Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 52(4): 591-605.e6, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32294405

RESUMEN

Human toll-like receptor 8 (TLR8) activation induces a potent T helper-1 (Th1) cell response critical for defense against intracellular pathogens, including protozoa. The receptor harbors two distinct binding sites, uridine and di- and/or trinucleotides, but the RNases upstream of TLR8 remain poorly characterized. We identified two endolysosomal endoribonucleases, RNase T2 and RNase 2, that act synergistically to release uridine from oligoribonucleotides. RNase T2 cleaves preferentially before, and RNase 2 after, uridines. Live bacteria, P. falciparum-infected red blood cells, purified pathogen RNA, and synthetic oligoribonucleotides all required RNase 2 and T2 processing to activate TLR8. Uridine supplementation restored RNA recognition in RNASE2-/- or RNASET2-/- but not RNASE2-/-RNASET2-/- cells. Primary immune cells from RNase T2-hypomorphic patients lacked a response to bacterial RNA but responded robustly to small-molecule TLR8 ligands. Our data identify an essential function of RNase T2 and RNase 2 upstream of TLR8 and provide insight into TLR8 activation.


Asunto(s)
Endorribonucleasas/metabolismo , Monocitos/inmunología , Neutrófilos/inmunología , ARN Bacteriano/metabolismo , ARN Protozoario/metabolismo , Receptor Toll-Like 8/metabolismo , Sistemas CRISPR-Cas , Línea Celular , Endorribonucleasas/inmunología , Eritrocitos/inmunología , Eritrocitos/parasitología , Escherichia coli/química , Escherichia coli/inmunología , Edición Génica/métodos , Humanos , Listeria monocytogenes/química , Listeria monocytogenes/inmunología , Monocitos/microbiología , Monocitos/parasitología , Neutrófilos/microbiología , Neutrófilos/parasitología , Plasmodium falciparum/química , Plasmodium falciparum/inmunología , Cultivo Primario de Células , Estabilidad del ARN , ARN Bacteriano/inmunología , ARN Protozoario/inmunología , Serratia marcescens/química , Serratia marcescens/inmunología , Staphylococcus aureus/química , Staphylococcus aureus/inmunología , Streptococcus/química , Streptococcus/inmunología , Células THP-1 , Receptor Toll-Like 8/inmunología
2.
Lab Invest ; 104(5): 102041, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38431116

RESUMEN

A specific splicing isoform of RNASET2 is associated with worse oncologic outcomes in clear cell renal cell carcinoma (ccRCC). However, the interplay between wild-type RNASET2 and its splice variant and how this might contribute to the pathogenesis of ccRCC remains poorly understood. We sought to better understand the relationship of RNASET2 in the pathogenesis of ccRCC and the interplay with a pathogenic splicing isoform (RNASET2-SV) and the tumor immune microenvironment. Using data from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium, we correlated clinical variables to RNASET2 expression and the presence of a specific RNASET2-SV. Immunohistochemical staining with matched RNA sequencing of ccRCC patients was then utilized to understand the spatial relationships of RNASET2 with immune cells. Finally, in vitro studies were performed to demonstrate the oncogenic role of RNASET2 and highlight its potential mechanisms. RNASET2 gene expression is associated with higher grade tumors and worse overall survival in The Cancer Genome Atlas cohort. The presence of the RNASET2-SV was associated with increased expression of the wild-type RNASET2 protein and epigenetic modifications of the gene. Immunohistochemical staining revealed increased intracellular accumulation of RNASET2 in patients with increased RNA expression of RNASET2-SV. In vitro experiments reveal that this accumulation results in increased cell proliferation, potentially from altered metabolic pathways. RNASET2 exhibits a tumor-promoting role in the pathogenesis of ccRCC that is increased in the presence of a specific RNASET2-SV and associated with changes in the cellular localization of the protein.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Ribonucleasas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Ribonucleasas/genética , Ribonucleasas/metabolismo , Microambiente Tumoral , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
3.
Cell Tissue Res ; 396(2): 213-229, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38424269

RESUMEN

A great bulk of recent experimental evidence suggests the key role of the complex crosstalk between the extracellular matrix (ECM) and the cellular component of tissues during morphogenesis and embryogenesis. In particular, remodeling of the ECM and of its physical interactions pattern with surrounding cells represent two crucial processes that might be involved in muscle development. However, little information is available on this topic, especially on invertebrate species. To obtain new insights on how tuning the ECM microenvironment might drive cellular fate during embryonic development, we used the invertebrate medicinal leech Hirudo verbana as a valuable experimental model, due to its simple anatomy and the recapitulation of many aspects of the basic biological processes of vertebrates. Our previous studies on leech post-embryonic development have already shown the pivotal role of ECM changes during the growth of the body wall and the role of Yes-associated protein 1 (YAP1) in mechanotransduction. Here, we suggest that the interactions between stromal cell telocytes and ECM might be crucial in driving the organization of muscle layers during embryogenesis. Furthermore, we propose a possible role of the pleiotropic enzyme HvRNASET2 as a possible modulator of collagen deposition and ECM remodeling not only during regenerative processes (as previously demonstrated) but also in embryogenesis.


Asunto(s)
Animales Ponzoñosos , Matriz Extracelular , Sanguijuelas , Morfogénesis , Animales , Matriz Extracelular/metabolismo , Sanguijuelas/embriología
4.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612777

RESUMEN

High-grade gliomas (HGGs) and glioblastoma multiforme (GBM) are characterized by a heterogeneous and aggressive population of tissue-infiltrating cells that promote both destructive tissue remodeling and aberrant vascularization of the brain. The formation of defective and permeable blood vessels and microchannels and destructive tissue remodeling prevent efficient vascular delivery of pharmacological agents to tumor cells and are the significant reason why therapeutic chemotherapy and immunotherapy intervention are primarily ineffective. Vessel-forming endothelial cells and microchannel-forming glial cells that recapitulate vascular mimicry have both infiltration and destructive remodeling tissue capacities. The transmembrane protein TMEM230 (C20orf30) is a master regulator of infiltration, sprouting of endothelial cells, and microchannel formation of glial and phagocytic cells. A high level of TMEM230 expression was identified in patients with HGG, GBM, and U87-MG cells. In this study, we identified candidate genes and molecular pathways that support that aberrantly elevated levels of TMEM230 play an important role in regulating genes associated with the initial stages of cell infiltration and blood vessel and microchannel (also referred to as tumor microtubule) formation in the progression from low-grade to high-grade gliomas. As TMEM230 regulates infiltration, vascularization, and tissue destruction capacities of diverse cell types in the brain, TMEM230 is a promising cancer target for heterogeneous HGG tumors.


Asunto(s)
Glioblastoma , Glioma , Enfermedad de Parkinson , Humanos , Glioblastoma/genética , Proteínas de la Membrana/genética , Células Endoteliales , Angiogénesis , Glioma/genética , Neuroglía , Neovascularización Patológica/genética
5.
BMC Cancer ; 23(1): 837, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679715

RESUMEN

BACKGROUND: RNASET2 has been identified as an oncogene with anti-angiogenic and immunomodulatory effects in a variety of cancers, but its function in clear cell renal cell carcinoma (ccRCC) is still not well understood. METHODS: The RNASET2 expression matrix was extracted from the The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets and analyzed for diagnostic and prognostic value. RNASET2 mRNA expression was detected by quantitative polymerase chain reaction (qPCR) in ccRCC patients and renal cancer cell lines. Wound healing assay, transwell assay, western blotting, and tube formation assays were used to evaluate the function of RNASET2 in renal cancer in vitro. In addition, transcriptome sequencing was performed on knockdown RNASET2 kidney cancer cells to analyze their potential signaling pathways. Moreover, the immune microenvironment and mutational status were evaluated to predict the potential mechanisms of RNASET2 involvement in renal cancer progression. Sensitivity to common chemotherapeutic and targeted agents was assessed according to the Genomics of Drug Sensitivity in Cancer (GDSC) database. RESULTS: RNASET2 expression was significantly upregulated in ccRCC tissues and renal cancer cell lines, predicting poor prognosis for patients. In vitro experiments showed that silencing RNASET2 inhibited the migration and pro-angiogenic ability of renal cancer cells. Transcriptome sequencing suggested its possible involvement in the remodeling of the immune microenvironment in renal cell carcinoma. Furthermore, bioinformatics analysis and immunohistochemical staining showed that RNASET2 was positively correlated with the infiltration abundance of regulatory T cells. Finally, we mapped the mutational landscape of RNASET2 in ccRCC and found its predictive value for drug sensitivity. CONCLUSIONS: Our results suggest that RNASET2 is a promising biomarker and therapeutic target in ccRCC.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Pronóstico , Biomarcadores , Neoplasias Renales/genética , Microambiente Tumoral , Ribonucleasas , Proteínas Supresoras de Tumor
6.
Fish Shellfish Immunol ; 127: 109-118, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35697269

RESUMEN

Filter-feeding bivalves, such as the Mytilus species, are exposed to different types of bacteria in the surrounding waters, in particular of the Vibrio genus. Mussels lack an adaptive immune system and hemocytes can recognize pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs) to activate intracellular signaling pathways to trigger the antimicrobial effectors synthesis. Among the areas of bivalve immunity that deserve study include the role of hemocyte subpopulations. Since little information are available on immune responses at the tissue level to human pathogenic vibrios commonly detected in coastal waters involved in seafood-borne diseases, in this work, immunological parameters of the hemocytes from the Mediterranean mussel M. galloprovincialis were evaluated in response to in vivo challenge with Vibrio splendidus. The histological approach has been first used in order to identify the hemocytes recruitment at the infection site and the morphological change of muscular fibers. In addition, using immunolabeling with specific antibody we detected the production of molecules involved in the inflammatory activated cascade: Toll-like receptors 4 (TLR4), the myeloid differentiation factor 88 (MyD88), the Allograft inflammatory factor-1 (AIF-1) and the ribonucleases RNASET2, belonging to the T2 family, that in vertebrates are involved in the recruitment and activation of macrophages. Our results indicate the activation of TLR4 during bacterial infection preparatory to the recruitment of the MyD88 adapter with a putative role in recognition and intracellular signalling. Furthermore, the data presented in this work suggest that challenging with Gram-negative bacteria causes a massive migration of AIF-1+ hemocytes and that the ribonuclease RNASET2 could play a key role in the recruitment of these activated hemocytes. Our approach is useful for further understanding the complex molecular defence mechanisms of the host in invertebrates, especially in relation to the need to develop methods to evaluate the immunological response of bivalve molluscs used in aquaculture.


Asunto(s)
Mytilus , Vibriosis , Vibrio , Animales , Hemocitos , Humanos , Factor 88 de Diferenciación Mieloide/metabolismo , Ribonucleasas/metabolismo , Alimentos Marinos , Receptor Toll-Like 4/metabolismo , Proteínas Supresoras de Tumor , Vibrio/fisiología , Vibriosis/metabolismo
7.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36012339

RESUMEN

Ovarian cancer represents one of the most malignant gynecological cancers worldwide, with an overall 5-year survival rate, being locked in the 25-30% range in the last decade. Cancer immunotherapy is currently one of the most intensively investigated and promising therapeutic strategy and as such, is expected to provide in the incoming years significant benefits for ovarian cancer treatment as well. Here, we provide a detailed survey on the highly pleiotropic oncosuppressive roles played by the human RNASET2 gene, whose protein product has been consistently reported to establish a functional crosstalk between ovarian cancer cells and key cellular effectors of the innate immune system (the monocyte/macrophages lineage), which is in turn able to promote the recruitment to the cancer tissue of M1-polarized, antitumoral macrophages. This feature, coupled with the ability of T2 ribonucleases to negatively affect several cancer-related parameters in a cell-autonomous manner on a wide range of ovarian cancer experimental models, makes human RNASET2 a very promising candidate to develop a "multitasking" therapeutic approach for innovative future applications for ovarian cancer treatment.


Asunto(s)
Neoplasias Ováricas , Ribonucleasas , Proteínas Supresoras de Tumor , Femenino , Genes Supresores de Tumor , Humanos , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Ribonucleasas/genética , Ribonucleasas/metabolismo , Proteínas Supresoras de Tumor/genética
8.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34299186

RESUMEN

Hypoxia is a key component of the tumor microenvironment (TME) and promotes not only tumor growth and metastasis, but also negatively affects infiltrating immune cells by impairing host immunity. Dendritic cells (DCs) are the most potent antigen-presenting cells and their biology is weakened in the TME in many ways, including the modulation of their viability. RNASET2 belongs to the T2 family of extracellular ribonucleases and, besides its nuclease activity, it exerts many additional functions. Indeed, RNASET2 is involved in several human pathologies, including cancer, and it is functionally relevant in the TME. RNASET2 functions are not restricted to cancer cells and its expression could be relevant also in other cell types which are important players in the TME, including DCs. Therefore, this study aimed to unravel the effect of hypoxia (2% O2) on the expression of RNASET2 in DCs. Here, we showed that hypoxia enhanced the expression and secretion of RNASET2 in human monocyte-derived DCs. This paralleled the HIF-1α accumulation and HIF-dependent and -independent signaling, which are associated with DCs' survival/autophagy/apoptosis. RNASET2 expression, under hypoxia, was regulated by the PI3K/AKT pathway and was almost completely abolished by TLR4 ligand, LPS. Taken together, these results highlight how hypoxia- dependent and -independent pathways shape RNASET2 expression in DCs, with new perspectives on its implication for TME and, therefore, in anti-tumor immunity.


Asunto(s)
Hipoxia de la Célula/fisiología , Células Dendríticas/metabolismo , Monocitos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ribonucleasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Apoptosis/fisiología , Autofagia/fisiología , Células Cultivadas , Células Dendríticas/inmunología , Células Dendríticas/patología , Humanos , Monocitos/inmunología , Monocitos/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ribonucleasas/biosíntesis , Ribonucleasas/inmunología , Transducción de Señal , Proteínas Supresoras de Tumor/biosíntesis , Proteínas Supresoras de Tumor/inmunología
9.
Glia ; 68(7): 1531-1545, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32212285

RESUMEN

The contribution of microglia in neurological disorders is emerging as a leading disease driver rather than a consequence of pathology. RNAseT2-deficient leukoencephalopathy is a severe childhood white matter disorder affecting patients in their first year of life and mimicking a cytomegalovirus brain infection. The early onset and resemblance of the symptoms to a viral infection suggest an inflammatory and embryonic origin of the pathology. There are no treatments available for this disease as our understanding of the cellular drivers of the pathology are still unknown. In this study, using a zebrafish mutant for the orthologous rnaset2 gene, we have identified an inflammatory signature in early development and an antiviral immune response in mature adult brains. Using the optical transparency and the ex utero development of the zebrafish larvae we studied immune cell behavior during brain development and identified abnormal microglia as an early marker of pathology. Live imaging and electron microscopy identified that mutant microglia displayed an engorged morphology and were filled with undigested apoptotic cells and undigested substrate. Using microglia-specific depletion and rescue experiments, we identified microglia as drivers of this embryonic phenotype and potential key cellular player in the pathology of RNAseT2-deficient leukoencephalopathy. Our zebrafish model also presented with reduced survival and locomotor defects, therefore recapitulating many aspects of the human disease. Our study therefore placed our rnaset2 mutant at the forefront of leukodystrophy preclinical models and highlighted tissue-specific approaches as future therapeutic avenues.


Asunto(s)
Apoptosis/fisiología , Encéfalo/metabolismo , Leucoencefalopatías/patología , Microglía/metabolismo , Animales , Leucoencefalopatías/metabolismo , Mutación/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Fenotipo , Pez Cebra , Proteínas de Pez Cebra/metabolismo
10.
Cell Tissue Res ; 380(3): 565-579, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32043208

RESUMEN

The RNASET2 ribonuclease, belonging to the highly conserved RH/T2/s RNase gene family, has been recently shown to modulate inflammatory processes in both vertebrates and invertebrates. Indeed, the RNASET2 protein acts as a chemoattractor for macrophages in both in vitro and in vivo experimental settings and its expression significantly increases following bacterial infections. Moreover, we recently observed that injection of human recombinant RNASET2 protein in the body wall of the medicinal leech (a consolidated invertebrate model for both immune response and tissue regeneration) not only induced immune cell recruitment but also apparently triggered massive connective tissue remodelling as well. Based on these data, we evaluate here a possible role of leech recombinant RNASET2 protein (rHvRNASET2) in connective tissue remodelling by characterizing the cell types involved in this process through histochemical, morphological and immunofluorescent assays. Moreover, a time-course expression analysis of newly synthesized pro-collagen1α1 (COL1α1) and basic FGF receptor (bFGFR, a known fibroblast marker) following rHvRNASET2 injection in the leech body wall further supported the occurrence of rHvRNASET2-mediated matrix remodelling. Human MRC-5 fibroblast cells were also investigated in order to evaluate their pattern of collagen neosynthesis driven by rHvRNASET2 injection.Taken together, the data reported in this work provide compelling evidence in support of a pleiotropic role for RNASET2 in orchestrating an evolutionarily conserved crosstalk between inflammatory response and regenerative process, based on macrophage recruitment and fibroblast activation, coupled to a massive extracellular reorganization.


Asunto(s)
Colágeno Tipo I/metabolismo , Tejido Conectivo/efectos de los fármacos , Hirudo medicinalis/efectos de los fármacos , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Proteínas Recombinantes/farmacología , Ribonucleasas/farmacología , Animales , Línea Celular , Cadena alfa 1 del Colágeno Tipo I , Tejido Conectivo/fisiología , Fibroblastos/efectos de los fármacos , Humanos
11.
Protein Expr Purif ; 174: 105675, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32450138

RESUMEN

Members of the T2 extracellular ribonucleases family have long been reported as stress response proteins, often involved in host defence, in many different taxonomic groups. In particular, the human RNASET2 protein (hRNASET2) has been reported as an extracellular tumor suppressor protein, endowed with the ability to act as an "alarmin" signalling molecule following its expression and secretion in the tumor microenvironment by cancer cells and the subsequent recruitment and activation of cells belonging to the host innate immune system. Many in vitro and in vivo assays have been recently reported in support of the oncosuppressive role of hRNASET2: most of them relied on genetically engineered cell lines and the use of recombinant proteins from non-mammalian sources. In order to ensure a human-like glycosylation pattern, here we report for the first time the expression of recombinant hRNASET2 in the CHO-S cell line. We established a simple one-step chromatographic purification procedure that resulted in the production of 5 mg of endotoxin-free hRNASET2 per liter of culture, with a >95% purity degree. hRNASET2 expressed in CHO-S cells displayed a high degree of glycosylation homogeneity and a secondary structure content in agreement with that determined from the crystal structure. Indeed, recombinant hRNASET2 was active at both enzymatic and functional level, as stated by a biological activity assay. The availability of a pure, homogeneous recombinant human RNASET2 would provide a key tool to better investigate its non cell-autonomous roles in the context of cancer development and growth.


Asunto(s)
Expresión Génica , Ribonucleasas , Proteínas Supresoras de Tumor , Animales , Células CHO , Cricetulus , Glicosilación , Humanos , Proteínas Recombinantes , Ribonucleasas/biosíntesis , Ribonucleasas/genética , Ribonucleasas/aislamiento & purificación , Proteínas Supresoras de Tumor/biosíntesis , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/aislamiento & purificación
12.
J Clin Lab Anal ; 32(2)2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28568286

RESUMEN

OBJECTIVES: This study was designed to unveil the association of GPR174 rs3827440, PTPN22 rs3789604, and RNASET2 rs9355610 with the onset of liver damage (LD) among the Graves' disease (GD) patients. METHODS: A total of 120 GD patients were divided into the none-LD and LD groups. Several indicators were detected for assessing liver functions, and genotypes of single nucleotide polymorphisms (SNPs) were identified. Logistic regression was introduced for investigating the relationship between risk SNPs and LD-associated hyperthyroidism in GD patients. RESULTS: Significant differences were identified between LD and none-LD groups regarding genotype distributions of rs3827440, rs3789604, and rs9355610. Results from logistic regression indicted that among the GD patients, C carriers of PTPN22 rs3789604 were associated with a higher risk of LD-associated hyperthyroidism, while C carriers of rs3827440 (GPR174) and G carriers of rs9355610 (RNASET2) were associated with a reduced risk of LD-associated hyperthyroidism. CONCLUSIONS: The C allele of rs3789604 (PTPN22) was a significant risk factor for LD-associated hyperthyroidism in GD patients, whereas C allele of GPR174 rs3827440 and G allele of RNASET2 rs9355610 appeared to be a protective factor for this disease.


Asunto(s)
Enfermedad de Graves/genética , Enfermedad de Graves/fisiopatología , Hígado/fisiopatología , Proteína Tirosina Fosfatasa no Receptora Tipo 22/genética , Receptores Acoplados a Proteínas G/genética , Ribonucleasas/genética , Proteínas Supresoras de Tumor/genética , Adulto , Femenino , Predisposición Genética a la Enfermedad/epidemiología , Predisposición Genética a la Enfermedad/genética , Enfermedad de Graves/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple
13.
Fetal Pediatr Pathol ; 37(1): 15-21, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29336640

RESUMEN

INTRODUCTION: RNASET2 mutation has been reported in patients with cystic leukoencephalopathy without megalencephaly and the Aicardi-Goutieres syndrome. Both disorders are Mendelian mimics of congenital cytomegalovirus infection with overlapping features, including leukoencephalopathy, white matter alterations, intracranial calcification, delayed psychomotor development, intelligence disability and seizures. Only eight families with RNASET2 mutation have been previously reported. METHODS: Whole exome sequencing was performed and copy number variants were described by read-depth strategy. RESULTS: We identified a novel nonsense variant c.128G>A (p. W43*) and a 430 Kb 6q27 microdeletion encompassing RNASET2. Our patient did not show anterior temporal lobe subcortical cysts, hearing loss, dystonia or extra-neurological features. CONCLUSION: Our results provided further genetic and phenotypic information of RNASET2 mutation in Chinese patients and highlighted the importance for physicians to consider RNASET2-related disorders when diagnosing patients with congenital brain infection-like phenotypes.


Asunto(s)
Discapacidades del Desarrollo/genética , Ribonucleasas/genética , Proteínas Supresoras de Tumor/genética , Pueblo Asiatico/genética , Preescolar , Discapacidades del Desarrollo/patología , Femenino , Genotipo , Humanos , Mutación , Fenotipo
14.
Adv Protein Chem Struct Biol ; 141: 299-329, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38960478

RESUMEN

TMEM230 promotes antigen processing, trafficking, and presentation by regulating the endomembrane system of membrane bound organelles (lysosomes, proteosomes and mitochondria) and phagosomes. Activation of the immune system requires trafficking of various cargos between the endomembrane system and cell plasma membrane. The Golgi apparatus is the hub of the endomembrane system and essential for the generation, maintenance, recycling, and trafficking of the components of the endomembrane system itself and immune system. Intracellular trafficking and secretion of immune system components depend on mitochondrial metalloproteins for ATP synthesis that powers motor protein transport of endomembrane cargo. Glycan modifying enzyme genes and motor proteins are essential for the activation of the immune system and trafficking of antigens between the endomembrane system and the plasma membrane. Recently, TMEM230 was identified as co-regulated with RNASET2 in lysosomes and with metalloproteins in various cell types and organelles, including mitochondria in autoimmune diseases. Aberrant metalloproteinase secretion by motor proteins is a major contributor to tissue remodeling of synovial membrane and joint tissue destruction in rheumatoid arthritis (RA) by promoting infiltration of blood vessels, bone erosion, and loss of cartilage by phagocytes. In this study, we identified that specific glycan processing enzymes are upregulated in certain cell types (fibroblast or endothelial cells) that function in destructive tissue remodeling in rheumatoid arthritis compared to osteoarthritis (OA). TMEM230 was identified as a regulator in the secretion of metaloproteinases and heparanase necessary tissue remodeling in OA and RA. In dendritic (DC), natural killer and T cells, TMEM230 was expressed at low or no levels in RA compared to OA. TMEM230 expression in DC likely is necessary for regulatory or helper T cells to maintain tolerance to self-antigens and prevent susceptibility to autoimmune disease. To identify how TMEM230 and the endomembrane system contribute to autoimmunity we investigated, glycan modifying enzymes, metalloproteinases and motor protein genes co-regulated with or regulated by TMEM230 in synovial tissue by analyzing published single cell transcriptomic datasets from RA patient derived synovial tissue.


Asunto(s)
Metaloproteínas , Humanos , Metaloproteínas/metabolismo , Metaloproteínas/genética , Análisis de la Célula Individual , Autoinmunidad , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Animales , Perfilación de la Expresión Génica
15.
Adv Protein Chem Struct Biol ; 141: 255-297, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38960477

RESUMEN

Glial cells provide physical and chemical support and protection for neurons and for the extracellular compartments of neural tissue through secretion of soluble factors, insoluble scaffolds, and vesicles. Additionally, glial cells have regenerative capacity by remodeling their physical microenvironment and changing physiological properties of diverse cell types in their proximity. Various types of aberrant glial and macrophage cells are associated with human diseases, disorders, and malignancy. We previously demonstrated that transmembrane protein, TMEM230 has tissue revascularization and regenerating capacity by its ability to secrete pro-angiogenic factors and metalloproteinases, inducing endothelial cell sprouting and channel formation. In healthy normal neural tissue, TMEM230 is predominantly expressed in glial and marcophate cells, suggesting a prominent role in neural tissue homeostasis. TMEM230 regulation of the endomembrane system was supported by co-expression with RNASET2 (lysosome, mitochondria, and vesicles) and STEAP family members (Golgi complex). Intracellular trafficking and extracellular secretion of glial cellular components are associated with endocytosis, exocytosis and phagocytosis mediated by motor proteins. Trafficked components include metalloproteins, metalloproteinases, glycans, and glycoconjugate processing and digesting enzymes that function in phagosomes and vesicles to regulate normal neural tissue microenvironment, homeostasis, stress response, and repair following neural tissue injury or degeneration. Aberrantly high sustained levels TMEM230 promotes metalloprotein expression, trafficking and secretion which contribute to tumor associated infiltration and hypervascularization of high tumor grade gliomas. Following injury of the central nervous or peripheral systems, transcient regulated upregulation of TMEM230 promotes tissue wound healing, remodeling and revascularization by activating glial and macrophage generated microchannels/microtubules (referred to as vascular mimicry) and blood vessel sprouting and branching. Our results support that TMEM230 may act as a master regulator of motor protein mediated trafficking and compartmentalization of a large class of metalloproteins in gliomas and gliosis.


Asunto(s)
Glioma , Gliosis , Proteínas de la Membrana , Humanos , Proteínas de la Membrana/metabolismo , Glioma/metabolismo , Glioma/patología , Gliosis/metabolismo , Gliosis/patología , Animales , Receptores de Péptidos
16.
Adv Protein Chem Struct Biol ; 141: 331-360, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38960479

RESUMEN

We recently identified TMEM230 as a master regulator of the endomembrane system of cells. TMEM230 expression is necessary for promoting motor protein dependent intracellular trafficking of metalloproteins for cellular energy production in mitochondria. TMEM230 is also required for transport and secretion of metalloproteinases for autophagy and phagosome dependent clearance of misfolded proteins, defective RNAs and damaged cells, activities that decline with aging. This suggests that aberrant levels of TMEM230 may contribute to aging and regain of proper levels may have therapeutic applications. The components of the endomembrane system include the Golgi complex, other membrane bound organelles, and secreted vesicles and factors. Secreted cellular components modulate immune response and tissue regeneration in aging. Upregulation of intracellular packaging, trafficking and secretion of endosome components while necessary for tissue homeostasis and normal wound healing, also promote secretion of pro-inflammatory and pro-senescence factors. We recently determined that TMEM230 is co-regulated with trafficked cargo of the endomembrane system, including lysosome factors such as RNASET2. Normal tissue regeneration (in aging), repair (following injury) and aberrant destructive tissue remodeling (in cancer or autoimmunity) likely are regulated by TMEM230 activities of the endomembrane system, mitochondria and autophagosomes. The role of TMEM230 in aging is supported by its ability to regulate the pro-inflammatory secretome and senescence-associated secretory phenotype in tissue cells of patients with advanced age and chronic disease. Identifying secreted factors regulated by TMEM230 in young patients and patients of advanced age will facilitate identification of aging associated targets that aberrantly promote, inhibit or reverse aging. Ex situ culture of patient derived cells for identifying secreted factors in tissue regeneration and aging provides opportunities in developing therapeutic and personalized medicine strategies. Identification and validation of human secreted factors in tissue regeneration requires long-term stabile scaffold culture conditions that are different from those previously reported for cell lines used as cell models for aging. We describe a 3 dimensional (3D) platform utilizing non-biogenic and non-labile poly ε-caprolactone scaffolds that supports maintenance of long-term continuous cultures of human stem cells, in vitro generated 3D organoids and patient derived tissue. Combined with animal component free culture media, non-biogenic scaffolds are suitable for proteomic and glycobiological analyses to identify human factors in aging. Applications of electrospun nanofiber technologies in 3D cell culture allow for ex situ screening and the development of patient personalized therapeutic strategies and predicting their effectiveness in mitigating or promoting aging.


Asunto(s)
Envejecimiento , Organoides , Humanos , Organoides/metabolismo , Envejecimiento/metabolismo , Proteínas de la Membrana/metabolismo , Senescencia Celular , Femenino , Andamios del Tejido/química , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/citología
17.
Cell Signal ; 111: 110869, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37633478

RESUMEN

OBJECTIVE: The objective of this study is to determine how Musashi-2 (MSI2) affects vascular smooth muscle cell (VSMC) phenotypic switch and contributes to atherosclerosis (AS). METHODS: Primary mouse VSMCs were transfected with MSI2 specific siRNA and treated with platelet-derived growth factor-BB (PDGF-BB). The proliferation, cell-cycle, and migration of VSMCs were determined by CCK-8, flow cytometry, wound healing, and transwell assays. Western blot and qRT-PCR were conducted to analyze the protein and mRNA expression. Moreover, the correlation between MSI2, Fbxo6, Rnaset2, and chemokine signaling was predicted and verified using RNAct database, KEGG, wiki, RNA-binding protein immunoprecipitation and co-immunoprecipitation. Moreover, H&E and Oil Red O staining were employed for assessing necrotic core and lipid accumulation in AS mouse aorta tissues. The numbers of B lymphocytes and monocytes, and the levels of triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDLC), and low-density lipoprotein cholesterol (LDL-C) in AS mice blood were investigated using flow cytometry and corresponding commercial kits, respectively. RESULTS: MSI2 was up-regulated in the PDGF-BB-treated VSMCs. Knockdown of MSI2 inhibited VSMC proliferation, cell-cycle, and migration. Moreover, MSI2 regulated VSMC phenotypic switch through binding with Fbxo6 to induce Rnaset2 ubiquitination. MSI2 knockdown inhibited chemokine signaling via regulating Fbxo6/Rnaset2 axis. In AS mice, knockdown of MSI2 inhibited the formation of necrotic core and atherosclerotic plaque, and inhibited chemokine signaling via regulating Fbxo6/Rnaset2 axis. CONCLUSION: Our findings demonstrated that MSI2 could bind with Fbxo6 to induce Rnaset2 ubiquitination and the activation of chemokine signaling pathway during VSMC phenotypic switch in AS.


Asunto(s)
Aterosclerosis , Músculo Liso Vascular , Animales , Ratones , Aterosclerosis/metabolismo , Becaplermina/farmacología , Movimiento Celular , Proliferación Celular , Células Cultivadas , Quimiocinas/metabolismo , Colesterol/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Transducción de Señal
18.
FEBS Open Bio ; 13(4): 638-654, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36728187

RESUMEN

Clear cell renal cell carcinoma (ccRCC), the most common malignant subtype of renal cell carcinoma, is characterized by the accumulation of lipid droplets in the cytoplasm. RNASET2 is a protein coding gene with a low expression level in ovarian cancers, but it is overexpressed in poorly differentiated neuroendocrine carcinomas. There is a correlation between RNASET2 upregulation and triglyceride expression levels in human serum but is unknown whether such an association is a factor contributing to lipid accumulation in ccRCC. Herein, we show that RNASET2 expression levels in ccRCC tissues and cell lines are significantly higher than those in both normal adjacent tissues and renal tubular epithelial cells. Furthermore, its upregulation is associated with increases in ccRCC malignancy and declines in patient survival. We also show that an association exists between increases in both cytoplasmic lipid accumulation and HIF-2α transcription factor upregulation, and increases in both RNASET2 and triglyceride expression levels in ccRCC tissues. In addition, DGAT1 and DGAT2, two key enzymes involved in triglyceride synthesis, are highly expressed in ccRCC tissues. By contrast, RNASET2 knockdown inhibited their expression levels and lowered lipid droplet accumulation, as well as suppressing in vitro cell proliferation, cell invasion, and migration. In conclusion, our data suggest HIF2α upregulates RNASET2 transcription in ccRCC cells, which promotes both the synthesis of triglycerides and ccRCC migration. As such, RNASET2 may have the potential as a biomarker or target for the diagnosis and treatment of ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Neoplasias Renales/metabolismo , Lípidos , Ribonucleasas/metabolismo , Proteínas Supresoras de Tumor/genética , Regulación hacia Arriba/genética
19.
Endocrine ; 79(1): 55-59, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36180758

RESUMEN

Genetic variation of the gene encoding for the only human enzyme of the T2 ribonucleases family (RNASET2) emerged in genome-wide association studies as a putative risk hotspot for Graves' disease (GD). T2 ribonucleases activities include immune regulation, induction of cell apoptosis and differentiation. Several reports supported the hypothesis that RNASET2 represents a "danger" message addressed to the innate immune system in peculiar conditions. This was a longitudinal, case-control study. RNASET2 protein levels were assessed in blood samples from 34 consecutive newly diagnosed GD patients and in healthy controls. At enrollment, RNASET2 levels were significantly higher in GD patients (98.5 ± 29.1 ng/ml) compared to healthy controls (72.5 ± 27.9 ng/ml, p = 0.001). After 6 months of methimazole treatment, RNASET2 levels significantly decrease and return to levels similar to healthy controls (62.4 ± 22 ng/ml, p = 0.69). These preliminary results suggest that RNASET2 is overexpressed in patients with GD and might represent an "alarm signal" generated by thyroid cells in response to endogenous or environmental stress to alert the immune system.


Asunto(s)
Estudio de Asociación del Genoma Completo , Enfermedad de Graves , Humanos , Estudios de Casos y Controles , Enfermedad de Graves/genética , Ribonucleasas/genética , Ribonucleasas/metabolismo , Proteínas Supresoras de Tumor/genética
20.
3 Biotech ; 11(12): 495, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34881158

RESUMEN

T2 ribonuclease family (RNaseT2) proteins are secretory and nonspecific endoribonucleases that have a large conserved biological role. Family members of RNaseT2 are found in every organism and carry out important biological functions. However, little is known about the functions of these proteins in legumes, including potential roles in symbiotic nodulation. This study aimed to characterize and perform bioinformatic analysis of RNaseT2 genes in four legume species that their genome was sequenced. In total, 60 RNaseT2 genes were identified and characterized. By analyzing their phylogeny, we divided these RNaseT2 into five clades. Expression analysis of RNaseT2 genes indicated that these genes are expressed in various tissues, and the most expression level was related to the pod, flower, and root. Moreover, GmaRNS9 expression analysis in soybean was consistent with in silico studies and demonstrated that this gene usually has high root tip expression. GmaRNS9 expression was reduced by Bradyrhizobium japonicum inoculation and nodule formation. Reduced expression of this gene was possibly controlled by the GmNARK gene either directly or pleiotropically through increased phosphorus requirements during increased nodulation. However, the nutrient stress (phosphate and nitrate starvation) led to an increase in the expression level of GmRNS9. In silico and quantitative gene expression analyses showed that RNaseT2 genes could play important roles in the growth and development of legumes as well as nodulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA