Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(25): 5517-5535.e24, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-37992713

RESUMEN

Transfer RNA (tRNA) modifications are critical for protein synthesis. Queuosine (Q), a 7-deaza-guanosine derivative, is present in tRNA anticodons. In vertebrate tRNAs for Tyr and Asp, Q is further glycosylated with galactose and mannose to generate galQ and manQ, respectively. However, biogenesis and physiological relevance of Q-glycosylation remain poorly understood. Here, we biochemically identified two RNA glycosylases, QTGAL and QTMAN, and successfully reconstituted Q-glycosylation of tRNAs using nucleotide diphosphate sugars. Ribosome profiling of knockout cells revealed that Q-glycosylation slowed down elongation at cognate codons, UAC and GAC (GAU), respectively. We also found that galactosylation of Q suppresses stop codon readthrough. Moreover, protein aggregates increased in cells lacking Q-glycosylation, indicating that Q-glycosylation contributes to proteostasis. Cryo-EM of human ribosome-tRNA complex revealed the molecular basis of codon recognition regulated by Q-glycosylations. Furthermore, zebrafish qtgal and qtman knockout lines displayed shortened body length, implying that Q-glycosylation is required for post-embryonic growth in vertebrates.


Asunto(s)
ARN de Transferencia , Animales , Humanos , Ratas , Anticodón , Línea Celular , Codón , Glicosilación , Nucleósido Q/química , Nucleósido Q/genética , Nucleósido Q/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Porcinos , Pez Cebra/metabolismo , Conformación de Ácido Nucleico
2.
EMBO J ; 42(19): e112507, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37609797

RESUMEN

Queuosine (Q) is a modified nucleoside at the wobble position of specific tRNAs. In mammals, queuosinylation is facilitated by queuine uptake from the gut microbiota and is introduced into tRNA by the QTRT1-QTRT2 enzyme complex. By establishing a Qtrt1 knockout mouse model, we discovered that the loss of Q-tRNA leads to learning and memory deficits. Ribo-Seq analysis in the hippocampus of Qtrt1-deficient mice revealed not only stalling of ribosomes on Q-decoded codons, but also a global imbalance in translation elongation speed between codons that engage in weak and strong interactions with their cognate anticodons. While Q-dependent molecular and behavioral phenotypes were identified in both sexes, female mice were affected more severely than males. Proteomics analysis confirmed deregulation of synaptogenesis and neuronal morphology. Together, our findings provide a link between tRNA modification and brain functions and reveal an unexpected role of protein synthesis in sex-dependent cognitive performance.


Asunto(s)
Nucleósido Q , ARN de Transferencia , Femenino , Ratones , Animales , Nucleósido Q/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Anticodón , Biosíntesis de Proteínas , Codón , Mamíferos/genética
3.
Proc Natl Acad Sci U S A ; 119(49): e2213630119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36442121

RESUMEN

In response to bacterial infection, the vertebrate host employs the metal-sequestering protein calprotectin (CP) to withhold essential transition metals, notably Zn(II), to inhibit bacterial growth. Previous studies of the impact of CP-imposed transition-metal starvation in A. baumannii identified two enzymes in the de novo biosynthesis pathway of queuosine-transfer ribonucleic acid (Q-tRNA) that become cellularly abundant, one of which is QueD2, a 6-carboxy-5,6,7,8-tetrahydropterin (6-CPH4) synthase that catalyzes the initial, committed step of the pathway. Here, we show that CP strongly disrupts Q incorporation into tRNA. As such, we compare the AbQueD2 "low-zinc" paralog with a housekeeping, obligatory Zn(II)-dependent enzyme QueD. The crystallographic structure of Zn(II)-bound AbQueD2 reveals a distinct catalytic site coordination sphere and assembly state relative to QueD and possesses a dynamic loop, immediately adjacent to the catalytic site that coordinates a second Zn(II) in the structure. One of these loop-coordinating residues is an invariant Cys18, that protects QueD2 from dissociation of the catalytic Zn(II) while maintaining flux through the Q-tRNA biosynthesis pathway in cells. We propose a "metal retention" model where Cys18 introduces coordinative plasticity into the catalytic site which slows metal release, while also enhancing the metal promiscuity such that Fe(II) becomes an active cofactor. These studies reveal a complex, multipronged evolutionary adaptation to cellular Zn(II) limitation in a key Zn(II) metalloenzyme in an important human pathogen.


Asunto(s)
Acinetobacter baumannii , Nucleósido Q , Humanos , Transcripción Genética , ARN de Transferencia/genética , Metales
4.
Microbiology (Reading) ; 170(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39234940

RESUMEN

Queuosine (Q) stands out as the sole tRNA modification that can be synthesized via salvage pathways. Comparative genomic analyses identified specific bacteria that showed a discrepancy between the projected Q salvage route and the predicted substrate specificities of the two identified salvage proteins: (1) the distinctive enzyme tRNA guanine-34 transglycosylase (bacterial TGT, or bTGT), responsible for inserting precursor bases into target tRNAs; and (2) queuosine precursor transporter (QPTR), a transporter protein that imports Q precursors. Organisms such as the facultative intracellular pathogen Bartonella henselae, which possess only bTGT and QPTR but lack predicted enzymes for converting preQ1 to Q, would be expected to salvage the queuine (q) base, mirroring the scenario for the obligate intracellular pathogen Chlamydia trachomatis. However, sequence analyses indicate that the substrate-specificity residues of their bTGTs resemble those of enzymes inserting preQ1 rather than q. Intriguingly, MS analyses of tRNA modification profiles in B. henselae reveal trace amounts of preQ1, previously not observed in a natural context. Complementation analysis demonstrates that B. henselae bTGT and QPTR not only utilize preQ1, akin to their Escherichia coli counterparts, but can also process q when provided at elevated concentrations. The experimental and phylogenomic analyses suggest that the Q pathway in B. henselae could represent an evolutionary transition among intracellular pathogens - from ancestors that synthesized Q de novo to a state prioritizing the salvage of q. Another possibility that will require further investigations is that the insertion of preQ1 confers fitness advantages when B. henselae is growing outside a mammalian host.


Asunto(s)
Bartonella henselae , Nucleósido Q , Nucleósido Q/metabolismo , Nucleósido Q/genética , Bartonella henselae/genética , Bartonella henselae/metabolismo , Bartonella henselae/enzimología , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Evolución Molecular , Especificidad por Sustrato , Guanina/análogos & derivados
5.
Anal Bioanal Chem ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160437

RESUMEN

Queuosine (Q) is a hypermodified 7-deaza-guanosine nucleoside exclusively synthesized by bacteria. This micronutrient and its respective nucleobase form queuine (q) are salvaged by humans either from gut microflora or digested food. Depletion of Q-tRNA in human or mouse cells causes protein misfolding that triggers endoplasmic reticular stress and the activation of the unfolded protein responses. In vivo, this reduces the neuronal architecture of the mouse brain affecting learning and memory. Herein, a sensitive method for quantifying free q and Q in human blood was developed, optimised and validated. After evaluating q/Q extraction efficiency in several different solid-phase sorbents, Bond Elut PBA (phenylboronic acid) cartridges were found to have the highest extraction recovery for q (82%) and Q (71%) from pooled human plasma. PBS with 4% BSA was used as surrogate matrix for method development and validation. An LC-MS/MS method was validated across the concentration range of 0.0003-1 µM for both q and Q, showing excellent linearity (r2 = 0.997 (q) and r2 = 0.998 (Q)), limit of quantification (0.0003 µM), accuracy (100.39-125.71%) and precision (CV% < 15.68%). In a sampling of healthy volunteers (n = 44), there was no significant difference in q levels between male (n = 14; mean = 0.0068 µM) and female (n = 30; mean = 0.0080 µM) participants (p = 0.50). Q was not detected in human plasma. This validated method can now be used to further substantiate the role of q/Q in nutrition, physiology and pathology.

6.
EMBO J ; 37(18)2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30093495

RESUMEN

Global protein translation as well as translation at the codon level can be regulated by tRNA modifications. In eukaryotes, levels of tRNA queuosinylation reflect the bioavailability of the precursor queuine, which is salvaged from the diet and gut microbiota. We show here that nutritionally determined Q-tRNA levels promote Dnmt2-mediated methylation of tRNA Asp and control translational speed of Q-decoded codons as well as at near-cognate codons. Deregulation of translation upon queuine depletion results in unfolded proteins that trigger endoplasmic reticulum stress and activation of the unfolded protein response, both in cultured human cell lines and in germ-free mice fed with a queuosine-deficient diet. Taken together, our findings comprehensively resolve the role of this anticodon tRNA modification in the context of native protein translation and describe a novel mechanism that links nutritionally determined modification levels to effective polypeptide synthesis and cellular homeostasis.


Asunto(s)
Estrés del Retículo Endoplásmico , Alimentos Formulados , Nucleósido Q/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Transferencia de Aspártico/metabolismo , Respuesta de Proteína Desplegada , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Células HCT116 , Células HeLa , Humanos , Ratones , Nucleósido Q/genética , ARN de Transferencia de Aspártico/genética
7.
RNA ; 26(9): 1291-1298, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32439717

RESUMEN

Queuosine (Q) is a conserved tRNA modification in bacteria and eukaryotes. Eukaryotic Q-tRNA modification occurs through replacing the guanine base with the scavenged metabolite queuine at the wobble position of tRNAs with G34U35N36 anticodon (Tyr, His, Asn, Asp) by the QTRT1/QTRT2 heterodimeric enzyme encoded in the genome. In humans, Q-modification in tRNATyr and tRNAAsp are further glycosylated with galactose and mannose, respectively. Although galactosyl-Q (galQ) and mannosyl-Q (manQ) can be measured by LC/MS approaches, the difficulty of detecting and quantifying these modifications with low sample inputs has hindered their biological investigations. Here we describe a simple acid denaturing gel and nonradioactive northern blot method to detect and quantify the fraction of galQ/manQ-modified tRNA using just microgram amounts of total RNA. Our method relies on the secondary amine group of galQ/manQ becoming positively charged to slow their migration in acid denaturing gels commonly used for tRNA charging studies. We apply this method to determine the Q and galQ/manQ modification kinetics in three human cells lines. For Q-modification, tRNAAsp is modified the fastest, followed by tRNAHis, tRNATyr, and tRNAAsn Compared to Q-modification, glycosylation occurs at a much slower rate for tRNAAsp, but at a similar rate for tRNATyr Our method enables easy access to study the function of these enigmatic tRNA modifications.


Asunto(s)
Geles/química , Nucleósido Q/química , ARN de Transferencia/química , ARN de Transferencia/genética , Anticodón/química , Anticodón/genética , Línea Celular Tumoral , Glicosilación , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Nucleósido Q/genética , Aminoacilación de ARN de Transferencia/genética
8.
Proc Natl Acad Sci U S A ; 116(38): 19126-19135, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31481610

RESUMEN

Queuosine (Q) is a complex tRNA modification widespread in eukaryotes and bacteria that contributes to the efficiency and accuracy of protein synthesis. Eukaryotes are not capable of Q synthesis and rely on salvage of the queuine base (q) as a Q precursor. While many bacteria are capable of Q de novo synthesis, salvage of the prokaryotic Q precursors preQ0 and preQ1 also occurs. With the exception of Escherichia coli YhhQ, shown to transport preQ0 and preQ1, the enzymes and transporters involved in Q salvage and recycling have not been well described. We discovered and characterized 2 Q salvage pathways present in many pathogenic and commensal bacteria. The first, found in the intracellular pathogen Chlamydia trachomatis, uses YhhQ and tRNA guanine transglycosylase (TGT) homologs that have changed substrate specificities to directly salvage q, mimicking the eukaryotic pathway. The second, found in bacteria from the gut flora such as Clostridioides difficile, salvages preQ1 from q through an unprecedented reaction catalyzed by a newly defined subgroup of the radical-SAM enzyme family. The source of q can be external through transport by members of the energy-coupling factor (ECF) family or internal through hydrolysis of Q by a dedicated nucleosidase. This work reinforces the concept that hosts and members of their associated microbiota compete for the salvage of Q precursors micronutrients.


Asunto(s)
Proteínas Bacterianas/metabolismo , Infecciones por Chlamydia/metabolismo , Chlamydia trachomatis/metabolismo , Clostridioides difficile/metabolismo , Infecciones por Clostridium/metabolismo , Guanina/análogos & derivados , Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/crecimiento & desarrollo , Clostridioides difficile/crecimiento & desarrollo , Infecciones por Clostridium/microbiología , Guanina/metabolismo , Humanos , Pentosiltransferasa/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Transducción de Señal , Especificidad por Sustrato
9.
Beilstein J Org Chem ; 17: 2295-2301, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34621392

RESUMEN

A naturally occurring riboswitch can utilize 7-aminomethyl-O 6-methyl-7-deazaguanine (m6preQ1) as cofactor for methyl group transfer resulting in cytosine methylation. This recently discovered riboswitch-ribozyme activity opens new avenues for the development of RNA labeling tools based on tailored O 6-alkylated preQ1 derivatives. Here, we report a robust synthesis for this class of pyrrolo[2,3-d]pyrimidines starting from readily accessible N 2-pivaloyl-protected 6-chloro-7-cyano-7-deazaguanine. Substitution of the 6-chloro atom with the alcoholate of interest proceeds straightforward. The transformation of the 7-cyano substituent into the required aminomethyl group turned out to be challenging and was solved by a hydration reaction sequence on a well-soluble dimethoxytritylated precursor via in situ oxime formation. The synthetic path now provides a solid foundation to access O 6-alkylated 7-aminomethyl-7-deazaguanines for the development of RNA labeling tools based on the preQ1 class-I riboswitch scaffold.

10.
RNA ; 24(10): 1305-1313, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29970597

RESUMEN

Eukaryotic transfer RNAs (tRNA) contain on average 13 modifications that perform a wide range of roles in translation and in the generation of tRNA fragments that regulate gene expression. Queuosine (Q) modification occurs in the wobble anticodon position of tRNAs for amino acids His, Asn, Tyr, and Asp. In eukaryotes, Q modification is fully dependent on diet or on gut microbiome in multicellular organisms. Despite decades of study, cellular roles of Q modification remain to be fully elucidated. Here we show that in human cells, Q modification specifically protects its cognate tRNAHis and tRNAAsn against cleavage by ribonucleases. We generated cell lines that contain completely depleted or fully Q-modified tRNAs. Using these resources, we found that Q modification significantly reduces angiogenin cleavage of its cognate tRNAs in vitro. Q modification does not change the cellular abundance of the cognate full-length tRNAs, but alters the cellular content of their fragments in vivo in the absence and presence of stress. Our results provide a new biological aspect of Q modification and a mechanism of how Q modification alters small RNA pools in human cells.


Asunto(s)
Nucleósido Q/genética , Nucleósido Q/metabolismo , División del ARN , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ribonucleasas/metabolismo , Anticodón , Línea Celular , Humanos , Procesamiento Postranscripcional del ARN , Ribonucleasa Pancreática/metabolismo , Ribonucleasa Pancreática/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética
11.
Angew Chem Int Ed Engl ; 59(30): 12352-12356, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32160400

RESUMEN

Queuosine (Q) is a hypermodified RNA nucleoside that is found in tRNAHis , tRNAAsn , tRNATyr , and tRNAAsp . It is located at the wobble position of the tRNA anticodon loop, where it can interact with U as well as C bases located at the respective position of the corresponding mRNA codons. In tRNATyr and tRNAAsp of higher eukaryotes, including humans, the Q base is for yet unknown reasons further modified by the addition of a galactose and a mannose sugar, respectively. The reason for this additional modification, and how the sugar modification is orchestrated with Q formation and insertion, is unknown. Here, we report a total synthesis of the hypermodified nucleoside galactosyl-queuosine (galQ). The availability of the compound enabled us to study the absolute levels of the Q-family nucleosides in six different organs of newborn and adult mice, and also in human cytosolic tRNA. Our synthesis now paves the way to a more detailed analysis of the biological function of the Q-nucleoside family.


Asunto(s)
Galactosa/química , Nucleósido Q/síntesis química , Animales , Cromatografía Líquida de Alta Presión/métodos , Células HEK293 , Humanos , Espectrometría de Masas/métodos , Ratones , Nucleósido Q/química , Nucleósido Q/metabolismo , Distribución Tisular
12.
Proc Natl Acad Sci U S A ; 113(11): E1452-9, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26929322

RESUMEN

The discovery of ∼20-kb gene clusters containing a family of paralogs of tRNA guanosine transglycosylase genes, called tgtA5, alongside 7-cyano-7-deazaguanine (preQ0) synthesis and DNA metabolism genes, led to the hypothesis that 7-deazaguanine derivatives are inserted in DNA. This was established by detecting 2'-deoxy-preQ0 and 2'-deoxy-7-amido-7-deazaguanosine in enzymatic hydrolysates of DNA extracted from the pathogenic, Gram-negative bacteria Salmonella enterica serovar Montevideo. These modifications were absent in the closely related S. enterica serovar Typhimurium LT2 and from a mutant of S Montevideo, each lacking the gene cluster. This led us to rename the genes of the S. Montevideo cluster as dpdA-K for 7-deazapurine in DNA. Similar gene clusters were analyzed in ∼150 phylogenetically diverse bacteria, and the modifications were detected in DNA from other organisms containing these clusters, including Kineococcus radiotolerans, Comamonas testosteroni, and Sphingopyxis alaskensis Comparative genomic analysis shows that, in Enterobacteriaceae, the cluster is a genomic island integrated at the leuX locus, and the phylogenetic analysis of the TgtA5 family is consistent with widespread horizontal gene transfer. Comparison of transformation efficiencies of modified or unmodified plasmids into isogenic S. Montevideo strains containing or lacking the cluster strongly suggests a restriction-modification role for the cluster in Enterobacteriaceae. Another preQ0 derivative, 2'-deoxy-7-formamidino-7-deazaguanosine, was found in the Escherichia coli bacteriophage 9 g, as predicted from the presence of homologs of genes involved in the synthesis of the archaeosine tRNA modification. These results illustrate a deep and unexpected evolutionary connection between DNA and tRNA metabolism.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/química , Islas Genómicas , Guanina/análogos & derivados , Salmonella enterica/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Colifagos/genética , Colifagos/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/análisis , Desoxiguanosina/metabolismo , Transferencia de Gen Horizontal , Guanina/química , Guanina/metabolismo , Guanosina/análogos & derivados , Guanosina/metabolismo , Datos de Secuencia Molecular , Familia de Multigenes , Mutación , Filogenia , Purinas/análisis , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Salmonella enterica/metabolismo , Salmonella typhimurium/genética
13.
RNA Biol ; 15(4-5): 528-536, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28901827

RESUMEN

Retrograde transport of tRNAs from the cytoplasm to the nucleus was first described in Saccharomyces cerevisiae and most recently in mammalian systems. Although the function of retrograde transport is not completely clear, it plays a role in the cellular response to changes in nutrient availability. Under low nutrient conditions tRNAs are sent from the cytoplasm to nucleus and presumably remain in storage there until nutrient levels improve. However, in S. cerevisiae tRNA retrograde transport is constitutive and occurs even when nutrient levels are adequate. Constitutive transport is important, at least, for the proper maturation of tRNAPhe, which undergoes cytoplasmic splicing, but requires the action of a nuclear modification enzyme that only acts on a spliced tRNA. A lingering question in retrograde tRNA transport is whether it is relegated to S. cerevisiae and multicellular eukaryotes or alternatively, is a pathway with deeper evolutionary roots. In the early branching eukaryote Trypanosoma brucei, tRNA splicing, like in yeast, occurs in the cytoplasm. In the present report, we have used a combination of cell fractionation and molecular approaches that show the presence of significant amounts of spliced tRNATyr in the nucleus of T. brucei. Notably, the modification enzyme tRNA-guanine transglycosylase (TGT) localizes to the nucleus and, as shown here, is not able to add queuosine (Q) to an intron-containing tRNA. We suggest that retrograde transport is partly the result of the differential intracellular localization of the splicing machinery (cytoplasmic) and a modification enzyme, TGT (nuclear). These findings expand the evolutionary distribution of retrograde transport mechanisms to include early diverging eukaryotes, while highlighting its importance for queuosine biosynthesis.


Asunto(s)
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Pentosiltransferasa/genética , ARN de Transferencia de Tirosina/genética , Trypanosoma brucei brucei/genética , Transporte Activo de Núcleo Celular , Núcleo Celular/genética , Citoplasma/genética , Cinética , Conformación de Ácido Nucleico , Nucleósido Q/metabolismo , Pentosiltransferasa/metabolismo , Empalme del ARN , Transporte de ARN , ARN de Transferencia de Fenilalanina/genética , ARN de Transferencia de Fenilalanina/metabolismo , ARN de Transferencia de Tirosina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Trypanosoma brucei brucei/metabolismo
14.
J Biol Chem ; 290(46): 27572-81, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26378237

RESUMEN

Queuosine (Q) is a hypermodified RNA base that replaces guanine in the wobble positions of 5'-GUN-3' tRNA molecules. Q is exclusively made by bacteria, and the corresponding queuine base is a micronutrient salvaged by eukaryotic species. The final step in Q biosynthesis is the reduction of the epoxide precursor, epoxyqueuosine, to yield the Q cyclopentene ring. The epoxyqueuosine reductase responsible, QueG, shares distant homology with the cobalamin-dependent reductive dehalogenase (RdhA), however the role played by cobalamin in QueG catalysis has remained elusive. We report the solution and structural characterization of Streptococcus thermophilus QueG, revealing the enzyme harbors a redox chain consisting of two [4Fe-4S] clusters and a cob(II)alamin in the base-off form, similar to RdhAs. In contrast to the shared redox chain architecture, the QueG active site shares little homology with RdhA, with the notable exception of a conserved Tyr that is proposed to function as a proton donor during reductive dehalogenation. Docking of an epoxyqueuosine substrate suggests the QueG active site places the substrate cyclopentane moiety in close proximity of the cobalt. Both the Tyr and a conserved Asp are implicated as proton donors to the epoxide leaving group. This suggests that, in contrast to the unusual carbon-halogen bond chemistry catalyzed by RdhAs, QueG acts via Co-C bond formation. Our study establishes the common features of Class III cobalamin-dependent enzymes, and reveals an unexpected diversity in the reductive chemistry catalyzed by these enzymes.


Asunto(s)
Nucleósido Q/análogos & derivados , Nucleósido Q/biosíntesis , Oxidorreductasas/química , ARN de Transferencia/química , Streptococcus thermophilus/enzimología , Vitamina B 12/química , Secuencia de Aminoácidos , Catálisis , Cobalto/química , Cristalografía por Rayos X , Halogenación , Datos de Secuencia Molecular , Nucleósido Q/química , Oxidación-Reducción , Oxidorreductasas/genética , Estructura Secundaria de Proteína , Soluciones
15.
Mol Phylogenet Evol ; 94(Pt A): 392-6, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26435002

RESUMEN

tRNA-guanine transglycosylases are found in all domains of life and mediate the base exchange of guanine with queuine in the anticodon loop of tRNAs. They can also regulate virulence in bacteria such as Shigella flexneri, which has prompted the development of drugs that inhibit the function of these enzymes. Here we report a group of tRNA-guanine transglycosylases in eukaryotic microbes (algae and protozoa) which are more similar to their bacterial counterparts than previously characterized eukaryotic tRNA-guanine transglycosylases. We provide evidence demonstrating that the genes encoding these enzymes were acquired by these eukaryotic lineages via horizontal gene transfer from the Chlamydiae group of bacteria. Given that the S. flexneri tRNA-guanine transglycosylase can be targeted by drugs, we propose that the bacterial-like tRNA-guanine transglycosylases could potentially be targeted in a similar fashion in pathogenic amoebae that possess these enzymes such as Acanthamoeba castellanii. This work also presents ancient prokaryote-to-eukaryote horizontal gene transfer events as an untapped resource of potential drug target identification in pathogenic eukaryotes.


Asunto(s)
Acanthamoeba/genética , Chlamydia/genética , Transferencia de Gen Horizontal , Pentosiltransferasa/genética , Amebiasis/genética , Amebiasis/parasitología , Chlamydia/enzimología , Deltaproteobacteria/enzimología , Deltaproteobacteria/genética , Disentería Bacilar/microbiología , Eucariontes/genética , Filogenia , ARN de Transferencia/genética , Shigella flexneri/enzimología , Shigella flexneri/genética
16.
Proc Natl Acad Sci U S A ; 110(31): 12798-803, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23858439

RESUMEN

Viruses are fundamental to ecosystems ranging from oceans to humans, yet our ability to study them is bottlenecked by the lack of ecologically relevant isolates, resulting in "unknowns" dominating culture-independent surveys. Here we present genomes from 31 phages infecting multiple strains of the aquatic bacterium Cellulophaga baltica (Bacteroidetes) to provide data for an underrepresented and environmentally abundant bacterial lineage. Comparative genomics delineated 12 phage groups that (i) each represent a new genus, and (ii) represent one novel and four well-known viral families. This diversity contrasts the few well-studied marine phage systems, but parallels the diversity of phages infecting human-associated bacteria. Although all 12 Cellulophaga phages represent new genera, the podoviruses and icosahedral, nontailed ssDNA phages were exceptional, with genomes up to twice as large as those previously observed for each phage type. Structural novelty was also substantial, requiring experimental phage proteomics to identify 83% of the structural proteins. The presence of uncommon nucleotide metabolism genes in four genera likely underscores the importance of scavenging nutrient-rich molecules as previously seen for phages in marine environments. Metagenomic recruitment analyses suggest that these particular Cellulophaga phages are rare and may represent a first glimpse into the phage side of the rare biosphere. However, these analyses also revealed that these phage genera are widespread, occurring in 94% of 137 investigated metagenomes. Together, this diverse and novel collection of phages identifies a small but ubiquitous fraction of unknown marine viral diversity and provides numerous environmentally relevant phage-host systems for experimental hypothesis testing.


Asunto(s)
Bacteriófagos/clasificación , Bacteriófagos/fisiología , Metagenoma , Proteómica , Secuencia de Aminoácidos , Bacteroidetes/virología , Datos de Secuencia Molecular , Océanos y Mares , Proteoma/metabolismo , Proteínas Virales/metabolismo
17.
Biochim Biophys Acta ; 1839(10): 939-950, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24798077

RESUMEN

PreQ1 riboswitches help regulate the biosynthesis and transport of preQ1 (7-aminomethyl-7-deazaguanine), a precursor of the hypermodified guanine nucleotide queuosine (Q), in a number of Firmicutes, Proteobacteria, and Fusobacteria. Queuosine is almost universally found at the wobble position of the anticodon in asparaginyl, tyrosyl, histidyl and aspartyl tRNAs, where it contributes to translational fidelity. Two classes of preQ1 riboswitches have been identified (preQ1-I and preQ1-II), and structures of examples from both classes have been determined. Both classes form H-type pseudoknots upon preQ1 binding, each of which has distinct unusual features and modes of preQ1 recognition. These features include an unusually long loop 2 in preQ1-I pseudoknots and an embedded hairpin in loop 3 in preQ1-II pseudoknots. PreQ1-I riboswitches are also notable for their unusually small aptamer domain, which has been extensively investigated by NMR, X-ray crystallography, FRET, and other biophysical methods. Here we review the discovery, structural biology, ligand specificity, cation interactions, folding, dynamics, and applications to biotechnology of preQ1 riboswitches. This article is part of a Special Issue entitled: Riboswitches.

18.
Microbiol Mol Biol Rev ; 88(1): e0019923, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38421302

RESUMEN

SUMMARYDeazaguanine modifications play multifaceted roles in the molecular biology of DNA and tRNA, shaping diverse yet essential biological processes, including the nuanced fine-tuning of translation efficiency and the intricate modulation of codon-anticodon interactions. Beyond their roles in translation, deazaguanine modifications contribute to cellular stress resistance, self-nonself discrimination mechanisms, and host evasion defenses, directly modulating the adaptability of living organisms. Deazaguanine moieties extend beyond nucleic acid modifications, manifesting in the structural diversity of biologically active natural products. Their roles in fundamental cellular processes and their presence in biologically active natural products underscore their versatility and pivotal contributions to the intricate web of molecular interactions within living organisms. Here, we discuss the current understanding of the biosynthesis and multifaceted functions of deazaguanines, shedding light on their diverse and dynamic roles in the molecular landscape of life.


Asunto(s)
Bacteriófagos , Productos Biológicos , Guanina/análogos & derivados , Anticodón , ARN de Transferencia/química , ARN de Transferencia/genética , Bacterias/genética
19.
Epigenomes ; 8(2)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38804365

RESUMEN

Queuosine (Q) is a modification of the wobble base of tRNA harboring GUN anticodons with roles in decoding accuracy and efficiency. Its synthesis is complex with multiple enzymatic steps, and several pathway intermediates can be salvaged. The only two transporter families known to salvage Q precursors are QPTR/COG1738 and QrtT/QueT. Analyses of the distribution of known Q synthesis and salvage genes in human gut and oral microbiota genomes have suggested that more transporter families remain to be found and that Q precursor exchanges must occur within the structured microenvironments of the mammalian host. Using physical clustering and fusion-based association with Q salvage genes, candidate genes for missing transporters were identified and five were tested experimentally by complementation assays in Escherichia coli. Three genes encoding transporters from three different Pfam families, a ureide permease (PF07168) from Acidobacteriota bacterium, a hemolysin III family protein (PF03006) from Bifidobacterium breve, and a Major Facilitator Superfamily protein (PF07690) from Bartonella henselae, were found to allow the transport of both preQ0 and preQ1 in this heterologous system. This work suggests that many transporter families can evolve to transport Q precursors, reinforcing the concept of transporter plasticity.

20.
bioRxiv ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38106016

RESUMEN

Queuosine (Q) stands out as the sole tRNA modification that can be synthesized via salvage pathways. Comparative genomic analyses identified specific bacteria that showed a discrepancy between the projected Q salvage route and the predicted substrate specificities of the two identified salvage proteins: 1) the distinctive enzyme tRNA guanine-34 transglycosylase (bacterial TGT, or bTGT), responsible for inserting precursor bases into target tRNAs; and 2) Queuosine Precursor Transporter (QPTR), a transporter protein that imports Q precursors. Organisms like the facultative intracellular pathogen Bartonella henselae, which possess only bTGT and QPTR but lack predicted enzymes for converting preQ1 to Q, would be expected to salvage the queuine (q) base, mirroring the scenario for the obligate intracellular pathogen Chlamydia trachomatis. However, sequence analyses indicate that the substrate-specificity residues of their bTGTs resemble those of enzymes inserting preQ1 rather than q. Intriguingly, mass spectrometry analyses of tRNA modification profiles in B. henselae reveal trace amounts of preQ1, previously not observed in a natural context. Complementation analysis demonstrates that B. henselae bTGT and QPTR not only utilize preQ1, akin to their Escherichia coli counterparts, but can also process q when provided at elevated concentrations. The experimental and phylogenomic analyses suggest that the Q pathway in B. henselae could represent an evolutionary transition among intracellular pathogens-from ancestors that synthesized Q de novo to a state prioritizing the salvage of q. Another possibility that will require further investigations is that the insertion of preQ1 has fitness advantages when B. henselae is growing outside a mammalian host.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA