Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 320
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 92: 175-198, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37018844

RESUMEN

Chemical modifications on mRNA represent a critical layer of gene expression regulation. Research in this area has continued to accelerate over the last decade, as more modifications are being characterized with increasing depth and breadth. mRNA modifications have been demonstrated to influence nearly every step from the early phases of transcript synthesis in the nucleus through to their decay in the cytoplasm, but in many cases, the molecular mechanisms involved in these processes remain mysterious. Here, we highlight recent work that has elucidated the roles of mRNA modifications throughout the mRNA life cycle, describe gaps in our understanding and remaining open questions, and offer some forward-looking perspective on future directions in the field.


Asunto(s)
Regulación de la Expresión Génica , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , ARN/genética , ARN/metabolismo
2.
Annu Rev Biochem ; 87: 391-420, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29727582

RESUMEN

The central dogma of molecular biology, that DNA is transcribed into RNA and RNA translated into protein, was coined in the early days of modern biology. Back in the 1950s and 1960s, bacterial genetics first opened the way toward understanding life as the genetically encoded interaction of macromolecules. As molecular biology progressed and our knowledge of gene control deepened, it became increasingly clear that expression relied on many more levels of regulation. In the process of dissecting mechanisms of gene expression, specific small-molecule inhibitors played an important role and became valuable tools of investigation. Small molecules offer significant advantages over genetic tools, as they allow inhibiting a process at any desired time point, whereas mutating or altering the gene of an important regulator would likely result in a dead organism. With the advent of modern sequencing technology, it has become possible to monitor global cellular effects of small-molecule treatment and thereby overcome the limitations of classical biochemistry, which usually looks at a biological system in isolation. This review focuses on several molecules, especially natural products, that have played an important role in dissecting gene expression and have opened up new fields of investigation as well as clinical venues for disease treatment.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Metilación de ADN/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Código de Histonas/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Histona Metiltransferasas/antagonistas & inhibidores , Humanos , Modelos Biológicos , Biología Molecular , Biosíntesis de Proteínas/efectos de los fármacos , Empalme del ARN/efectos de los fármacos , Estabilidad del ARN/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
3.
Mol Cell ; 84(4): 791-801.e6, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38262410

RESUMEN

In S phase, duplicating and assembling the whole genome into chromatin requires upregulation of replicative histone gene expression. Here, we explored how histone chaperones control histone production in human cells to ensure a proper link with chromatin assembly. Depletion of the ASF1 chaperone specifically decreases the pool of replicative histones both at the protein and RNA levels. The decrease in their overall expression, revealed by total RNA sequencing (RNA-seq), contrasted with the increase in nascent/newly synthesized RNAs observed by 4sU-labeled RNA-seq. Further inspection of replicative histone RNAs showed a 3' end processing defect with an increase of pre-mRNAs/unprocessed transcripts likely targeted to degradation. Collectively, these data argue for a production defect of replicative histone RNAs in ASF1-depleted cells. We discuss how this regulation of replicative histone RNA metabolism by ASF1 as a "chaperone checkpoint" fine-tunes the histone dosage to avoid unbalanced situations deleterious for cell survival.


Asunto(s)
Histonas , Proteínas de Saccharomyces cerevisiae , Humanos , Histonas/genética , Histonas/metabolismo , Chaperonas de Histonas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , ARN/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Genes Dev ; 38(11-12): 504-527, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38986581

RESUMEN

Genome integrity relies on the accuracy of DNA metabolism, but as appreciated for more than four decades, transcription enhances mutation and recombination frequencies. More recent research provided evidence for a previously unforeseen link between RNA and DNA metabolism, which is often related to the accumulation of DNA-RNA hybrids and R-loops. In addition to physiological roles, R-loops interfere with DNA replication and repair, providing a molecular scenario for the origin of genome instability. Here, we review current knowledge on the multiple RNA factors that prevent or resolve R-loops and consequent transcription-replication conflicts and thus act as modulators of genome dynamics.


Asunto(s)
Inestabilidad Genómica , Estructuras R-Loop , ARN , Inestabilidad Genómica/genética , ARN/metabolismo , ARN/genética , Replicación del ADN/genética , Animales , Humanos , Transcripción Genética/genética
5.
Mol Cell ; 83(8): 1328-1339.e4, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37028420

RESUMEN

Removal of the intron from precursor-tRNA (pre-tRNA) is essential in all three kingdoms of life. In humans, this process is mediated by the tRNA splicing endonuclease (TSEN) comprising four subunits: TSEN2, TSEN15, TSEN34, and TSEN54. Here, we report the cryo-EM structures of human TSEN bound to full-length pre-tRNA in the pre-catalytic and post-catalytic states at average resolutions of 2.94 and 2.88 Å, respectively. Human TSEN features an extended surface groove that holds the L-shaped pre-tRNA. The mature domain of pre-tRNA is recognized by conserved structural elements of TSEN34, TSEN54, and TSEN2. Such recognition orients the anticodon stem of pre-tRNA and places the 3'-splice site and 5'-splice site into the catalytic centers of TSEN34 and TSEN2, respectively. The bulk of the intron sequences makes no direct interaction with TSEN, explaining why pre-tRNAs of varying introns can be accommodated and cleaved. Our structures reveal the molecular ruler mechanism of pre-tRNA cleavage by TSEN.


Asunto(s)
Endorribonucleasas , Precursores del ARN , Humanos , Intrones/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Endorribonucleasas/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Sitios de Empalme de ARN , Empalme del ARN , Conformación de Ácido Nucleico , Endonucleasas/genética
6.
Immunity ; 52(4): 591-605.e6, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32294405

RESUMEN

Human toll-like receptor 8 (TLR8) activation induces a potent T helper-1 (Th1) cell response critical for defense against intracellular pathogens, including protozoa. The receptor harbors two distinct binding sites, uridine and di- and/or trinucleotides, but the RNases upstream of TLR8 remain poorly characterized. We identified two endolysosomal endoribonucleases, RNase T2 and RNase 2, that act synergistically to release uridine from oligoribonucleotides. RNase T2 cleaves preferentially before, and RNase 2 after, uridines. Live bacteria, P. falciparum-infected red blood cells, purified pathogen RNA, and synthetic oligoribonucleotides all required RNase 2 and T2 processing to activate TLR8. Uridine supplementation restored RNA recognition in RNASE2-/- or RNASET2-/- but not RNASE2-/-RNASET2-/- cells. Primary immune cells from RNase T2-hypomorphic patients lacked a response to bacterial RNA but responded robustly to small-molecule TLR8 ligands. Our data identify an essential function of RNase T2 and RNase 2 upstream of TLR8 and provide insight into TLR8 activation.


Asunto(s)
Endorribonucleasas/metabolismo , Monocitos/inmunología , Neutrófilos/inmunología , ARN Bacteriano/metabolismo , ARN Protozoario/metabolismo , Receptor Toll-Like 8/metabolismo , Sistemas CRISPR-Cas , Línea Celular , Endorribonucleasas/inmunología , Eritrocitos/inmunología , Eritrocitos/parasitología , Escherichia coli/química , Escherichia coli/inmunología , Edición Génica/métodos , Humanos , Listeria monocytogenes/química , Listeria monocytogenes/inmunología , Monocitos/microbiología , Monocitos/parasitología , Neutrófilos/microbiología , Neutrófilos/parasitología , Plasmodium falciparum/química , Plasmodium falciparum/inmunología , Cultivo Primario de Células , Estabilidad del ARN , ARN Bacteriano/inmunología , ARN Protozoario/inmunología , Serratia marcescens/química , Serratia marcescens/inmunología , Staphylococcus aureus/química , Staphylococcus aureus/inmunología , Streptococcus/química , Streptococcus/inmunología , Células THP-1 , Receptor Toll-Like 8/inmunología
7.
Mol Cell ; 81(10): 2076-2093.e9, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33756106

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) regulates metabolism and cell growth in response to nutrient, growth, and oncogenic signals. We found that mTORC1 stimulates the synthesis of the major methyl donor, S-adenosylmethionine (SAM), through the control of methionine adenosyltransferase 2 alpha (MAT2A) expression. The transcription factor c-MYC, downstream of mTORC1, directly binds to intron 1 of MAT2A and promotes its expression. Furthermore, mTORC1 increases the protein abundance of Wilms' tumor 1-associating protein (WTAP), the positive regulatory subunit of the human N6-methyladenosine (m6A) RNA methyltransferase complex. Through the control of MAT2A and WTAP levels, mTORC1 signaling stimulates m6A RNA modification to promote protein synthesis and cell growth. A decline in intracellular SAM levels upon MAT2A inhibition decreases m6A RNA modification, protein synthesis rate, and tumor growth. Thus, mTORC1 adjusts m6A RNA modification through the control of SAM and WTAP levels to prime the translation machinery for anabolic cell growth.


Asunto(s)
Adenosina/análogos & derivados , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Biosíntesis de Proteínas , S-Adenosilmetionina/metabolismo , Adenosina/metabolismo , Animales , Secuencia de Bases , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Femenino , Células HEK293 , Células HeLa , Humanos , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , Metilación , Ratones Desnudos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Empalme de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Transcripción Genética
8.
Trends Genet ; 40(4): 299-312, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38519330

RESUMEN

Recent studies of aging organisms have identified a systematic phenomenon, characterized by a negative correlation between gene length and their expression in various cell types, species, and diseases. We term this phenomenon gene-length-dependent transcription decline (GLTD) and suggest that it may represent a bottleneck in the transcription machinery and thereby significantly contribute to aging as an etiological factor. We review potential links between GLTD and key aging processes such as DNA damage and explore their potential in identifying disease modification targets. Notably, in Alzheimer's disease, GLTD spotlights extremely long synaptic genes at chromosomal fragile sites (CFSs) and their vulnerability to postmitotic DNA damage. We suggest that GLTD is an integral element of biological aging.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Daño del ADN/genética
9.
EMBO J ; 42(2): e112574, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36504162

RESUMEN

Biogenesis of the essential precursor of the bacterial cell envelope, glucosamine-6-phosphate (GlcN6P), is controlled by intricate post-transcriptional networks mediated by GlmZ, a small regulatory RNA (sRNA). GlmZ stimulates translation of the mRNA encoding GlcN6P synthtase in Escherichia coli, but when bound by RapZ protein, the sRNA becomes inactivated through cleavage by the endoribonuclease RNase E. Here, we report the cryoEM structure of the RapZ:GlmZ complex, revealing a complementary match of the RapZ tetrameric quaternary structure to structural repeats in the sRNA. The nucleic acid is contacted by RapZ mostly through a highly conserved domain that shares an evolutionary relationship with phosphofructokinase and suggests links between metabolism and riboregulation. We also present the structure of a precleavage intermediate formed between the binary RapZ:GlmZ complex and RNase E that reveals how GlmZ is presented and recognised by the enzyme. The structures provide a framework for understanding how other encounter complexes might guide recognition and action of endoribonucleases on target transcripts, and how structured substrates in polycistronic precursors may be recognised for processing by RNase E.


Asunto(s)
Proteínas de Escherichia coli , ARN Pequeño no Traducido , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Ribonucleoproteínas/genética , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/genética
10.
Mol Cell ; 75(4): 756-768.e7, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31350118

RESUMEN

Argonaute-bound microRNAs silence mRNA expression in a dynamic and regulated manner to control organismal development, physiology, and disease. We employed metabolic small RNA sequencing for a comprehensive view on intracellular microRNA kinetics in Drosophila. Based on absolute rate of biogenesis and decay, microRNAs rank among the fastest produced and longest-lived cellular transcripts, disposing up to 105 copies per cell at steady-state. Mature microRNAs are produced within minutes, revealing tight intracellular coupling of biogenesis that is selectively disrupted by pre-miRNA-uridylation. Control over Argonaute protein homeostasis generates a kinetic bottleneck that cooperates with non-coding RNA surveillance to ensure faithful microRNA loading. Finally, regulated small RNA decay enables the selective rapid turnover of Ago1-bound microRNAs, but not of Ago2-bound small interfering RNAs (siRNAs), reflecting key differences in the robustness of small RNA silencing pathways. Time-resolved small RNA sequencing opens new experimental avenues to deconvolute the timescales, molecular features, and regulation of small RNA silencing pathways in living cells.


Asunto(s)
Proteínas Argonautas/metabolismo , Proteínas de Drosophila/metabolismo , Homeostasis/fisiología , MicroARNs/metabolismo , Análisis de Secuencia de ARN , Animales , Proteínas Argonautas/genética , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , MicroARNs/genética
11.
Annu Rev Genet ; 52: 349-372, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30230927

RESUMEN

Investigations over the past eight years of chemical modifications on messenger RNA (mRNA) have revealed a new level of posttranscriptional gene regulation in eukaryotes. Rapid progress in our understanding of these modifications, particularly, N6-methyladenosine (m6A), has revealed their roles throughout the life cycle of an mRNA transcript. m6A methylation provides a rapid mechanism for coordinated transcriptome processing and turnover that is important in embryonic development and cell differentiation. In response to cellular signals, m6A can also regulate the translation of specific pools of transcripts. These mechanisms can be hijacked in human diseases, including numerous cancers and viral infection. Beyond m6A, many other mRNA modifications have been mapped in the transcriptome, but much less is known about their biological functions. As methods continue to be developed, we will be able to study these modifications both more broadly and in greater depth, which will likely reveal a wealth of new RNA biology.


Asunto(s)
Regulación de la Expresión Génica/genética , Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARN/genética , ARN Mensajero/genética , Adenosina/análogos & derivados , Adenosina/genética , Humanos , Metilación , Transcriptoma/genética
12.
Bioessays ; 46(1): e2300145, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37926700

RESUMEN

Recent findings position the eukaryotic translation initiation factor eIF4E as a novel modulator of mRNA splicing, a process that impacts the form and function of resultant proteins. eIF4E physically interacts with the spliceosome and with some intron-containing transcripts implying a direct role in some splicing events. Moreover, eIF4E drives the production of key components of the splicing machinery underpinning larger scale impacts on splicing. These drive eIF4E-dependent reprogramming of the splicing signature. This work completes a series of studies demonstrating eIF4E acts in all the major mRNA maturation steps whereby eIF4E drives production of the RNA processing machinery and escorts some transcripts through various maturation steps. In this way, eIF4E couples the mRNA processing-export-translation axis linking nuclear mRNA processing to cytoplasmic translation. eIF4E elevation is linked to worse outcomes in acute myeloid leukemia patients where these activities are dysregulated. Understanding these effects provides new insight into post-transcriptional control and eIF4E-driven cancers.


Asunto(s)
Factor 4E Eucariótico de Iniciación , Leucemia Mieloide Aguda , Humanos , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Regulación de la Expresión Génica , Empalme del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
13.
Brain ; 147(6): 2053-2068, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38739752

RESUMEN

Aggregation of the RNA-binding protein TAR DNA binding protein (TDP-43) is a hallmark of TDP-proteinopathies including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). As TDP-43 aggregation and dysregulation are causative of neuronal death, there is a special interest in targeting this protein as a therapeutic approach. Previously, we found that TDP-43 extensively co-aggregated with the dual function protein GEF (guanine exchange factor) and RNA-binding protein rho guanine nucleotide exchange factor (RGNEF) in ALS patients. Here, we show that an N-terminal fragment of RGNEF (NF242) interacts directly with the RNA recognition motifs of TDP-43 competing with RNA and that the IPT/TIG domain of NF242 is essential for this interaction. Genetic expression of NF242 in a fruit fly ALS model overexpressing TDP-43 suppressed the neuropathological phenotype increasing lifespan, abolishing motor defects and preventing neurodegeneration. Intracerebroventricular injections of AAV9/NF242 in a severe TDP-43 murine model (rNLS8) improved lifespan and motor phenotype, and decreased neuroinflammation markers. Our results demonstrate an innovative way to target TDP-43 proteinopathies using a protein fragment with a strong affinity for TDP-43 aggregates and a mechanism that includes competition with RNA sequestration, suggesting a promising therapeutic strategy for TDP-43 proteinopathies such as ALS and FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Factores de Intercambio de Guanina Nucleótido , Fenotipo , Animales , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Ratones , Humanos , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Drosophila , Ratones Transgénicos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Masculino
14.
Semin Cell Dev Biol ; 125: 110-121, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34053866

RESUMEN

Activity-dependent gene expression and protein translation underlie the ability of neurons to dynamically adjust their synaptic strength in response to sensory experience and during learning. The emerging field of epitranscriptomics (RNA modifications) has rapidly shifted our views on the mechanisms that regulate gene expression. Among hundreds of biochemical modifications on RNA, N6-methyladenosine (m6A) is the most abundant reversible mRNA modification in the brain. Its dynamic nature and ability to regulate all aspects of mRNA processing have positioned m6A as an important and versatile regulator of nervous system functions, including neuronal plasticity, learning and memory. In this review, we summarise recent experimental evidence that supports the role of m6A signalling in learning and memory, as well as providing an overview of the underlying molecular mechanisms in neurons. We also discuss the consequences of perturbed m6A signalling and/or its regulatory networks which are increasingly being linked to various cognitive disorders in humans.


Asunto(s)
Aprendizaje , Plasticidad Neuronal , Encéfalo/fisiología , Humanos , Plasticidad Neuronal/genética , Neuronas/metabolismo , ARN/metabolismo
15.
J Biol Chem ; 299(4): 104567, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36870683

RESUMEN

Oligoribonuclease (Orn) is an essential ribonuclease (RNase) from Escherichia coli (E. coli), which plays a critical role in the conversion of short RNA molecules (NanoRNAs) to mononucleotides. Although no additional functions have been ascribed to Orn since its discovery nearly 50 years ago, it was observed in this study that the growth defects caused by a lack of two other RNases that do not digest NanoRNAs, polynucleotide phosphorylase, and RNase PH, could be suppressed by overexpression of Orn. Further analyses showed that overexpression of Orn can alleviate the growth defects caused by an absence of other RNases even when its expression was increased by a small degree, and it can carry out molecular reactions that are normally performed by RNase T and RNase PH. In addition, biochemical assays revealed that Orn can fully digest single-stranded RNAs within a variety of structural contexts. These studies provide new insights into Orn function and its ability to participate in multiple aspects of E. coli RNA metabolism.


Asunto(s)
Escherichia coli , Exorribonucleasas , Escherichia coli/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , ARN/metabolismo , Ribonucleasa Pancreática/metabolismo , Procesamiento Postranscripcional del ARN
16.
J Biol Chem ; 299(6): 104728, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37080389

RESUMEN

Genetic analyses in Saccharomyces cerevisiae suggest that nucleotide excision repair (NER), homologous recombination (HR), and protease-dependent repair pathways coordinately function to remove DNA-protein crosslinks (DPCs) from the genome. DPCs are genomic cytotoxic lesions generated because of the covalent linkage of proteins with DNA. Although NER and HR processes have been studied in pathogenic Candida albicans, their roles in DPC repair (DPCR) are yet to be explored. Proteases like Wss1 and Tdp1 (tyrosyl-DNA phosphodiesterase-1) are known to be involved in DPCR; however, Tdp1 that selectively removes topoisomerase-DNA complexes is intrinsically absent in C. albicans. Therefore, the mechanism of DPCR might have evolved differently in C. albicans. Herein, we investigated the interplay of three genetic pathways and found that RAD51-WSS1-dependent HR and protease-dependent repair pathways are essential for DPC removal, and their absence caused an increased rate of loss of heterozygosity in C. albicans. RAD1 but not RAD2 of NER is critical for DPCR. In addition, we observed truncation of chromosome #6 in the cells defective in both RAD51 and WSS1 genes. While the protease and DNA-binding activities are essential, a direct interaction of Wss1 with the eukaryotic DNA clamp proliferating cell nuclear antigen is not a requisite for the function of Wss1. DPCR-defective C. albicans cells exhibited filamentous morphology, reduced immune cell evasion, and attenuation in virulence. Thus, we concluded that RAD51-WSS1-dependent DPCR pathways are essential for genome stability and candidiasis development. Since no vaccine against candidiasis is available for human use yet, we propose to explore DPCR-defective attenuated strains (rad51ΔΔwss1ΔΔ and rad2ΔΔrad51ΔΔwss1ΔΔ) for whole-cell vaccine development.


Asunto(s)
Candidiasis , Proteínas de Saccharomyces cerevisiae , Humanos , Candida albicans/genética , Candida albicans/metabolismo , Daño del ADN , Reparación del ADN , ADN/metabolismo , Proteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Péptido Hidrolasas/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo
17.
Plant J ; 116(3): 728-743, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37492018

RESUMEN

Diurnal rhythms are known to regulate the expression of a large number of genes, coordinating plant growth and development with diel changes in light and temperature. However, the impact of RNA metabolism on rhythmic gene oscillations in plant is not yet fully understood. To address this question, we performed transcriptome and degradome profiling on tomato leaves at 6 time points during one 24 h cycle, using RNA-seq and genome-wide mapping of uncapped and cleavage transcripts (GMUCT). Time-series profiling of RNA-seq revealed 9342 diurnal-oscillated genes, which were enriched in various metabolic processes. To quantify the general level of RNA degradation for each gene, we utilized the Proportion Uncapped (PU) metric, which represents the GMUCT/RNA-seq ratio. Oscillated PU analysis revealed that 3885 genes were regulated by rhythmic RNA degradation. The RNA decay of these diurnal genes was highly coordinated with mRNA downregulation during oscillation, highlighting the critical role of internal transcription-degradation balance in rhythmic gene oscillation. Furthermore, we identified 2190 genes undergoing co-translational RNA decay (CTRD) with 5' phosphate read ends enriched at the boundary of ribosomes stalling at translational termination sites. Interestingly, diurnal-changed mRNAs with large amplitudes tended to be co-translationally decay, suggesting that CTRD contributed to the rapid turnover of diurnal mRNAs. Finally, we also identified several genes, whose miRNA cleavage efficiency oscillated in a diurnal manner. Taken together, these findings uncovered the vital functions of RNA metabolism, including rhythmic RNA degradation, CTRD, and miRNA cleavage, in modulating the diurnal mRNA oscillations during diel change at post-transcriptional level in tomato.


Asunto(s)
MicroARNs , Solanum lycopersicum , Solanum lycopersicum/genética , Ritmo Circadiano/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma , MicroARNs/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética
18.
J Neurochem ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39374171

RESUMEN

Oligodendrocytes, a type of glial cell in the central nervous system, have a critical role in the formation of myelin around axons, facilitating saltatory conduction, and maintaining the integrity of nerve axons. The dysregulation of oligodendrocyte differentiation and homeostasis have been implicated in a wide range of neurological diseases, including dysmyelinating disorders (e.g., Pelizaeus-Merzbacher disease), demyelinating diseases (e.g., multiple sclerosis), Alzheimer's disease, and psychiatric disorders. Therefore, unraveling the mechanisms of oligodendrocyte development, differentiation, and homeostasis is essential for understanding the pathogenesis of these diseases and the development of therapeutic interventions. Numerous studies have identified and analyzed the functions of transcription factors, RNA metabolic factors, translation control factors, and intracellular and extracellular signals involved in the series of processes from oligodendrocyte fate determination to terminal differentiation. DEAD-box proteins, multifunctional RNA helicases that regulate various intracellular processes, including transcription, RNA processing, and translation, are increasingly recognized for their diverse roles in various aspects of oligodendrocyte development, differentiation, and maintenance of homeostasis. This review introduces the latest insights into the regulatory networks of oligodendrocyte biology mediated by DEAD-box proteins.

19.
Neurobiol Dis ; 190: 106367, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042508

RESUMEN

X-linked dystonia-parkinsonism (XDP) is a rare neurodegenerative disease endemic to the Philippines. The genetic cause for XDP is an insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon within intron 32 of TATA-binding protein associated factor 1 (TAF1) that causes an alteration of TAF1 splicing, partial intron retention, and decreased transcription. Although TAF1 is expressed in all organs, medium spiny neurons (MSNs) within the striatum are one of the cell types most affected in XDP. To define how mutations in the TAF1 gene lead to MSN vulnerability, we carried out a proteomic analysis of human XDP patient-derived neural stem cells (NSCs) and MSNs derived from induced pluripotent stem cells. NSCs and MSNs were grown in parallel and subjected to quantitative proteomic analysis in data-independent acquisition mode on the Orbitrap Eclipse Tribrid mass spectrometer. Subsequent functional enrichment analysis demonstrated that neurodegenerative disease-related pathways, such as Huntington's disease, spinocerebellar ataxia, cellular senescence, mitochondrial function and RNA binding metabolism, were highly represented. We used weighted coexpression network analysis (WGCNA) of the NSC and MSN proteomic data set to uncover disease-driving network modules. Three of the modules significantly correlated with XDP genotype when compared to the non-affected control and were enriched for DNA helicase and nuclear chromatin assembly, mitochondrial disassembly, RNA location and mRNA processing. Consistent with aberrant mRNA processing, we found splicing and intron retention of TAF1 intron 32 in XDP MSN. We also identified TAF1 as one of the top enriched transcription factors, along with YY1, ATF2, USF1 and MYC. Notably, YY1 has been implicated in genetic forms of dystonia. Overall, our proteomic data set constitutes a valuable resource to understand mechanisms relevant to TAF1 dysregulation and to identify new therapeutic targets for XDP.


Asunto(s)
Distonía , Trastornos Distónicos , Enfermedades Neurodegenerativas , Trastornos Parkinsonianos , Humanos , Distonía/genética , Distonía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteómica , Factor de Transcripción TFIID/genética , Trastornos Distónicos/genética , Trastornos Distónicos/metabolismo , Neuronas/metabolismo , ARN Mensajero/metabolismo , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/metabolismo
20.
Cancer Sci ; 115(2): 427-438, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38115228

RESUMEN

Gastric cancer is one of the most common causes of cancer-related death worldwide. The N6 -methyladenosine (m6 A) reader IGF2BP1 (insulin-like growth factor-2 mRNA binding protein 1) has been reported to promote cancer progression by stabilizing oncogenic mRNAs through its m6 A-binding activity in some tumors. However, the role of IGF2BP1 in gastric carcinogenesis remains unclear. In this study, we found that IGF2BP1 is significantly downregulated in tumor tissues from patients with gastric cancer. Lower expression of IGF2BP1 is associated with poor prognosis. Gastric cancer cell proliferation is suppressed by IGF2BP1 in an m6 A-dependent manner. Additionally, IGF2BP1 is able to significantly attenuate tumor growth of gastric cancer cells. Further m6 A sequencing and m6 A-RNA immunoprecipitation assays show that MYC (c-myc proto-oncogene) mRNA is a target transcript of IGF2BP1 in gastric cancer cells. IGF2BP1 inhibits gastric cancer cell proliferation by reducing the mRNA and protein expression of MYC. Mechanistically, IGF2BP1 promotes the degradation of MYC mRNA and inhibits its translation efficiency. Taken together, these data suggest that IGF2BP1 plays a tumor-suppressive role in gastric carcinogenesis by downregulating MYC in an m6 A-dependent manner, thereby making the IGF2BP1-MYC axis a potential target for gastric cancer treatment.


Asunto(s)
Neoplasias Gástricas , Humanos , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Neoplasias Gástricas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA