total of 16 different phages belonging to Myoviridae, Siphoviridae, and Podoviridae families were quantitated with five K. pneumoniae, eight P. aeruginosa, and three A. baumannii host isolates. Phages were quantitated with the standard DLA assay (10 mL of LB soft agar 0.7% on LB hard agar 1.5%) and the new single-layer agar (SLA) assay (10 mL of LB soft agar 0.7%) with phages spread (spread) into or spotted (spot) onto soft agar. Phage concentrations with each assay were correlated with the standard assay, and the relative and absolute differences between each assay and the standard double-layer agar spread were calculated. Phage concentrations 1 × 104-8.3 x1012 PFU/mL with the standard DLA assay were quantitated with SLA-spread, SLA-spot, and DLA-spot assays, and the median (range) relative and absolute differences were <10% and <0.98 log10PFU/mL, respectively, for all phage/bacterial species (ANOVA P = 0.1-0.43), and they were highly correlated (r > 0.77, P < 0.01). Moreover, plaques could be quantified at 37°C after 4-h incubation for K. pneumoniae phages and 6-h incubation for P. aeruginosa and A. baumannii phages, and estimated concentrations remained the same over 24 hours. Compared to DLA assay, the SLA-spot assay required less media, it was 10 times faster, and generated same-day results. The SLA-spot assay was cheaper, faster, easier to perform, and generated similar phage concentrations as the standard DLA-spread assay.


Asunto(s)
Bacteriófagos , Bacteriófagos/aislamiento & purificación , Acinetobacter baumannii/virología , Pseudomonas aeruginosa/virología , Humanos , Ensayos Analíticos de Alto Rendimiento/métodos , Farmacorresistencia Bacteriana Múltiple , Carga Viral/métodos , Klebsiella pneumoniae/virología , Podoviridae/aislamiento & purificación , Myoviridae/aislamiento & purificación , Myoviridae/clasificación , Siphoviridae/aislamiento & purificación , Siphoviridae/clasificación
11.
J Clin Microbiol ; 62(3): e0166923, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38380932

RESUMEN

Interlaboratory agreement of viral load assays depends on the accuracy and uniformity of quantitative calibrators. Previous work demonstrated poor agreement of secondary cytomegalovirus (CMV) standards with nominal values. This study re-evaluated this issue among commercially produced secondary standards for both BK virus (BKV) and CMV, using digital polymerase chain reaction (dPCR) to compare the materials from three different manufacturers. Overall, standards showed an improved agreement compared to prior work, against nominal values in both log10 copies/mL and log10 international unit (IU)/mL, with bias from manufacturer-assigned nominal values of 0.0-0.9 log10 units (either copies or IU)/mL. Standards normalized to IU and those values assigned by dPCR rather than by real-time PCR (qPCR) showed better agreement with nominal values. The latter reinforces prior conclusions regarding the utility of using such methods for quantitative value assignment in reference materials. Quantitative standards have improved over the last several years, and the remaining bias from nominal values might be further reduced by universal implementation of dPCR methods for value assignment, normalized to IU. IMPORTANCE: Interlaboratory agreement of viral load assays depends on accuracy and uniformity of quantitative calibrators. Previous work, published in JCM several years ago, demonstrated poor agreement of secondary cytomegalovirus (CMV) standards with nominal values. This study re-evaluated this issue among commercially produced secondary standards for both BK virus (BKV) and CMV, using digital polymerase chain reaction (dPCR) to compare the materials from three different manufacturers. Overall, standards showed an improved agreement compared to prior work, against nominal values, indicating a substantial improvement in the production of accurate secondary viral standards, while supporting the need for further work in this area and for the broad adaption of international unit (IU) as a reporting standard for quantitative viral load results.


Asunto(s)
Virus BK , Infecciones por Citomegalovirus , Humanos , Citomegalovirus/genética , Infecciones por Citomegalovirus/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Carga Viral/métodos , Virus BK/genética , ADN Viral
12.
J Clin Microbiol ; 62(8): e0026724, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39046255

RESUMEN

Guidelines recommend monitoring of Epstein-Barr virus (EBV) and BK virus (BKV) in solid organ and hematopoietic stem cell transplant patients. The majority of quantitative DNA testing for EBV and BKV employs unstandardized individual laboratory-developed testing solutions (LDTs), with implications for accuracy, reproducibility, and comparability between laboratories. The performance of the cobas EBV and cobas BKV assays was assessed across five laboratories, using the World Health Organization International Standards (WHO IS) for EBV and BKV, and the National Institute of Standards and Technology Quantitative Standard for BKV, and results were compared with the LDTs in use at the time. Methods were also compared using locally sourced clinical specimens. Variation was high when laboratories reported EBV or BKV DNA values using LDTs, where quantitative values were observed to differ by up to 1.5 log10 unit/mL between sites. Conversely, results from the cobas EBV and cobas BKV assays were accurate and reproducible across sites and on different testing days. Adjustment of LDTs using the international standards led to closer alignment between the assays; however, day-to-day reproducibility of LDTs remained high. In addition, BKV continued to show bias, indicating challenges with the commutability of the BKV International Standard. The cobas EBV and cobas BKV assays are automated, aligned to the WHO IS, and have the potential to reduce the variability in viral load testing introduced by differences in LDTs. Standardization of reporting values may eventually allow different centers to compare data to allow clinical decision thresholds to be established supporting improvements in patient management.IMPORTANCEThe application of center-specific cut-offs for clinical decisions and the variability of LDTs often hinder interpretation; thus, the findings reported here support the need for standardization in the field of post-transplant monitoring of EBV and BKV to improve patient management. Alongside the choice of assay, it is also important to consider which standard to use when deciding upon a testing methodology. This is a call to action for standardization, as treatment for EBV and BKV is driven by viral load test results, and the more accurate and comparable the test results are across institutions, the more informed and better the treatment decisions can be.


Asunto(s)
Virus BK , Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Carga Viral , Humanos , Virus BK/aislamiento & purificación , Virus BK/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/aislamiento & purificación , Carga Viral/normas , Carga Viral/métodos , Reproducibilidad de los Resultados , Infecciones por Virus de Epstein-Barr/diagnóstico , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Polyomavirus/diagnóstico , Infecciones por Polyomavirus/virología , ADN Viral/genética , ADN Viral/análisis , Técnicas de Diagnóstico Molecular/normas , Técnicas de Diagnóstico Molecular/métodos , Infecciones Tumorales por Virus/diagnóstico , Infecciones Tumorales por Virus/virología
13.
Expert Rev Proteomics ; 21(1-3): 81-98, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38376826

RESUMEN

INTRODUCTION: Breast cancer is one of the most prevalent cancers among women in the United States. Current research regarding breast milk has been focused on the composition and its role in infant growth and development. There is little information about the proteins, immune cells, and epithelial cells present in breast milk which can be indicative of the emergence of BC cells and tumors. AREAS COVERED: We summarize all breast milk studies previously done in our group using proteomics. These studies include 1D-PAGE and 2D-PAGE analysis of breast milk samples, which include within woman and across woman comparisons to identify dysregulated proteins in breast milk and the roles of these proteins in both the development of BC and its diagnosis. Our projected outlook for the use of milk for cancer detection is also discussed. EXPERT OPINION: Analyzing the samples by multiple methods allows one to interrogate a set of samples with various biochemical methods that complement each other, thus providing a more comprehensive proteome. Complementing methods like 1D-PAGE, 2D-PAGE, in-solution digestion and proteomics analysis with PTM-omics, peptidomics, degradomics, or interactomics will provide a better understanding of the dysregulated proteins, but also the modifications or interactions between these proteins.


Asunto(s)
Neoplasias de la Mama , Leche Humana , Humanos , Femenino , Leche Humana/química , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Proteómica/métodos , Detección Precoz del Cáncer , Electroforesis en Gel Bidimensional , Proteoma/genética , Proteoma/análisis
14.
Mass Spectrom Rev ; 42(2): 706-750, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-34558119

RESUMEN

Due to their involvement in numerous biochemical pathways, neuropeptides have been the focus of many recent research studies. Unfortunately, classic analytical methods, such as western blots and enzyme-linked immunosorbent assays, are extremely limited in terms of global investigations, leading researchers to search for more advanced techniques capable of probing the entire neuropeptidome of an organism. With recent technological advances, mass spectrometry (MS) has provided methodology to gain global knowledge of a neuropeptidome on a spatial, temporal, and quantitative level. This review will cover key considerations for the analysis of neuropeptides by MS, including sample preparation strategies, instrumental advances for identification, structural characterization, and imaging; insightful functional studies; and newly developed absolute and relative quantitation strategies. While many discoveries have been made with MS, the methodology is still in its infancy. Many of the current challenges and areas that need development will also be highlighted in this review.


Asunto(s)
Neuropéptidos , Espectrometría de Masas/métodos , Neuropéptidos/análisis , Neuropéptidos/química , Neuropéptidos/metabolismo
15.
Mass Spectrom Rev ; 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37530668

RESUMEN

Mass spectrometry (MS) has been proven as an excellent tool in ocular drug research allowing analyzes from small samples and low concentrations. This review begins with a short introduction to eye physiology and ocular pharmacokinetics and the relevance of advancing ophthalmic treatments. The second part of the review consists of an introduction to ocular proteomics, with special emphasis on targeted absolute quantitation of membrane transporters and metabolizing enzymes. The third part of the review deals with liquid chromatography-MS (LC-MS) and MS imaging (MSI) methods used in the analysis of drugs and metabolites in ocular samples. The sensitivity and speed of LC-MS make simultaneous quantitation of various drugs and metabolites possible in minute tissue samples, even though ocular sample preparation requires careful handling. The MSI methodology is on the verge of becoming as important as LC-MS in ocular pharmacokinetic studies, since the spatial resolution has reached the level, where cell layers can be separated, and quantitation with isotope-labeled standards has come more reliable. MS will remain in the foreseeable future as the main analytical method that will progress our understanding of ocular pharmacokinetics.

16.
Clin Proteomics ; 21(1): 57, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39343872

RESUMEN

BACKGROUND: Cardiovascular diseases (CVDs) are the leading cause of death worldwide, and the prevalence of CVDs increases markedly with age. Due to the high energetic demand, the heart is highly sensitive to mitochondrial dysfunction. The complexity of the cardiac mitochondrial proteome hinders the development of effective strategies that target mitochondrial dysfunction in CVDs. Mammalian mitochondria are composed of over 1000 proteins, most of which can undergo post-translational modifications (PTMs). Top-down proteomics is a powerful technique for characterizing and quantifying proteoform sequence variations and PTMs. However, there are still knowledge gaps in the study of age-related mitochondrial proteoform changes using this technique. In this study, we used top-down proteomics to identify intact mitochondrial proteoforms in young and old hearts and determined changes in protein abundance and PTMs in cardiac aging. METHODS: Intact mitochondria were isolated from the hearts of young (4-month-old) and old (24-25-month-old) mice. The mitochondria were lysed, and mitochondrial lysates were subjected to denaturation, reduction, and alkylation. For quantitative top-down analysis, there were 12 runs in total arising from 3 biological replicates in two conditions, with technical duplicates for each sample. The collected top-down datasets were deconvoluted and quantified, and then the proteoforms were identified. RESULTS: From a total of 12 LC-MS/MS runs, we identified 134 unique mitochondrial proteins in the different sub-mitochondrial compartments (OMM, IMS, IMM, matrix). 823 unique proteoforms in different mass ranges were identified. Compared to cardiac mitochondria of young mice, 7 proteoforms exhibited increased abundance and 13 proteoforms exhibited decreased abundance in cardiac mitochondria of old mice. Our analysis also detected PTMs of mitochondrial proteoforms, including N-terminal acetylation, lysine succinylation, lysine acetylation, oxidation, and phosphorylation. Data are available via ProteomeXchange with the identifier PXD051505. CONCLUSION: By combining mitochondrial protein enrichment using mitochondrial fractionation with quantitative top-down analysis using ultrahigh-pressure liquid chromatography (UPLC)-MS and label-free quantitation, we successfully identified and quantified intact proteoforms in the complex mitochondrial proteome. Using this approach, we detected age-related changes in abundance and PTMs of mitochondrial proteoforms in the heart.

17.
Clin Proteomics ; 21(1): 8, 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38311768

RESUMEN

BACKGROUND: Dynein axonemal intermediate chain 1 protein (DNAI1) plays an essential role in cilia structure and function, while its mutations lead to primary ciliary dyskinesia (PCD). Accurate quantitation of DNAI1 in lung tissue is crucial for comprehensive understanding of its involvement in PCD, as well as for developing the potential PCD therapies. However, the current protein quantitation method is not sensitive enough to detect the endogenous level of DNAI1 in complex biological matrix such as lung tissue. METHODS: In this study, a quantitative method combining immunoprecipitation with nanoLC-MS/MS was developed to measure the expression level of human wild-type (WT) DNAI1 protein in lung tissue. To our understanding, it is the first immunoprecipitation (IP)-MS based method for absolute quantitation of DNAI1 protein in lung tissue. The DNAI1 quantitation was achieved through constructing a standard curve with recombinant human WT DNAI1 protein spiked into lung tissue matrix. RESULTS: This method was qualified with high sensitivity and accuracy. The lower limit of quantitation of human DNAI1 was 4 pg/mg tissue. This assay was successfully applied to determine the endogenous level of WT DNAI1 in human lung tissue. CONCLUSIONS: The results clearly demonstrate that the developed assay can accurately quantitate low-abundance WT DNAI1 protein in human lung tissue with high sensitivity, indicating its high potential use in the drug development for DNAI1 mutation-caused PCD therapy.

18.
Electrophoresis ; 45(5-6): 537-547, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37946590

RESUMEN

A great need currently exists for rapid, inexpensive, and accurate methods for microbial analysis in the medical, food, industrial, and water quality fields. Here, a novel capillary isotachophoresis (CITP) method is presented for the focusing, sorting, and quantitation of intact cells in mixed samples based on their electrophoretic mobility ranges. Using a series of ion spacers dissolved in the sample, this technique results in several efficient cell peaks in the electropherogram corresponding to specific cell electrophoretic mobility ranges. The concentrations of different species in mixed-cell samples are determined from the cell peak areas and the known peak response factors for the cell species using a series of linear equations. Method design and optimization are discussed, including the choice of running buffer, pH, and ion spacers. Mixed-cell samples of up to four different species were focused and quantified as a proof-of-principle of the method. When sample cell concentrations were toward the middle of the linear response range, accuracies between 1% and 11% and relative standard deviations of 1%-14% were obtained, depending on the number of cell species in the mixture. This work provides a useful basis for future studies of cell quantitation using CITP, which could be potentially applied to a variety of fields including cell growth studies, microbial contamination testing, and sterility testing.


Asunto(s)
Isotacoforesis , Isotacoforesis/métodos , Electroforesis Capilar/métodos
19.
Chemistry ; : e202403278, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39422672

RESUMEN

We developed a single cell amine analysis approach utilizing isobarically multiplexed samples of 6 individual cells along with analyte abundant carrier. This methodology was applied for absolute quantitation of amino acids and untargeted relative quantitation of amines in a total of 108 individual cells using nanoflow LC with high-resolution mass spectrometry. Together with individually determined cell sizes, this provides quantification of intracellular concentrations within individual cells. The targeted method was partially validated for 10 amino acids with limits of detection in low attomoles, linear calibration range covering analyte amounts typically from 30 amol to 120 fmol, and correlation coefficients (R) above 0.99. This was applied with cell sizes recorded during dispensing to determine millimolar intracellular amino acid concentrations. The untargeted approach yielded 249 features that were detected in at least 25% of the single cells, providing modest cell type separation on principal component analysis. Using Greedy forward selection with regularized least squares, a sub-selection of 100 features explaining most of the difference was determined. These features were annotated using MS2 from analyte standards and accurate mass with library search. The approach provides accessible, sensitive, and high-throughput method with the potential to be expanded also to other forms of ultrasensitive analysis.

20.
Anal Bioanal Chem ; 416(2): 467-474, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37993551

RESUMEN

Natural bioactive compounds (NBCs) are widely used in clinical treatment. For example, Tripterygium wilfordii Hook f. is commonly known in China as Lei-Gong-Teng which means thunder god vine. This herb is widely distributed in Eastern and Southern China, Korea, and Japan. The natural bioactive compounds of this herb can be extracted and made into tripterygium glycoside tablets. It is one of the most commonly used and effective traditional Chinese herbal medicines against rheumatoid arthritis (RA), nephrotic syndrome (NS), autoimmune hepatis (AIH), and so on. However, many NBCs are difficult to reliably quantify in the serum due to the effects of matrix and RSD. In addition, the targeted compound's internal standard (IS) is rarely sold due to the complex isotope internal standard synthesis pathway. In this study, a new quantitation method for 18O labeling combined with off-line SPE was formulated. We contrasted the recoveries and matrix effects of various separation methods in order to choose the best method. Furthermore, we optimized the conditions for SPE loading and washing. An isotopic internal standard was prepared by the 16O/18O exchanging reaction in order to eliminate the matrix effects. The method's accuracy and precision met the requirements for method validation. The recovery of this method was close to 60%. The relative standard deviation (RSD) of the high-concentration sample was 2%, and the limit of detection (LOD) was 1 ng/mL. This method could be used to analyze the clinical serum concentration of demethylzeylasteral. Sixty samples were collected from 10 patients with diabetes nephropathy. The quantitation results of demethylzeylasteral in patients' serum obtained using this method exhibited a correlation between therapeutic drug monitoring (TDM) and decreased urinary protein. This work may have broad implications for the study of drug metabolism in vivo and the clinical application of low-abundance and difficult-to-quantify NBCs.


Asunto(s)
Artritis Reumatoide , Medicamentos Herbarios Chinos , Triterpenos , Humanos , Artritis Reumatoide/tratamiento farmacológico , Glicósidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA